МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

физический факультет

Квалификационная работа на соискание степени бакалавра

Кафедра Физика плазмы

Касатов Дмитрий Александрович

Название работы

Измерение параметров нейтронного потока на установке «Тандем-БНЗТ»_____активационным методом.

Научный руководитель: Кузнецов Александр Сергеевич, н.с. ИЯФ СО РАН

Новосибирск – 2010 год

Содержание

Содержание	2
Введение	3
Теоретическая часть	5
Описание экспериментов	7
Активационные детекторы	7
Фантом	10
Схема измерений.	12
Результаты	13
Заключение	16
Литература.	17
1 51	

Введение

Концепция Бор-нейтронозахватной (БНЗТ) терапии, применяемой для лечения онкологических заболеваний, была предложена еще в 1936 году. Ее физический принцип заключается в следующем: содержание стабильного изотопа ¹⁰В в крови пациента повышают фармацевтическими средствами, и спустя некоторое время бор накапливается в пораженных клетках. Затем опухоль облучается потоком эпитепловых нейтронов. В результате захвата нейтрона стабильным ¹⁰В он превращается в нестабильный ¹¹В, который за время порядка 10⁻¹²с распадается на ион ⁷Li с энергией 1.47 МэВ и α-частицу 0.84 МэВ с выделением γ-кванта с энергией 0.48 МэВ. ⁷Li и α-частица полностью тормозятся на расстоянии порядка размеров клетки, уничтожая ее выделяющейся энергией. Проведенные клинические испытания на реакторах показали, что БНЗТ позволяет лечить глиобластомы мозга и метастазы меланомы, данные виды злокачественных опухолей практически не поддаются никаким другим методам лечения.

Прогресс бор-нейтронозахватной терапии в клинических испытаниях на реакторах и потенциальная востребованность методики привели к интенсивному обсуждению вопроса разработки и создания нейтронного источника на основе компактного и недорогого ускорителя, которым можно было бы оснастить практически каждую онкологическую клинику.

В 1998 году был предложен оригинальный ускорительный источник эпитепловых нейтронов, пригодный для широкого внедрения БНЗТ в клиническую практику. В 2004 году началось сооружение пилотного образца источника, в 2006 году получено рабочее напряжение и зарегистрирован протонный пучок. В 2008 году была осуществлена генерация нейтронов.

Основной задачей стоящей на сегодняшний момент является определение параметров нейтронного потока таких как, энергетическое распределение, плотность потока нейтронов, а также распределение дозы нейтронов в тканеэквивалентной среде (в качестве тканеэквивалентной среды в эксперименте использовалось оргстекло).

Для измерения параметров нейтронного поля существует большое число различных средств и методов. По принципу действия детекторы можно разделить на следующих шесть типов.

- 1. Ионизационные камеры и пропорциональные счетчики
- 2. Радиационные элементы
- 3. Детекторы, основанные на тепловом эффекте
- 4. Полупроводниковые детекторы

3

5. Активационные детекторы

6. Детекторы, основанные на изменении физико-химических свойств материалов под действием нейтронов

В наших измерениях был использован активационный метод. Это было обусловлено следующими особенностями этого метода

1. Возможностью измерения спектра, плотности потока в и переноса нейтронов

2. Высокой эффективностью регистрации нейтронов при небольших размерах самих детекторов, что позволяет проводить измерения без заметных искажений нейтронного поля.

3. Высоким пространственным разрешением.

4. Высокой механической прочностью и нечувствительностью к помехам.

5. Низкой чувствительностью к другим видам излучения.

В это же время на установке проводятся подготовка к измерению спектра нейтронного потока времяпролетной диагностикой. Вся полученная информация будут использована для определения применимости генерируемого нейтронного потока для БНЗТ

Теоретическая часть

Все измерения с помощью активационных детекторов основаны на определении активности, наведенной нейтронами в веществе детектора. Если предположить, что толщина детектора мала, т. е. взаимодействует малая доля падающих на него нейтронов (явлением самоэкранировки можно пренебречь), а облучение в течение времени t начинается и заканчивается мгновенно, то наведенная радиоактивность λN определяется выражением

$$\lambda N_t = (1 - e^{-\lambda \cdot t}) n \int_{E_2}^{E_1} \varphi(E) \sigma(E) dE$$

(1)

где $\varphi(E)dE$ – плотность потока нейтронов с энергией от E до E+dE; n-число ядер нейтрончувствительного изотопа в 1см³ вещества детектора; $\sigma(E)$ –сечение его активации с энергией E ,см²; N_t –число ядер, образованных за время облучения t, сек; λ – постоянная распада этих ядер; E₁ и E₂ соответствует нижней и верхней границам энергий в спектре нейтронного поля.

В целях дальнейшего рассмотрения разобьем все нейтроны на три группы в соответствии с их кинетической энергией, а именно на тепловые(E<1эB), резонансные (1<E<100 КэВ)и быстрые(E>1эВ), также рассмотрим встречающиеся типы реакций

Реакции с образованием промежуточного ядра. Падающий нейтрон поглощается ядром мишени, при этом образуется относительно долгоживущее (10^{-17} сек)составное ядро. Распад составного ядра может произойти различными путями. Во-первых, может быть испущен нейтрон с той же энергией, что и поглощенный (процесс упругого рассеяния). Энергия возбуждения составного ядра может быть реализована с помощью излучения одного или нескольких гамма квантов(процесс радиационного захвата или (n,γ)-реакцией).Остающееся ядро часто неустойчиво по отношению к β -распаду.

При достаточно больших энергиях возбуждения составное ядро может испустить заряженные частицы или два нейтрона [(n,α)(n,p) (n,np) и (n,2n) реакции]. Возможно также испускание нейтрона, кинетическая энергия которого меньше энергии падающего нейтрона, в таком случае остающееся ядро будет находиться в возбужденном состоянии и испустит в последствии гамма квант (неупругое столкновение). Наконец, может иметь место деление в случае тяжелых ядер.

Прямые реакции. Ядерные реакции могут проходить и без образования промежуточного ядра. В рассматриваемой области энергий нейтронов наиболее важной

прямой реакцией является упругое рассеяние т.е. рассеяние без образования промежуточного ядра.

В то время как упругое рассеяния может иметь место всегда, образование составного ядра является резонансной реакцией. По этой причине сечения взаимодействия нейтронов с атомным ядром состоит из двух компонент: медленно меняющегося, связанного с упругим рассеянием, и резонансной с острыми максимумами, отвечающим определенным уровням энергии составного ядра. (на рис.1 показано сечение для индия).

Как видно из соотношения (1) активационный метод является интегральным, что не дает получать детальную информацию о характеристиках нейтронного поля, Однако применяя детекторы, имеющие избирательную чувствительность к нейтронам различных энергий, можно достаточно точно определить потоки нейтронов различных энергий, прошедших через детектор.

Рис.1 Зависимость сечения захвата от энергии нейтронов для индия

Описание экспериментов

Активационные детекторы

Существует много элементов, ядра которых захватывают нейтроны и превращаются в радиоактивные изотопы. Нас интересуют элементы, ядра которых обладают резонансами захвата нейтронов в интересующих нас диапазонах энергий. При этом следует учитывать величину резонансного сечения захвата, от которой будет зависеть чувствительность детектора из данного вещества, а так же длительность полураспада вещества, которая должна быть достаточно большой, чтобы стало возможным провести измерение активности таблетки до того, как наработанный изотоп распадётся.

Интересующий нас диапазон энергий лежит в интервале от 1 эВ до 100 кэВ (теоретический вид спектра представлен на рис.2) при потоке нейтронов 10⁹см²/с, однако большинство веществ имеют резонансы захвата на энергиях до нескольких кэВ, реже – десятков кэВ. Выбор веществ (выбранные вещества представлены в таблице 1) осуществлялся на основании величины энергии резонанса, периода полураспада образованного изотопа (оптимальным диапазоном временем полураспада является интервал от десятка минут до нескольких дней), сечение резонанса, а также были проведены расчеты по каждому выбранному изотопу с целью определить толщину фольг, при котором в нейтронный поток не вносились существенные изменения (в расчетах предполагалось взаимодействие с 1% от потока), и при этом степень активации была бы разрешима с помощью нашей системы измерения активации, и время накопления изотопа было бы приемлемо.

Рис. 2 Теоретически рассчитанный вид спектра нейтронов.

изотоп (распространенность)	резонансная энергия эВ	период полураспада образованного изотопа	резонансный интеграл (барн)
In-115 (95,71%)	1,45	54,12 минут	2700
Au-197(100%)	4,9	2,695 дней	1150
W-186(28,4%)	18,8	23,9 часа	400
I-127(100%)	50	24,99 минут	140
Co-59(100%)	132	5,263 года	867
Mn-55 (100%)	337	2,576 часа	15,7
Na-23(100%)	2950	14,96 часа	0,24
Cl-37(24,47%)	26000	37,29 минут	0,27
Al-27(100%)	7000 и 30000	2,31 минуты	0,18

Табл. 1. Вещества, предполагаемые для использования в нейтронно-активационной спектроскопии.

Для выбранных веществ были рассчитаны допустимые толщины активационных таблеток, при которых ослабление проходящего нейтронного потока не превысит 1%, что сделает возможным воспользоваться приближением прозрачности таблетки при обработке результата измерений. Рассчитанные толщины приведены в табл. 2.

Табл. 2. Предельные толщины активационных таблеток, приемлемые для работы с приближением прозрачности таблеток.

изотоп (сечение, барн)	Предельная толщина таблетки мм (ослабление потока на 1%)	Предельная толщина таблетки, мм(ослабление потока на 10%)
In-115 (2700)	0.0012	0,012
Au-197 (1150)	0.0018	0,018
W-186 (400)	0,02	0,2
Co-59 (867)	0.0016	0,016
Mn-55 (15,7)	0,1029	1,02
Al-27 (0,18)	11,75	117,5

При обработке измеряемых спектральных данных следует учитывать, что при поглощении нейтрона, ядро может переходить в различные состояния, каждое из которых имеет своё время жизни, кроме того, при распаде активированного ядра может рождаться несколько спектральных линий с различными вероятностями появления. Необходимые данные приведены в табл. 3.

ИЗОТОП	Образующийся изотоп	Энергия излучаемых гамма-	
(распространенность)	(период полураспада)	квантов МэВ (вероятность испускания %)	
In-113 (4,29%)	In-114 (72 сек)	1,299(0,17)	
	In-114m (50 дней)	0,192(17) 0,558(3,5) 0,724(3,5)	
In-115 (95,71%)	In-116 (21,5% 14 сек)	0,434(0,12) 0,95(0,1) 1,293(1,2)	
	In-116m1 (35,6% 54 минуты)	0.417(36) 1,09(53) 1,293(80)	
		2,111(20)	
	In-116m ₂ (42,9% 2 сек)	0,164(100)	
Au-197(100%)	Аи-198 (2,697 дня)	0,412(95) 0,676(1)	
W-186(28.4%)	W-187(23,3 часа)	0,479(23) 0,686(27)	
I-127(100%)	I-128 (24,99 минуты)	0.441(14) 0,528(1,4)	
Co-59(100%)	Со-60(5,263 года)	1,173 (100) 1,332(100)	
Mn-55 (100%)	Mn-56(2,576 часа)	0,847(99) 1,811(29) 2,110(15)	
Na-23(100%)	Na-24(14,96часа)	1,369(100) 2,754(100)	
	Na-24m(0,0203 сек)	0,472	
Cl-37(24.47%)	Cl-38(37,29 мин)	1,60(38) 2,170(47)	
	Cl-38m(0,74 сек)	0,66(100)	
Al-27(100%)	Al-28(2,31 минуты)	1,780(100)	

Фантом.

Для изучения плотности потока нейтронов в тканеэквивалентной среде создан фантом (рис. 3), представляющий собой набор оргстеклянных дисков ø200×12 мм (рис. 4), скреплённых при помощи шпилек и гаек, так же изготовленных из оргстекла. Количество дисков можно изменять, получая фантом нужной толщины. Использование 9 дисков позволяет получить массогабаритный имитатор головы человека.

Рис. 4. Чертёж диска, из которых составлен фантом.

Рис. 3. Чертёж фантома.

Распределение плотности потока нейтронов в фантоме можно изучить при помощи активационных детекторов. Использование активационных детекторов позволяет построить распределение поглощённой дозы в фантоме, а так же установить, нейтроны какой энергии внесли вклад в эту дозу.

Для возможности размещения этих детекторов в фантоме и для упрощения быстрого измерения степени активации большого количества таблеток, предусмотрено использование двух видов дисков: сплошных и оснащённых специальными вырезами, позволяющими вставлять в собранный фантом тонкие пластины из оргстекла с укреплёнными на них активируемыми таблетками. Эти пластины можно оперативно вынуть и поместить под детектор для измерения активации каждой таблетки.

10

В таб. 4 и 5 даны параметры процессов происходящих при прохождении

фантома нейтронным потоком , а именно процессы замедления и диффузии.

Вещество	Плотность, г/см ³	D, см	$\Sigma_{a}(v),$ $10^{-4}cm^{-1}$	L, см	λ _{tr} , см	t ₀ , 10 ⁻⁴ сек
H ₂ O	1,00	0,144	189	2,755	0,431	2,13
Оргстекло (С5H802)	1,18	0,136	173	2,80	0,411	2,32

Табл. 4...Диффузионные параметры тепловых нейтронов

где D- коэффициент диффузии, $\Sigma_a(v)$ -сечение поглощения тепловых нейтронов, L – длинна диффузии, λ_{tr} - транспортная длина свободного пробега, t₀ – время жизни.

Табл. 5..Параметры замедления различных веществ

Вещество	Атомарный вес	ζ	n	σ _s , барн
Водород	1	1,00	18	20,44
Углерод	12	0,158	114	4,75
Кислород	16	0,120	150	3,76

где ζ–средняя логарифмическая потеря энергии, n – число столкновений необходимых для замедления нейтрона от энергии 2 МэВ до 0,0253 эВ, σ_s–сечение рассеяния при энергии 25 кэВ (сечение практически не меняется в эпитепловой области).

Параметры замедления эпитепловых нейтронов до энергии 0,3эВ определяются ядрами водорода (длина свободного пробега эпитеплового нейтрона примерно постоянна и равна 0,75см) и среднее расстояние смещения нейтрона с энергией 25 кэВ (по прямой) при замедлении до тепловой энергии 6 см (5 дисков фантома).

Схема измерений.

Для измерения активации таблеток была собрана схема регистрации гаммаквантов на основе сцинтилляционного детектора NaI, помещённого в специальную свинцовую защиту с толщиной стенок 50 мм, имеющую собственный коллиматор ø10 мм (Рис. 5). Уровень фоновых шумов в схеме измерений на уровне 3-5 Гц, что позволяет регистрировать минимальную активность веществ на уровне нескольких беккерелей. Схема регистрации была прокалибрована при помощи изотопов Cs-137 и Co-60.

Рис. 5. Фотография системы регистрации гамма-квантов.

Результаты.

Проведен эксперимент по облучению фантома плутоний-бериллиевым источником нейтронов с активностью 4.34·10⁶ Бк. Спектр нейтронного излучения для данного источника показан на рис. 6.

В качестве активационных детекторов использовались таблетки индия (активацию других веществ при данной активности нейтронного источника зафиксировать не удалось) диаметром 10 мм и массой 0,2 грамма, то есть средняя толщина таблетки составляла 400 микрон. Активационные детекторы располагались строго по центру и на краю фантома на расстоянии 80 мм от центра, а расстояние между слоями равнялось 48мм. (Рис. 7).

Поскольку активность нейтронного источника довольно мала для подобных измерений, то источник нейтронов располагается непосредственно на фантоме, максимально близко к активируемым детекторам. Время облучения фантома нейтронами составило 62 минуты.

Рис. 6. Спектры различных источников нейтронов 1)Ро-а-Ве 2)Ри-а-Ве 3)Ra-а-Ве.

Рис. 7 Фотография фантома

В результате измерений найдено распределение активности индиевых детекторов на момент окончания облучения нейтронами. Вид зависимости представлен на рис. 8. и 9. Сильная зависимость уровня активации от глубины проникновения(случай центральных детекторов) нейтронов подтверждает то, что нейтроны эффективно замедляются и рассеиваются в фантоме.

Уровень активации индия

Рис. 8. Уровень активации индия в зависимости от глубины проникновения нейтронов (центральные детекторы).

Рис. 9. Уровень активации индия в зависимости от глубины проникновения нейтронов (боковые детекторы).

Нарастание активности и её последующий спад в случае боковых детекторов показывает, что существенный вклад в активацию детектора вносят не только быстрые нейтроны, но и рассеянные до энергии резонанса 1,45 эВ. Для боковых детекторов имеет место утечка нейтронов, поэтому уровень активации по сравнению с центральными детекторами значительно меньше.

Заключение.

В ходе проделанной работы проведена подготовка к измерению параметров нейтронного потока активационным методом, в этом направлении на сегодняшний момент были выполнены следующие этапы работ.

1. Проведено теоретическое обоснование метода нейтрон-активационной спектроскопии.

2. Подобраны вещества для проведения опытов. Разработана методика активации веществ в фантоме.

3. Выполнена оценка предельной толщины активационного детектора.

4. Подготовлено измерительное оборудование и средства автоматизации для определения уровня активации веществ.

5. Проведены предварительные эксперименты по активации индия в фантоме с помощью плутоний – бериллиевого источника.

Результаты предварительных экспериментов с использованием плутонийбериллиевого источника нейтронов соответствуют ожидаемым. После введения в строй установки «Тандем-БНЗТ» будут проведены измерения с использованием нейтронного потока генерируемого на литиевой мишени. Для расчета параметров нейтронного потока в фантоме планируется воспользоваться методами численного моделирования.

Литература.

- 1. Ломакин С. С., Петров В. И., Самойлов П. С., Радиометрия нейтронов активационным методом. М., Атомиздат, 1975, 208 с.
- 2. Бекурц К., Викурц К., Нейтронная физика. М., Атомиздат, 1968, 455 с.
- 3. Крамер-Агеев Е.А., Трошин В.С., Тихонов Е.Г. Активационные методы спектрометрии нейтронов. М.: Атомиздат, 1976, 232 с
- 4. Таблицы физических величин. Справочник. Под ред. Акад. Кикоина И. К. М.: Атомиздат, 1976, 1008 с
- 5. Пасечник М. В. Вопросы нейтронной физики средних энергий. Киев, 1962, 336с
- Cross-Section Graphs of JENDL-3.2 [Электронная база данных] / URL: <u>http://www.inp.nsk.su/bnct/target/Cross_Section/INDEX.HTM</u> (дата обращения 20.05.2010).