19th International Congress on Neutron Capture Therapy Granada, Spain, September 27th - October 1th, 2021

P12

Luminescence of the lithium neutron generating target under proton beam irradiation

T. Bykov^{1,2}, D. Kasatov^{1,2}, Ia. Kolesnikov^{1,2}, A. Koshkarev^{1,2}, A. Makarov^{1,2}, E. Sokolova^{1,2}, I. Shchudlo^{1,2}, S. Taskaev^{1,2}

> ¹ Budker Institute of Nuclear Physics, Novosibirsk, Russia ² Novosibirsk State University, Novosibirsk, Russia

In the Budker Institute of Nuclear Physics an accelerator-based epithermal neutron source is used, among other things, to generate neutrons for BNCT. The neutron beam is generated according to the ${}^{7}\text{Li}(p,n){}^{7}\text{Be}$ reaction while the proton beam hits the solid lithium target. On the facility the luminescence of the lithium layer under proton beam irradiation was observed using video camera, mounted on a fused quartz glass window. The lithium lines in the luminescence spectrum were determined with a spectrometer. The spectral lines of transitions in lithium correspond to 610,3 nm and 670,7 nm. H α - hydrogen line with 656,3 nm wavelength was also detected in the luminescence spectrum. As a result of this study the new online diagnostics of a proton beam position on a surface of the solid lithium target was developed and put into operation. The diagnostics is radiation resistant and can be applied in the neutron generation regime.

Keywords:

lithium target, luminescence, accelerating epithermal neutron source

The reported study was funded by RFBR, project number 19-32-90119.