Ю. И. Бельченко, А. В. Бурдаков, В. И. Давыденко, В. М. Долгушин, А. Н. Драничников, А. А. Иванов, В. В. Кобец, С. Г. Константинов, А. С. Кривенко, А. М. Кудрявцев, В. Я. Савкин, А. Л. Санин, И. Н. Сорокин, С. Ю. Таскаев, М. А. Тиунов, А. Д. Хильченко, В. В. Широков

Институт ядерной физики им. Г. И. Будкера СО РАН пр. Акад. Лаврентьева, 11, Новосибирск, 630090, Россия E-mail: Shirokov@inp.nsk.su

УСКОРИТЕЛЬ-ТАНДЕМ С ВАКУУМНОЙ ИЗОЛЯЦИЕЙ КАК ОСНОВА МЕДИЦИНСКОГО КОМПЛЕКСА ДЛЯ ЛЕЧЕНИЯ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ МЕТОДОМ БОРНЕЙТРОНОЗАХВАТНОЙ ТЕРАПИИ И ТАМОЖЕННОГО КОМПЛЕКСА ДЛЯ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ ВЗРЫВЧАТЫХ ВЕЩЕСТВ

В статье описана конструкция и области применения оригинального протонного ускорителя с вакуумной изоляцией, предложенного и изготовленного в Институте ядерной физики СО РАН. Приведены результаты первых экспериментов.

Введение

Концепция нейтронозахватной терапии рака была предложена в 1936 г. [1], спустя 4 года после открытия нейтрона. Ее физический принцип достаточно прост и основан на большом значении сечения захвата эпитепловых нейтронов ядрами стабильного изотопа бора ${}^{10}B(n,\alpha)^7Li$. Большую часть выделяющейся в реакции энергии уносят α-частица и ион ⁷Li. Если изотоп будет сорбирован в клетках опухоли, то эта энергия реакции выделится на длине размеров клетки, т. е. разрушит ее. При обеспечении более высокой концентрации ¹⁰В в клетках раковой опухоли по сравнению с клетками ткани борнейтронозахватная здоровой (БНЗТ) терапия позволит осуществить избирательное поражение клеток злокачественных опухолей.

В пятидесятых годах прошлого века одновременно с клиническими испытаниями метода БНЗТ начато синтезирование борсодержащих фармпрепаратов, обеспечивающих более высокую концентрацию изотопа в опухолевых тканях, чем в здоровых [2].

Наиболее эффективно лечение методом БНЗТ больных с глиобастомой мозга – одного из видов опухолей, почти не поддающихся другим методам лечения. Ежегодно один из 20 000 человек заболевает этим видом болезни. К настоящему времени клинические испытания и лечение БНЗ терапией с обнадеживающими результатами проведены сотням больных в Японии [3], США, Голландии и др. странах.

В опубликованных клинических испытаниях источником эпитепловых нейтронов служил поток нейтронов ядерного реактора, прошедших через коллиматоры, отражатели и замедлители.

Прогресс БНЗТ и потенциальная восстребованность метода определили необходимость создания малогабаритного источника нейтронов, которым можно было бы оснастить большинство онкологических клиник.

Таким источником эпитепловых нейтронов может служить высокостабильный по энергии ускоритель протонов с литиевой мишенью [4]. При падении 1,9 МэВ-ного протонного пучка на литиевую мишень (⁷Li(p,n)⁷Be) формируется кинематически коллимированный вперед в конусе с углом ~ 25° нейтронный пучок со средней энергией 30 кЭВ. Такой пучок может быть непосредственно использован для целей БНЗТ. Необходимая терапевтическая доза обеспечивается током протонов в десятки миллиампер.

Активизация работ по изучению новых методов дистанционного поиска взрывчатых

- В.В.Кобец, С.Г.Константинов, А.С.Кривенко, А.М. Кудрявцев, В.Я.Савкин, А.Л.Санин,
- И. Н. Сорокин, С. Ю. Таскаев, М. А. Тиунов, А. Д. Хильченко, В. В. Широков, 2006

ISSN 1818-7994. Вестник НГУ. Серия: Физика. 2006. Том 1, выпуск 2

[©] Ю.И.Бельченко, А.В.Бурдаков, В.И.Давыденко, В.М.Долгушин, А.Н.Драничников, А.А.Иванов,

веществ, спрятанных в багаже авиапассажиров и грузовых контейнерах, послужил взрыв лайнера американских авиалиний над озером Локкерби (Шотландия) в 1989 г. До этого поисковые работы основывались на сложном анализе спектра нейтронов, прошедших исследуемую субстанцию.

В 1994 г. была опубликована работа [5], в которой рассматривалась реакция ${}^{13}C(p,\gamma){}^{14}N$, на основе которой возможен поиск азотосодержащих веществ, так как азот представляет основную составляющую материала взрывчатых веществ на органической основе.

Протонный пучок с энергией ~ 1,75 МэВ, при падении на мишень из изотопа углерода ¹³С, генерирует пучок γ -квантов. Кванты, вылетающие под углом 80,8° к направлению движения протонного пучка и летящие в растворе угла ~ 0,5°, имеют энергию 9,175 МэВ, соответствующую максимуму энергии резонансного поглощения квантов в азоте ~ 9,172 МэВ в реакции ¹⁴N(γ , p) ¹³С.

Одновременно сравнивая поглощение резонансных и нерезонансных квантов за исследуемым объектом, можно сделать вывод о наличии азотосодержащей субстанции в нем.

Результаты экспериментов, опубликованные в этой работе, подтвердили применимость метода, но плохое качество протонного пучка не позволило довести работу до этапа промышленной эксплуатации. Эксплуатационная пригодность метода подразумевает наличие 1,75 МэВ-ного протонного пучка с постоянным током в десятки миллиампер.

Известные события сентября 2001 г. в США подтолкнули мировое сообщество к активизации дистанционного поиска взрывчатых веществ.

Таким образом, и для нейтронозахватной терапии и для дистанционного поиска взрывчатых веществ востребован стабильный по энергии постоянный протонный пучок с энергией от 1,7 до 2 МэВ током в десятки миллиампер.

Протонный пучок с такими параметрами можно получить в ускорителе заряженных частиц.

Конструкция ускорителя

Миллиамперным источникам протонов для ускорителей в отличие от источников электронов сопутствует достаточно большой газовый поток, требующий соответствующей откачки. Если источник расположен под высоким потенциалом, то каналом откачки газа чаще всего служит сама ускорительная трубка (для 2 МВ потенциала имеющая длину от 1,5 до 2 м). Такая трубка при диаметре изолятора в десятки сантиметров обладает ограниченной вакуумной проводимостью, не позволяющей получить высокий вакуум в области ускорения протонов. Плохой вакуум в области ускорения протонов. Плохой вакуум в области ускорения приводит к рассеянию ускоряемого заряда и продуктов его взаимодействия с молекулами остаточного газа на диэлектрическую поверхность трубки с последующим пробоем изолятора. К настоящему времени ускоряемые в ускорительных трубках ионные токи ограничены единицами миллиампер.

Эксплуатация источника, расположенного под полным потенциалом ускорителя, требует сложных технических решений.

Проблемы откачки газа источника и удобства его эксплуатации решает тандемный вариант ускорителя (рис. 1), при котором источник и системы откачки газа располагаются под «земляным» потенциалом. Кроме того, полная энергия ускоряемого пучка определяется только половинным потенциалом высоковольтного источника (по сравнению с полным потенциалом источника в типовом варианте ускорителя).

Рис. 1. Ускоритель-тандем с вакуумной изоляцией

Но и в тандемном варианте ускорителя существует проблема откачки: откачка газа

обдирочной мишени (из-за больших энергетических потерь в фольге при малой энергии пучка и достаточно большом токе при-

Рис. 2. Источник отрицательных ионов водорода и низкоэнергетичный тракт тандема

Рис. 3. Результаты компьютерного моделирования огибающих ионных пучков

Рис. 4. Высоковольтный электрод тандема

менение фольговых обдирочных мишеней проблематично). Откачка же газа мишени

через объем ускорительных трубок снова приведет к вышеупомянутыми проблемами.

В традиционной схеме тандема две ускорительные трубки высоковольтными концами соединены с обдирочной мишенью. Трубки и мишень посредине располагаются в газонаполненном объеме.

В предложенном в 1998 г. в ИЯФ ускорителе-тандеме на миллиамперные токи вместо ускорительных трубок используется вакуумная изоляция.

Источником высокого напряжения для ускорителя служит разработанный и изготавливаемый в ИЯФ надежный высоковольтный источник питания промышленных ускорителей электронов ЭЛВ, поставляемых во многие страны мира. Источник питания тандема работает в МэВ-ном диапазоне напряжения при выдаваемой мощности в десятки киловатт и расположен в сосуде под давлением 0,7 МПа SF₆. Модернизированный источник позволяет стабилизировать выходное напряжение с точностью до долей процента.

Пучок отрицательных ионов водорода, выходя из источника (см. рис. 1, 3) [6], проходит через низкоэнергетичный тракт (рис. 2), где с использованием двух фокусирующих электромагнитных линз и корректора подготавливается к впуску в первый ускорительный зазор тандема, представляющий собой сильную фокусирующую линзу.

На рис. 3 показаны результаты численного анализа движения ионного пучка с токами 1, 10 и 40 мА в тандеме при напряженности в ускоряющих зазорах 33 кВ/см и полном напряжении на тандеме ~ 1 MB.

При прохождении к высоковольтному электроду (рис. 1, 5; 4) тандема ускоряемый в высоковольтных вакуумных зазорах пучок отрицательных ионов водорода набирает энергию, соответствующую потенциалу высоковольтного выпрямителя. Пройдя через газ обдирочной мишени (рис. 1, 7; 5), расположенной внутри высоковольтного электрода, ионы пучка теряют по 2 электрона, т. е. меняют знак заряда ионов, и выходящий из мишени уже протонный пучок, ускоряется в высоковольтных вакуумных зазорах до энергии соответствующей удвоенному потенциалу высоковольтного источника.

Для предотвращения эффекта полного напряжения, полный высоковольтный вакуумный зазор ускорителя разделен на 6 ускорительных зазоров коаксиальными электродами (рис. 1, 9; 6), в которых по оси ускорения (рис. 1, 2) сделаны отверстия для прохождения пучка. Коаксиальные электроды расположены на эквипотенциалях и имеют малую толщину, так что отверстия не влияют на прохождение ионного пучка.

Коаксиальные электроды крепятся на электродах газонаполненного (0,3 МПа SF₆) проходного изолятора (рис. 1, 10; 7), и при равномерном распределении потенциала на них создают равномерное поле во всех шести ускоряющих вакуумных зазорах.

Силовая металлическая труба, стягивающая верхнюю и нижнюю части проходного изолятора передает потенциал высоковольтного источника, с которым она соединена одним концом через фланец, высоковольтному электроду тандема, находящемуся в вакууме через другой фланец (рис. 1, 8).

Верхняя, вакуумная, часть изолятора выполнена на кольцевых стеклянных изоляторах, вакуумно-плотно соединенных со своими электродами (рис. 1, *10*) с помощью индиевых уплотнителей. Керамические кольца нижней половины изолятора со своими электродами (рис. 1, *12*) склеены.

Потенциал высоковольтного источника равномерно распределен по электродам изолятора с помощью активного делителя (рис. 1, 13), элементы которого расположены как внутри верхней половины, так и снаружи нижней половины изолятора.

Равнопотенциальные электроды вакуумной и газовой частей изолятора соединены внутри изолятора тонкими металлическими трубами (рис. 1, *11*), коаксиально расположенными вокруг центральной силовой трубы.

В рассматриваемой геометрии ускорителя вакуумная поверхность изолятора расположена далеко от области прохождения пучка и это предотвращает осаждение заряда на поверхность и последующий пробой изолятора.

Вакуумный объем тандема и газ обдирочной мишени откачиваются через жалюзи (рис. 8), расположенные в вершине каждого из электродов ускоряющих зазоров, криогенным насосом (рис. 1, 4; 9), с общей скоростью в тысячи литров в секунду, что практически недостижимо для откачки газа мишени в трубочном варианте тандема.

В результате проведенного анализа в качестве газа обдирочной мишени выбран аргон. Обдирочная мишень выполнена в виде трубки с внутренним диаметром 10 мм и длиной 400 мм, в которую через поперечное отверстие, расположенное посредине трубки, поступает обдирочный газ. Снаружи на трубку мишени напаяна трубка масляного охлаждения мишени. Охлаждение необхо-

Рис. 5. Обдирочная мишень и объем, в котором размещаются системы управления и контроля газа мишени

Рис. 6. Коаксиальные электроды ускорительных зазоров тандема

Рис. 7. Проходной изолятор тандема

Рис. 8. Жалюзи электродов ускоряющих зазоров

Рис. 9. Вакуумный объем и криогенный насос тандема

Рис. 10. Тренировочная кривая 4,5 см высоковольтного зазора: N – номер последовательного вакуумного пробоя; 1, 2 соответствуют выделяемой при максимальном напряжении пробоя энергии в 9 Дж,

3 – 30 Дж; значение напряженности поля – 33 кВ/см, выбранное как рабочее для зазоров тандема, отмечено знаком •••••

димо для снятия энергии, выделяющейся в трубке при перезарядке ионного пучка, и осаждения ореола пучка при его движении внутри мишени.

В область мишени масло и обдирочный газ доставляются с «земли» по диэлектрическим трубам, проходящим по оси высоковольтного источника и проходного изолятора (внутри стягивающей трубы). Системы контроля и регулировки газа мишени расположены в вакуумноплотном объеме (рис. 1, 6; 5).

Модельные эксперименты

Неравномерность распределения напряжения по электродам проходного изолятора и электродам ускорительных зазоров может привести к пробоям изолятора или зазоров. К неравномерности могут привести значительные автоэмиссионные токи в зазорах с диэлектриком и высоковольтных вакуумных промежутках, зависящие, в том числе, от площади электродов и от степени подготовки их поверхности. Для тандема площадь упомянутых электродов составляет десятки квадратных метров, а энергия, запасенная в емкостях отдельных зазоров и выделяющаяся при пробоях, достигает ~ 20 Дж. Такое значение энергии, выделяемой в пробое, для миллиметровых зазоров приводит к падению электрической прочности зазора [7].

Поэтому перед проектированием тандема были проведены эксперименты, показавшие, что для сантиметровых вакуумных зазоров не наблюдалось падения электрической прочности вакуумного промежутка вплоть до выделяемой в пробое запасенной энергий в 20 Дж [8] (рис. 10), а автоэмиссионный ток при запланированных напряженностях вакуумного зазора для площадей электродов 0,7 м², исследованных в эксперименте, после высоковольтной тренировки стремится к нулю (рис. 11) [9].

Статус тандема

К октябрю 2006 г. тандем практически полностью изготовлен, собран, прошел газовые и вакуумные испытания. При высоковольтных испытаниях достигнуто напряжение 1 МВ. Подтверждено, что вакуумные пробои не снижают электрической прочности тандема.

На источнике отрицательных ионов водорода получен ток до 15 мА с прохождением 4 мА пучка ионов по низкоэнергетичному тракту на расстояние до 1,2 м.

Включение тандема со слаботочным тестовым пучком отрицательных ионов и обдирочной мишенью позволило зафиксировать в приемном коллекторе протоны. Для подтверждения наличия протонов использовалась реакция $C^{12}(p,\gamma)N^{13}(\beta^+)C^{13}$, согласно которой при энергии протонов 0,457 МэВ из углеродной мишени, на которую падает пучок, наблюдается резонансный выход как гамма квантов с энергией 2,36 МэВ, так и аннигиляционных квантов от бета-распада N^{13} . Экран дисплея с результатами регистрации квантов показан на рис. 12.

Заключение

К настоящему времени в ИЯФ ускоритель-тандем выводится на рабочие параметры: энергия протонного пучка – до 2 МэВ и ток до 10 мА.

Высокоэффективный, сильноточный ускоритель-тандем с вакуумной изоляцией может быть полезным протонным источником для комплекса по поиску взрывчатых веществ, так же как и для медицинского комплекса по борнейтронозахватной терапии опухолей мозга.

Экспериментальный комплекс для работы в двух режимах может выглядеть так, как показано на рис. 13. Для режима генерации резонансных квантов протонный пучок на первом этаже падает на мишень из 13 C, и багаж на транспортерах продвигается между конусным пучком резонансных γ -квантов и детекторами.

В режиме терапии протонный пучок повернут относительно горизонтали на 90°, и на втором этаже расположена мишень для получения нейтронов и регистрирующая нейтроны аппаратура.

Список литературы

1. *Locher G.* Biological Effects and Therapeutic Possibilities of Neutrons, Am. J. Roentgenol // Radium Ther. 1936. Vol. 36. No. 1.

2. Sweet W., Javid M. The possible use of neutron-capturing isotopes such as boron-10 in the treatment of neoplasms // I. Intracranial Tumors. J. Neurosurg. 1952. Vol. 9. P. 200–209.

3. *Hatanaka H., Nakagawa Y.* Clinical results of long-surviving brain tumor patients who underwenr boron neutron capture therapy // Int. J. Radiat. Oncol. Biol. Phys. 1994. Vol. 28. P. 1061–1066.

Рис. 11. Значения автоэмиссионных токов в вакуумном зазоре до высоковольтной тренировки (1) и после нее (2)

Рис. 12. Спектр регистрируемых гамма-квантов, подтверждающих наличие протонов. Справа – пик, соответствующий энергии протонов в 0,457 МэВ, посредине – пик аннигиляционных квантов, слева – хвост распределения фоновых квантов

Рис. 13. Комплекс на основе ускорителя-тандема с вакуумной изоляцией для поиска взрывчатых веществ и лечения опухолей мозга

4. Bayanov B. F., Belov V. P., Bender E. D. et al. Accelerator based neutron source for the

neutron-capture and fast neutron therapy at hospital // Nucl. Instr. and Meth. in Phys. Res. 1998. Vol. A 413. P. 397–426.

5. Vartsky D., Engler G., Goldberg M. B. A method for detection of explosives based on nuclear resonance absorbtion of gamma rays in ^{14}N // Nucl. Instr. and Meth. in Phys. Res. 1994. Vol. A348. P. 668–691.

6. Belchenko Yu., Gusev I., Khilchenko A. et al. Advanced direct current negative-ion source for accelerator use // Rev. Sci. Instrum. 2006. Vol. 77, 03A527.

7. Широков В. В. Исследование электрической прочности высоковольтных вакуумных зазоров // ПТЭ. 1990. № 5. С. 148–152.

8. Сорокин И. Н., Широков В. В. Высоковольтные зазоры электростатического ускорителя-тандема с вакуумной изоляцией // ПТЭ. 2003. № 1. С. 5–9.

9. Гамзенок Д. И., Кривенко А. С., Сорокин И. Н., Широков В. В. Влияние газа перезарядной мишени электростатического ускорителя-тандема с вакуумной изоляцией на электрическую прочность высоковольтных зазоров // ПТЭ. 2004. № 6. С. 51–55.

Материал поступил в редколлегию 13.10.2006