На правах рукописи

ТОДЫШЕВ Корнелий Юрьевич

ИЗМЕРЕНИЕ ПАРАМЕТРОВ ψ(2S)- И ψ(3770)-МЕЗОНОВ

01.04.16 --- физика атомного ядра и элементарных частиц

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

НОВОСИБИРСК – 2012

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук.

НАУЧНЫЙ РУКОВОДИТЕЛЬ:

ШАМОВ	-	кандидат физико-математических наук,
Андрей Георгиевич		Федеральное государственное бюджетное
		учреждение науки Институт ядерной физики
		им. Г.И. Будкера СО РАН, г. Новосибирск.

ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ:

ОБРАЗЦОВ	_	доктор физико-математических наук,
Владимир Федорович		член-корреспондент РАН, ГНЦ РФ «Институт физики высоких энергий», г. Протвино, Московская обл., начальник лаборатории.
СЕРБО Валерий Георгиевич	_	доктор физико-математических наук, профессор, Новосибирский государственный университет, г. Новосибирск, профессор.
ВЕДУЩАЯ ОРГАНИЗАЦИЯ	-	ГНЦ РФ «Институт теоретической и экспериментальной физики», г. Москва.

Защита диссертации состоится «____» ____ 2012 г. в «_____» часов на заседании диссертационного совета Д 003.016.02 Федерального государственного бюджетного учреждения науки Института ядерной физики им. Г.И. Будкера СО РАН.

Адрес: 630090, г. Новосибирск, проспект Академика Лаврентьева, 11.

С диссертацией можно ознакомиться в библиотеке Федерального государственного бюджетного учреждения науки Института ядерной физики имени Г.И. Будкера СО РАН.

Автореферат разослан «_____» ____2012 г.

Ученый секретарь диссертационного совета доктор физ.-мат. наук, профессор

В.С. Фадин

На правах рукописи

ТОДЫШЕВ Корнелий Юрьевич

ИЗМЕРЕНИЕ ПАРАМЕТРОВ $\psi(2S)$ - И $\psi(3770)$ -МЕЗОНОВ

01.04.16 – физика атомного ядра и элементарных частиц

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени кандидата физико-математических наук

НОВОСИБИРСК – 2012

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук.

НАУЧНЫЙ РУКОВОДИТЕЛЬ:

Шамов	—	кандидат физико-математических наук,
Андрей Георгиевич		Федеральное государственное бюджетное
		учреждение науки Институт ядерной физики
		им. Г.И. Будкера СО РАН, г. Новосибирск.

ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ:

ОБРАЗЦОВ		доктор физико-математических наук,
Владимир Федорович		член-корреспондент РАН, ГНЦ Р Φ
		«Институт физики высоких энергий»
		г. Протвино, Московская обл.,
		начальник лаборатории.
СЕРБО	_	доктор физико-математических наук,
Валерий Георгиевич		профессор, Новосибирский
		государственный университет,
		г. Новосибирск, профессор.
ВЕДУЩАЯ	_	ГНЦ РФ «Институт теоретической и
ОРГАНИЗАЦИЯ:		экспериментальной физики», г. Москва.

Защита диссертации состоится "____" 2011 г. в "____" часов на заседании диссертационного совета Д 003.016.02 Федерального государственного бюджетного учреждения науки Института ядерной физики им. Г.И. Будкера СО РАН.

Адрес: 630090, г. Новосибирск-90,

проспект Академика Лаврентьева, 11.

С диссертацией можно ознакомиться в библиотеке Федерального государственного бюджетного учреждения науки Института ядерной физики им. Г.И. Будкера СО РАН.

Автореферат разослан «_____» _____ 2012 г.

Ученый секретарь диссертационного совета доктор физ.-мат. наук, профессор

В.С. Фадин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Основной целью настоящей работы является уточнение параметров $\psi(2S)$ - и $\psi(3770)$ -резонансов. Эксперимент проводился в Институте ядерной физики СО РАН им. Г.И. Будкера, где с 2002 года на ускорительном комплексе ВЭПП-4М ведутся эксперименты с детектором КЕДР по изучению свойств семейства ψ -мезонов, открытие которого сыграло основополагающую роль в становлении современной теории взаимодействия частиц.

Теоретическое описание спектра чармония основано на теории сильного взаимодействия кварков и связывающих их глюонов — квантовой хромодинамике (КХД). В отличие от квантовой электродинамики, в рассматриваемой области энергии константа сильного взаимодействия не является малым параметром и теория возмущений — основной аналитический метод квантовой теории поля, становится неприменимой. Поэтому для теоретического описания структуры *cc*-системы, предсказания масс и парциальных ширин состояний чармония используют полуфеноменологические подходы, в большей или меньшей степени опирающиеся на КХД, в частности, нерелятивистские потенциальные модели.

Актуальность уточнения параметров состояний чармония с высокой точностью определяется важностью результатов для проверки предсказаний КХД и развития теории поля в целом. Особую актуальность имеет определение основных параметров $\psi(3770)$ (масса, полная ширина, электронная ширина), поскольку в предшествующих экспериментах использовался упрощенный и не вполне последовательный подход к интерпретации непосредственно измеряемого сечения адронов. Помимо этого, точное знание масс узких резонансов определяет шкалу энергии в экспериментах в области τ -лептона и D-мезонов. В этом смысле эксперимент по измерению массы носит метрологический характер, как, например, измерение скорости света и заряда электрона. Важно наличие двух равноценных реперов энергетической шкалы, что делает актуальным уточнения массы $\psi(2S)$, поскольку масса J/ψ известна с существенно лучшей точностью.

Цель работы состояла в следующем:

- измерение массы $\psi(2S)$ -мезона;
- измерение произведения электронной ширины на вероятность распада в адроны для $\psi(2S)$ -мезона $\Gamma_{ee} \times \mathcal{B}_h$;
- измерение массы, полной и электронной ширины $\psi(3770)$ -мезона;
- разработка моделирования срабатываний вершинного детектора и дрейфовой камеры;
- разработка процедуры калибровки дрейфовой камеры;
- проведение калибровки дрейфовой камеры и получение пространственного разрешения на уровне 100 мкм.

Личный вклад автора

На этапе ввода в эксплуатацию детектора КЕДР автор активно участвовал в подготовке к работе дрейфовой камеры детектора. В ходе обсуждаемого эксперимента, автор являлся координатором работ детектора КЕДР, отвечая за процесс набора статистики, взаимодействие с установкой ВЭПП-4М и оказывая поддержку оперативному персоналу при решении возникающих проблем. Автором произведена калибровка дрейфовой камеры КЕДР за десятилетний период работы. В 2006 году автором был разработан сценарий набора статистики на втором этапе обсуждаемого эксперимента. Изложенные в работе результаты получены автором лично или при его определяющем вкладе.

Научная новизна

В настоящей работе измерена масса $\psi(2S)$ с точностью в два раза превышающей точность среднемирового значения. Точность измерения параметра $\Gamma_{ee} \times \mathcal{B}_h$ превосходит точность аналогичного результата MARK-I почти на порядок, в два раза превышает точность сопоставимых измерений полной и электронной ширины детектором BES-II, которые до сего момента являлись наилучшими.

Впервые все основные параметры резонанса $\psi(3770)$ и нерезонансное сечение рождения $D\overline{D}$ -пар измерены с последовательным учётом эффектов интерференции резонансного и нерезонансного вкладов. Точность измерения массы $\psi(3770)$ несколько превосходит таковую в эксперименте BABAR, так же учитывающим интерференцию. Электронная парциальная ширина и нерезонансное $D\overline{D}$ -сечение в корректном подходе определены впервые.

Продемонстрирована ожидаемая неоднозначность результата по электронной ширине, которая, по-видимому, не может быть разрешена на основе совокупной статистики экспериментов BABAR, BELLE, BES и КЕДР. Последовательный учёт эффектов интерференции требует бо́льшего объёма данных, так что точность измерения электронной ширины и нерезонансного $D\overline{D}$ -сечения, достигнутая детектором КЕДР, оставляет желать лучшего, при том, что в «стандартном» подходе незначительно уступает точности среднемирового результата.

Измеренное нерезонансное $D\overline{D}$ -сечение существенно выше, чем получается в упрощённом подходе. Вероятным объяснением является вклад распадов $\psi(2S) \rightarrow D\overline{D}$, изучавшийся ранее как в теоретическом аспекте, так и на основе данных BELLE и BES, однако, анализ экспериментальных данных имел существенные недостатки. В настоящей работе он исследован в рамках модели векторной доминантности.

Кроме того, в ходе данной работы проведено уточнение аналитического выражения интеграла радиационных поправок к сечению рождения узких резонансов и впервые получена оценка модельной зависимости инклюзивного адронного сечения в пике $\psi(2S)$, связанная с интерференцией сильного и электромагнитного вкладов в амплитуду резонанса.

Научная и практическая ценность

Результат по массе $\psi(2S)$ позволяет откалибровать энергетическую шкалу в области $J/\psi - \psi(2S)$ с точностью на уровне 15 кэВ, что существенно при проведении высокоточных измерений масс χ -состояний, D-мезонов и τ -лептона.

Результаты по параметрам $\psi(3770)$ и величины нерезонансного $D\overline{D}$ сечения, получаемые в корректном подходе стимулируют переобработку или совместную обработку данных других экспериментов для дальнейшего уточнения. При уже достигнутом уровне точности есть основания предполагать, что привычные представления о смешивании теоретических 2S- и 1D-состояний чармония нуждаются в пересмотре. Выбор истинного из двух возможных значений электронной ширины $\psi(3770)$ является вызовом для потенциальных моделей. Упомянутый выбор, так же как и величина нерезонансного сечения, важен для решения загадки «не- $D\overline{D}$ »-распадов $\psi(3770)$.

Оценка модельной зависимости произведения $\Gamma_{ee} \times \mathcal{B}_h$ и соответствующего ей полного адронного сечения пике резонанса может быть исполь-

зована при определении погрешности измерения абсолютных вероятностей распадов $\psi(2S)$ и других величин, чувствительных к интерференционному вкладу $\psi(2S)$, таких как адронное сечение на энергии 3773 МэВ, измеренное в экспериментах CLEO-с и BES-II.

Измерение произведения $\Gamma_{ee} \times \mathcal{B}_h$ с точностью 2% вместе с уже имеющимися данными позволяет уточнить парциальную электронную и полную ширину $\psi(2S)$ примерно в два раза. Это стимулирует уточнение параметров J/ψ , которые вместе с параметрами $\psi(2S)$ обеспечивают настройку потенциальных моделей чармония, повышающую их предсказательные возможности для более сложных состояний, таких как $\psi(3770)$.

Получена аналитическая формула для сечения узкого резонанса случая релятивистской брейт-вигнеровской амплитуды, упрощающая анализ данных.

В работе представлен практический способ настройки первичного генератора для моделирования распадов чармония методом Монте-Карло. Способ обеспечивает более точную оценку систематических неопределённостей эффективности регистрации событий, чем применявшийся ранее, и может использоваться в будущих экспериментах.

Основные положения, выносимые на защиту:

- Определение массы $\psi(2S)$ -мезона с точностью около 15 к
эВ, что в полтора раза превышает точность лучшего из предыдущих измерений.
- Измерение произведения электронной ширины на вероятность распада в адроны для $\psi(2S)$ -мезона $\Gamma_{ee} \times \mathcal{B}_h$ с точностью 2%, что позволяет уточнить в два раза значения полной и электронной ширин $\psi(2S)$.
- Измерение основных параметров $\psi(3770)$ -мезона с учётом интерференции резонансного и нерезонансного рождения $D\overline{D}$ -пар. Измерение массы $\psi(3770)$, выполнено с точностью, не уступающей лучшему на данный момент результату. Измерение электронной ширины с учётом интерференционных эффектов произведено впервые.
- Разработка моделирования срабатываний дрейфовой камеры и вершинного детектора.
- Разработка процедуры калибровки параметров дрейфовой камеры, необходимая для восстановление координаты трека по времени появления сигнала.

- Калибровка дрейфовой камеры на протяжении десяти лет эксперимента, достигнуто пространственное разрешение около 100 мкм.
- Уточнение аналитического выражения для интеграла радиационных поправок к сечению рождения узких резонансов.
- Оценка неопределённости вычисления сечения аннигиляции e⁺e⁻ в адроны, связанная с эффектами интерференции резонансной и нерезонансной амплитуд.

Апробация работы

Материалы диссертации докладывались на Сессии Отделения ядерной физики РАН в 2011 году (г. Москва) и на Международных конференциях по физике высоких энергии ICHEP2010 в Париже и Charm2010 в Пекине.

Структура и объём диссертации

Диссертация состоит из введения, семи глав, заключения и списка литературы. Объём диссертации составляет 141 страницу, из которых 11 страниц занимает список литературы, состоящий из 161 наименования.

СОДЕРЖАНИЕ РАБОТЫ

Во введении кратко изложена история становления физики чармония, обсуждены актуальность и научная новизна диссертационной работы, сформулирована цель исследований, аргументирована практическая значимость полученных результатов и представлены выносимые на защиту научные положения.

В первой главе представлен обзор имеющихся теоретических и экспериментальных работ, посвящённых определению параметров чармония.

Во второй главе обсуждаются параметры, используемые для описания резонансов с квантовыми числами $J^{PC} = 1^{--}$, выполнен расчёт аналитической формы сечения рождения узких резонансов в e^+e^- аннигиляции для релятивистской формы амплитуды Брейта—Вигнера, изложены теоретические формулы, используемые для подгонки сечения рождения пар $D\overline{D}$ -мезонов.

В работе показано, что с учётом интерференции сечение процесса $e^+e^- \to adpohu$ в окрестности $\psi(2S)$ с точностью, превышающей 0.2%,

может быть представлена в виде

$$\sigma_{\psi(2S)}^{RC}(s) = \frac{12\pi}{s} \Biggl\{ \Biggl(1 + \delta_{sf}\Biggr) \Biggl[\frac{\Gamma_{ee}\Gamma_h}{\Gamma M} \operatorname{Im} f(s) \\ - \frac{2\alpha\sqrt{R\Gamma_{ee}\Gamma_h}}{3\sqrt{s}} \lambda \operatorname{Re} \frac{f(s)}{(1 - \Pi_0)^*} \Biggr] \\ - \frac{\beta\Gamma_{ee}\Gamma_h}{2\Gamma M} \Biggl[\Biggl(1 + \frac{M^2}{s} \Biggr) \arctan \frac{\Gamma s}{M(M^2 - s + \Gamma^2)}$$
(1)
$$- \frac{\Gamma M}{2s} \ln \frac{\Biggl(\frac{M^2}{s}\Biggr)^2 + \Biggl(\frac{\Gamma M}{s}\Biggr)^2}{\Biggl(1 - \frac{M^2}{s}\Biggr)^2 + \Biggl(\frac{\Gamma M}{s}\Biggr)^2} \Biggr] \Biggr\},$$

где $\Gamma_{ee}, \Gamma_h, \Gamma, M$ – «экспериментальные» или «физические» параметры резонанса, определяемые с учётом поляризационного фактора, причём «экспериментальная» парциальная электронная ширина удовлетворяет соотношению

$$\Gamma_{ee} = \frac{\Gamma^{(0)}}{|1 - \Pi_0|^2} \,, \tag{2}$$

где Π_0 – оператор поляризации вакуума, из которого исключён вклад $\psi(2S)$, а $\Gamma^{(0)}$ – «голая» парциальная ширина, соответствующая борновскому сечению процесса.

$$\delta_{\rm sf} = \frac{3}{4}\beta + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{1}{2}\right) + \beta^2 \left(\frac{37}{96} - \frac{\pi^2}{12} - \frac{1}{36}\ln\frac{W}{m_e}\right),\tag{3}$$

$$f = \frac{\pi\beta}{\sin\pi\beta} \left(\frac{s}{s - M^2 - iM\Gamma}\right)^{1-\beta}, \quad \beta = \frac{4\alpha}{\pi} \left(\ln\left(\frac{W}{m_e}\right) - \frac{1}{2}\right).$$
(4)

Параметр $\lambda,$ характеризует силу интерференции. Обычно предполагается

$$\lambda \approx \sqrt{\frac{R \,\mathcal{B}_{ee}}{\mathcal{B}_h}}\,,\tag{5}$$

где \mathcal{B}_h и \mathcal{B}_{ee} – вероятности распада $\psi(2S)$ в адроны и электрон-позитронную пару, а R – отношение сечений процессов $e^+e^- \rightarrow a \partial po$ ны и $e^+e^- \rightarrow \mu^+\mu^-$.

Сечение рождение $D\overline{D}-$ пар $(D\overline{D}$ обозначает D^+D^- или $D^0\overline{D}^0)$ имеет вид

$$\sigma_{D\overline{D}}^{RC}(W) = \int z_{D\overline{D}} \left(W' \sqrt{1-x} \right) \sigma_{D\overline{D}} \left(W' \sqrt{1-x} \right) \\ \times \mathcal{F}(x, W'^2) G(W, W') \ dW' dx,$$
(6)

где $\mathcal{F}(x,s)$ – функция радиационных поправок, вычисленная в классической работе Э.А. Кураева и В.С. Фадина, G(W,W') – распределение по энергии в пучке. Для описания сечения рождения заряженной и нейтральной пары $D\overline{D}$ введены множители $z_{D^+D^-}$ и $z_{D^0\overline{D}}$, определяемые следующими равенствами:

$$z_{D^+D^-} = \frac{\pi \alpha / \beta_{D^+}}{1 - \exp\left(-\pi \alpha / \beta_{D^+}\right)} \times \theta(W - 2m_{D^+}), \quad z_{D^0\overline{D}^0} = 1 \times \theta(W - 2m_{D^0}),$$
(7)

где $\theta(W-2m_D)$ – единичная ступенчатая функция.

Сечение $\sigma_{D\overline{D}}$ может быть выражено через формфактор F_D и скорость *D*-мезона в системе центра масс β_D :

$$\sigma_{D\overline{D}}(W) = \frac{\pi\alpha^2}{3W^2} \beta_D^3 |F_D(W)|^2, \quad \beta_D = \sqrt{1 - 4m_D^2/W^2}.$$
 (8)

Выше порога рождения D-мезонов формфактор F_D можно записать как сумму вкладов резонансов и нерезонансного слагаемого:

$$F_D(W) = \sum_i F_D^{R_i}(W) e^{i\phi_i} + F_D^{NR}(W),$$
(9)

где ϕ_i – фаза *i*-го резонанса R_i относительно нерезонансной части амплитуды F_D^{NR} .

Для резонанса, имеющего парциальные ширины Γ_{ee} , $\Gamma_{D\overline{D}}$ и полную ширину $\Gamma(W)$, амплитуда имеет вид:

$$F_D^R(W) = -\frac{6\sqrt{(\Gamma_{ee}/\alpha^2) (\Gamma_{D\overline{D}}(W)/\beta_D^3)} \cdot W}{W^2 - M^2 + iM\Gamma(W)},$$
(10)

При этом, зависимость ширины резонанса от энергии

$$\Gamma_{D\overline{D}}(W) = \frac{(M/W) \, z_{D\overline{D}}(W) \, d_{D\overline{D}}(W) \cdot \Gamma(M) \cdot (1 - \mathcal{B}_{nD\overline{D}})}{z_{D^0\overline{D}}(M) d_{D^0\overline{D}}(M) + z_{D^+D^-}(M) \, d_{D^+D^-}(M)} \tag{11}$$

где $\mathcal{B}_{nD\overline{D}}$ – сумма вероятностей распада резонанса не в $D\overline{D},~d_{D^+D^-}$ и $d_{D^0\overline{D}^0}$ – факторы Блатта—Вайскопфа:

$$d_{D\overline{D}} = \frac{\rho_{D\overline{D}}^3}{\rho_{D\overline{D}}^2 + 1}, \quad \rho_D = q_D R_0, \qquad (12)$$

здесь R_0 – характерный радиус чармония, а q_D – момент импульса D – мезона в системе центра масс $q_D = \beta_D W/2$.

Точных теоретических предсказаний о характере нерезонансная части формфактора $F_D^{NR}(W)$ нет, наиболее полную информацию даёт модель векторной доминантности (VDM), в которой формфактор определяется вкладами ближайших резонансов. В данной работе предполагается, что, в основном, нерезонансный относительно $\psi(3770)$ формфактор определяется вкладом $\psi(2S)$ и имеет вид

$$F_D^{NR}(W) = F_D^{\psi(2S)}(W) + F_0, \tag{13}$$

где F_0 – реальная константа, описывающая вклады других резонансов. В диссертационной работе рассмотрены альтернативные зависимости формфактора, не предполагающие VDM, что позволяет оценить модельную зависимость параметров $\psi(3770)$ -резонанса.

В третьей главе описывается детектор КЕДР, параметры ускорительного комплекса ВЭПП-4М и эксперименты, проведённые с детектором КЕДР на ВЭПП-4М с 2001 по 2011 год.

Четвёртая глава содержит описание дрейфовой камеры детектора КЕДР, алгоритма восстановления треков заряженных частиц и процедуры калибровки дрейфовой камеры (ДК), в ней также изложен подход, используемый для моделирования срабатываний ДК и вершинного детектора.

Для восстановления треков заряженных частиц требуется определить координату частицы по времени появления сигнала на анодной проволочке ДК, для чего необходимо знать форму и параметры изохрон. Процедура определения этих параметров называется калибровкой X(t). Калибровка X(t) проводится на треках космических частиц методом последовательных приближений. На протяжении десяти лет проведения экспериментов с детектором КЕДР выполнено 305 калибровок X(t).

Достигнутое среднее значение величины пространственного разрешения $\langle \sigma(x) \rangle$ около 100 мкм в аксиальных слоях и 180 ÷ 200 мкм в стереослоях ДК, используемым для измерения координаты пролёта частицы вдоль оси ДК.

Для анализа событий в трековой системе разработаны процедуры моделирования отклика трековой системы. Детальное моделирование срабатываний ДК позволяет оценить систематические погрешности параметров калибровки X(t), которые в среднем равны 15 мкм. В пятой главе рассмотрены методы измерения энергии пучка в ускорителе, используемые на ВЭПП-4М, и описана схема набора интеграла светимости.

В течение двух сканирований в 2004 году и сканирования 2006 года был набран интеграл светимости около 2.5 пкбн⁻¹, из них 0.6 пкбн⁻¹ при сканировании в области $\psi(2S)$.

Шестая глава посвящена описанию анализа экспериментальных данных, измерению $\Gamma_{ee} \times \mathcal{B}_h$ и массы $\psi(2S)$ -мезона. Здесь же подробно обсуждаются условия отбора событий процессов $e^+e^- \to adponu$ и $e^+e^- \to e^+e^-(\gamma)$, последний из которых используется для вычисления светимости.

Определение параметров резонансов осуществлялось путём минимизации функции правдоподобия, включающей ожидаемые и найденные числа событий e^+e^- рассеяния и адронных событий.

Таблица 1. Основные источники погрешности при вычислении $\Gamma_{ee} \times \mathcal{B}_h$. Для первого и второго сканирования в скобках указана общая часть ошибки.

Источник погрешности	скан. 1	скан. 2	скан. 3	общая			
				часть			
Измерение светимости	1.6	1.7(1.6)	1.2	0.5			
Моделирование адронных событий	1.0	1.0(1.0)	1.1	1.0			
Неопределённости, связанн	ые с дет	ектором					
Триггер	0.6	0.6(0.6)	0.3	0.3			
Описание ядерного взаимодействия	0.2	0.2(0.2)	0.2	0.2			
Наводка между каналами в ВД	0.1	0.17(0.1)	0.1	0.1			
Критерии отбора событий	0.5	0.3(0.3)	0.6	0.5			
Особенности работы коллайдера							
Определение энергии	0.15	0.18	0.6	0.15			
Форма распределения по энергии	0.2	0.2	0.2	0.2			
Остаточный фон коллайдера	0.1	0.1	0.1	0.1			
Теоретическое описание							
Расчёт сечения	0.3	0.3	0.3	0.3			
Квадратичная сумма	1.9	2.0(1.9)	1.8	1.2			

Первичное моделирование распадов $\psi(2S) \to a \partial pohbi$ осуществлена генератором, разработанным коллаборацией BES в рамках пакета программ JETSET.

Для оценки систематической неопределённости эффективности регистрации распада $\psi(2S) \rightarrow adponu$ осуществлялся подбор параметров генератора так, чтобы совпадала множественность заряженных частиц наблюдаемые в данных моделирования и эксперимента. Всего было рассмотрено более ста различных наборов опций и параметров моделирования распадов $\psi(2S)$, что позволило оценить систематическую неопределённость эффективности регистрации, связанную с генератором событий.

Основные вклады в систематические неопределённости величины $\Gamma_{ee} \times \mathcal{B}_h$ и массы $\psi(2S)$ для трёх сканирований приведены в таблицах 1 и 2.

Источник ошибки	скан.	1 скан. 2	скан. 3	общая				
				часть				
Особенности работы коллайдера								
Разница энергии e^+ и e^-	7.0	7.0	7.0	7.0				
Интерполяция энергии	4.0	4.0	6.0	4.0				
β - и ψ -хроматизм	4.5	4.5	4.5	4.5				
Точность сведения пучков								
в месте встречи	4.0	4.0	4.0	4.0				
Форма распределения по энергии	1.0	1.0	1.0	1.0				
Энергетический разброс	1.5	1.5	1.5	1.5				
Потенциал пучка	1.2	1.2	1.2	1.2				
Точность однократной калибровки	1.0	1.0	1.0	1.0				
Вертикальные искажения орбиты	0.8	0.8	0.8	0.8				
Остаточный фон коллайдера	0.5	0.5	0.5	-				
Неопределённости, связанные с детектором								
Измерение светимости	2.0	4.0(2.0)	2.0	-				
Критерии отбора адронных событий	2.0	2.0(2.0)	1.0	1.0				
Теоретическое описание $\psi(2S)$								
Расчёт сечения	1.0	1.0	1.0	1.0				
Квадратичная сумма	≈ 10.8	$\approx 11.3(10.8)$	≈ 11.7	≈10.6				

Таблица 2. Систематические ошибки в массе $\psi(2S)$.

Измеренное значение параметра интерференции $\lambda = 0.21 \pm 0.07 \pm 0.05$ позволяет оценить неопределённости $\Gamma_{ee} \times \mathcal{B}_h$ и массы $\psi(2S)$, связанные с использованными предположениями об эффектах интерференции в полном адронном сечении, данные ошибки приводятся отдельно от перечисленных ранее.

В седьмой главе определены основные параметры $\psi(3770)$ -мезона с учётом интерференции резонансного и нерезонансного рождения $D\overline{D}$ -пар. Проанализированы основные источники систематических погрешностей, рассмотрены неопределённости, связанные с выбором модели формфактора нерезонансного сечения рождения D-мезонов.

Параметры $\psi(3770)$ -резонанса определялись одновременной подгонкой трёх сканирований.

В таблице 3 представлены результаты, полученные в рамках модели векторной доминантности, и при подгонке без учёта интерференции, использованной в большинстве предшествующих работ. Приведены параметры, характеризующие амплитуду нерезонансного вклада: ширина $\psi(2S) \rightarrow D\overline{D}$ выше порога рождения, константа F_0 и само нерезонансное сечение в пике $\psi(3770)$. Последний параметр дан без учёта радиационных поправок, уменьшающих сечение примерно на 25%.

Таблица 3. Результаты подгонки $\psi(3770)$ в предположении векторной доминантности (два возможных решения) и при игнорировании интерференции. Приведены результаты коллаборации BABAR, полученные с учётом интерференции резонансного и нерезонансного рождения $D\overline{D}$ -пар.

Решение	М, МэВ	Г, МэВ	Γ_{ee} , эВ	ϕ , град	$\Gamma_{D\overline{D}}^{\psi(2S)}$, MəB	F_0	σ_{DD}^{NR} , нбн	$P(\chi^2),\%$
1	$3779.3^{+1.8}_{-1.7}$	$25.3^{+4.4}_{-3.9}$	160^{+78}_{-58}	170.7 ± 16.7	$12.9^{+18.5}_{-11.8}$	$-4.8^{+3.0}_{-3.6}$	1.83 ± 0.96	35.7
2	$3779.3^{+1.8}_{-1.6}$	$25.3^{+4.6}_{-4.0}$	420^{+72}_{-80}	239.6 ± 8.6	$11.5^{+16.5}_{-10.5}$	$-4.9^{+3.3}_{-3.7}$	1.71 ± 0.86	35.7
и. и.	3773.3 ± 0.5	$23.3^{+2.5}_{-2.2}$	249^{+25}_{-22}			I	$0.07\substack{+0.09 \\ -0.07}$	7.5
BABAR	3778.8 ± 2.1	23.5 ± 3.8	_	_	_	_	_	-

Выбирая гипотезу векторной доминантности как основную и основываясь на максимальных отклонениях от неё результатов рассмотренных альтернативных зависимостей нерезонансного формфактора, были получены систематических неопределённости, связанные с выбором модели формфактора нерезонансного сечения рождения *D*-мезонов.

Кроме того, при анализе статистики рассматривались варианты подгонки, предложенные в работе BES об аномальной форме адронного сечения вблизи $\psi(3770)$ и предполагающие наличие двух резонансов, амплитуды которых не интерферируют или не интерферируют между собой.

В обоих случаях наблюдается улучшение χ^2 по сравнению с подгонкой без учёта интерференции и простейшими предположениями о поведении нерезонансного сечения по причинам, обсуждаемым в диссертации. Учёт интерференции с нерезонансным сечением обеспечивает лучшее описание данных КЕДР без привлечения экзотических предположений. В целом, результаты КЕДР не подтверждают наличия аномальной формы резонанса $\psi(3770)$.

События остаточного фона накопителя приводят к систематическим неопределённостям параметров подгонки сечения в области энергии $\psi(3770)$. Результаты приведены с учётом соответствующих поправок измеряемых величин и их систематических неопределённостей.

Полученное значение $R_{uds} = 2.300 \pm 0.046 \pm 0.108$, характеризующее вклад лёгких кварков в рассматриваемом диапазоне энергии, согласуется с результатами работ коллаборации BES.

Список основных систематических неопределённостей параметров $\psi(3770)$ представлен в таблице 4.

Таблица 4. Систематические неопределённости в массе, полной и электронной
ширине $\psi(3770)$ -мезона и нерезонансном сечении процесса рождения пары $D\overline{D}$
Ошибка электронной ширины приведена для двух возможных решений.

Источник	M, [МэВ]	Γ , [M i B]	$\Gamma_{ee}, [\%]$	$\sigma_{D\overline{D}}^{NR}, [\%]$				
Теоретические неопределённости описания $\psi(3770)$								
$\mathcal{B}_{nD\overline{D}}$	$^{+0.0}_{-0.5}$	$^{+0.0}_{-0.2}$	$^{+8.8}_{-0}/^{+0}_{-2.3}$	$^{+0}_{-12.}$				
Значение R_0 в $\Gamma(W)$	0.3	0.3	2.	1.5				
$\Gamma_{D^0\overline{D}^0}/\Gamma_{D^+D^-}$	0.1	0.1	0.4	0.8				
D, \overline{D} масса	0.06	0.04	0.3	0.5				
Сечение $D\overline{D}\pi$	0.15	0.05	1.	2.				
Неопределённости, вызванные работой детектора и коллайдера.								
Определение эффективности	0.03	0.04	2.4	5.				
Критерии отбора	0.3	0.3	3.	5.				
Остаточный фон коллайдера	0.06	0.3	2.9	3.				
Измерение светимости	0.1	0.1	2.	2.				
Определение энергии	0.03	-	_	-				
Квадратичная сумма	$^{+0.48}_{-0.69}$	$^{+0.54}_{-0.58}$	$^{+10.5}_{-5.7}/^{+5.7}_{-6.1}$	$^{+8.}_{-14.}$				

В заключении представлены основные результаты работы:

– Выполнено высокоточное измерение массы $\psi(2S)$ -мезона

 $M = 3686.114 \pm 0.007 \pm 0.011 \stackrel{+0.002}{_{-0.012}}$, M₃B.

Достигнутая точность превосходит результат предыдущего наиболее точного измерения коллаборации КЕДР в полтора раза.

– С точностью около 2% измерено произведение электронной ширины на вероятность распада в адроны для $\psi(2S)$ -мезона $\Gamma_{ee} \times \mathcal{B}_h$, получено значение

$$\Gamma_{ee} \times \mathcal{B}_h = 2.233 \pm 0.015 \pm 0.037 \pm 0.020$$
 кэВ,

что позволяет уточнить в два раза значения полной и электронной ширин $\psi(2S)$.

– С учётом интерференции резонансного и нерезонансного рождения $D\overline{D}$ -пар измерены основные параметры $\psi(3770)$ -резонанса. Были получены следующие значения массы и полной ширины:

$$\begin{split} M &= 3779.2 \stackrel{+1.8}{_{-1.7}} \stackrel{+0.5}{_{-0.7}} \stackrel{+0.3}{_{-0.3}} \text{ M} \Rightarrow \text{B}, \\ \Gamma &= 24.9 \stackrel{+4.6}{_{-4.0}} \stackrel{+0.5}{_{-0.6}} \stackrel{+0.2}{_{-0.9}} \text{ M} \Rightarrow \text{B}, \end{split}$$

Наличие интерференции приводит к существованию двух возможных значений для определяемой электронной ширины и нерезонансного сечения рождения $D\overline{D}$ -пар, соответствующих разным значения фазы интерференции,

(1) $\Gamma_{ee} = 154 {}^{+79}_{-58} {}^{+17}_{-9} {}^{+13}_{-25} {}^{3}_{-9} {}^{R}_{-25} {}^{3}_{-9} {}^{R}_{-25} {}^{3}_{-10} {}^{R}_{-10} {}^{2}_{-10} {}^{+0.1}_{-0.2} {}^{+0.1}_{-0.2} {}^{+0.1}_{-0.2} {}^{+0.1}_{-0.2} {}^{+0.1}_{-0.2} {}^{4}_{-10} {}^{N}_{-10} {}^{N}_{-10} {}^{R}_{-10} {}^{2}_{-10} {}^{2}_{-10} {}^{3}_{-10} {}^{3}_{-10} {}^{2}_{-1} {}^{2}_{-1} {}^$

Измеренное значения массы $\psi(3770)$ согласуются с результатом работы коллаборации BaBar в методике ISR, также учитывающей интерференцию, и превосходит его по точности. Значения электронной ширины $\psi(3770)$ и соответствующие им значения нерезонансного сечения рождения *D*-мезонов, а также фазы интерференции в самосогласованном подходе получены впервые.

- Разработано моделирование срабатываний дрейфовой камеры и вершинного детектора.
- Разработана процедура калибровки параметров ДК, необходимая для восстановление координаты трека по времени появления сигнала.
- Проведена калибровка ДК на протяжении десяти лет эксперимента, достигнуто пространственное разрешение около 100 мкм.
- Уточнено аналитическое выражение для интеграла радиационных поправок к сечению рождения узких резонансов.
- Впервые получена оценка неопределённости вычисления сечения аннигиляции e^+e^- в адроны, связанная с эффектами интерференции резонансной и нерезонансной амплитуд.

Основные результаты диссертации опубликованы в следующих работах:

- S.E. Baru, ..., K.Yu. Todyshev et al. Status of the KEDR drift chamber. // Nucl. Inst. and Meth., v.A494, 2002, p.251-254.
- V.M. Aulchenko, ..., K.Yu. Todyshev et al. New precision measurement of the J/ψ- and ψ'-meson masses. // Phys. Lett., v.B573, 2003, p.63.
- В.В. Анашин, ..., К.Ю. Тодышев и др. Measurements of the τ lepton mass at KEDR detector. // Письма в ЖЭТФ, т.85, 2007, с.429.
- 4. V.V. Anashin, ..., K.Yu. Todyshev et al. Measurement of D^0 and D^+ meson masses with the KEDR detector. // Phys. Lett., **v.B686**, 2010, p.84.
- 5. V.V. Anashin, ..., K.Yu. Todyshev et al. Search for narrow resonances in e^+e^- annihilation between 1.85 and 3.1 GeV with the KEDR Detector. // Phys. Lett., **v.B703**, 2011, p.543.
- V.V. Anashin, ..., K.Yu. Todyshev et al. Measurement of main parameters of the ψ(2S) resonance. // Phys. Lett., v.B711, 2012, p.280-291.
- V.V. Anashin, ..., K.Yu. Todyshev et al. Measurement of ψ(3770) parameters. // Phys. Lett., v.B711, 2012, p.292-300.

ТОДЫШЕВ Корнелий Юрьевич

Измерение параметров

 $\psi(2S)$ - и $\psi(3770)$ -мезонов

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени кандидата физико-математических наук

Сдано в набор 3.05.2012 г. Подписано в печать 3.05.2012 г. Формат бумаги 100×90 1/16 Объем 0.8 печ.л., 0.7 уч.-изд.л. Тираж 100 экз. Бесплатно. Заказ № 12 Обработано на РС и отпечатано на ротапринте «ИЯФ им. Г.И. Будкера» СО РАН Новосибирск, 630090, пр. академика Лаврентьева, 11.