

19th International Congress on Neutron Capture Therapy Granada, Spain, September 27th - October 1th, 2021

P29

Method of measuring high-LET particles dose

M. Dymova¹, M. Dmitrieva¹, E. Kuligina¹, V. Richter¹, S. Savinov², I. Shchudlo², T. Sycheva², I. Taskaeva^{2,3,4}, S. Taskaev^{2,3}

 ¹ Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
² Budker Institute of Nuclear Physics, Novosibirsk, Russia
³ Novosibirsk State University, Novosibirsk, Russia
⁴ Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Novosibirsk, Russia

In Boron Neutron Capture Therapy (BNCT), the total absorbed dose is the sum of four dose components with different RBE: boron dose; high-LET dose from the ¹⁴N(n,p)¹⁴C reaction ("nitrogen" dose); fast neutron dose; gamma-ray dose. "*The first two dose components cannot be measured in principle*", as previously was written in [1, p. 279]. The methods for measuring the fast neutron dose for BNCT are absent also, as the energy of neutrons, as a rule, is obviously lower than 1 MeV and, for example, fission ionization chambers are not applicable. Quite a lot of proven approaches are existed only for measuring gamma-ray dose. We present a new approach for measuring boron dose, nitrogen dose and fast neutron dose in BNCT [2].

The idea of approach for measuring dose from high-LET particles is the following. The cell lines are exposed to g-radiation and mixed radiation (neutrons and g-radiation) measuring the dose of g-radiation. The doses of g-radiation which cause the same effect, for example cell surviving, are compared. The equivalent dose of high-LET particles was calculated by the formula: $D_n = D_{\gamma \text{ standard}} - D_{\gamma \text{ mixed}}$, where D_n – the equivalent dose of high-LET particles; $D_{\gamma \text{ standard}}$ – the dose of g-radiation when the cells were exposed to g-radiation; $D_{\gamma \text{ mixed}}$ – the dose of g-radiation.

The work presents the results demonstrating the applicability of the new proposed approach for measuring the dose components due to neutrons: nitrogen dose, and fast neutron dose.

Keywords:

boron neutron capture therapy; absorbed dose; high-LET particles

References:

[1] W.A.G. Sauerwein, A. Wittig, R. Moss, Y. Nakagawa (Eds.). Neutron Capture Therapy: Principles and Applications. Springer, 2012.

[2] I. Taskaeva, S. Taskaev. Method of measuring of dose produced by recoil nuclei. Patent for invention RU2743417 dated 18.02.2021.

The study was supported by the Russian Science Foundation (project No. 19-72-30005).