ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ ИМ. Г.И. БУДКЕРА СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

ГЕРАСИМОВ Роман Евгеньевич

Радиационные поправки к сечению электрон-протонного рассеяния в экспериментах по изучению вклада двухфотонного обмена и измерению зарядового радиуса протона

Специальность 01.04.02 — теоретическая физика

ДИССЕРТАЦИЯ на соискание учёной степени кандидата физико-математических наук

> Научный руководитель: доктор физико-математических наук, член-корреспондент РАН, профессор Фадин Виктор Сергеевич

Новосибирск – 2020

Оглавление

	(Стр.
Введени	ие	4
Глава 1	. Упругое рассеяние электронов на протонах в борновском	
	приближении	11
1.1	Формула Розенблюта и электромагнитные формфакторы протона .	11
1.2	Формфакторы протона в поляризационных экспериментах	14
1.3	Упругое электрон-протонное рассеяние при малых передачах	
	импульса	17
Глава 2	2. Радиационные поправки к сечению упругого <i>ер</i> -рассеяния	19
2.1	Виртуальные радиационные поправки	21
	2.1.1 Поляризация вакуума	21
	2.1.2 Поправка к электронной вершине	22
	2.1.3 Поправка к протонной вершине	24
	2.1.4 Амплитуды двухфотонного обмена	26
	2.1.5 Сравнение приближенных и точных амплитуд с	
	двухфотонным обменом в рассеянии электрона на	
	точечном протоне	30
2.2	Реальные радиационные поправки	38
2.3	Результаты	41
Глава 3	. Вклад $\Delta(1232)$ в радиационные поправки, связанные с	
	излучением реального фотона	43
3.1	Вклад амплитуд двухфотонного обмена и отношение сечений	
	$e^{\pm}p$ -рассеяния	44
3.2	Переходные вершины и формфакторы	45
3.3	Оценка вклада $\Delta(1232)$ в радиационные поправки $\ldots \ldots \ldots$	47
3.4	Тормозное излучение протоном с учётом $\Delta(1232)$ в	
	промежуточном состоянии	50
	3.4.1 Вклад $\Delta(1232)$ в экспериментах с магнитным	
	спектрометром	52

		Стр.	
	3.4.2 Вклад $\Delta(1232)$ в радиационные поправки в эксперименте		
	на накопителе ВЭПП-3	. 55	
3.5	Результаты	. 57	
Глава 4	. Сокращение радиационных поправок в экспериментах по		
	измерению зарядового радиуса протона	. 59	
4.1	Главные вклады в радиационные поправки	. 59	
4.2	Учёт тормозного излучения с использованием спектра		
	тормозных фотонов	. 63	
4.3	Использование метода структурных функций	. 64	
4.4	Поправки высших порядков	. 68	
4.5	Результаты	. 70	
Заключ	ение	. 71	
Список	литературы	. 73	
Список	рисунков	. 81	
Список	таблиц	. 83	
Приложение А. Радиационные поправки в мягкофотонном			
	приближении	. 84	
A.1	Петлевые интегралы	. 84	
A.2	Функции $K(p_i,p_j)$. 89	
A.3	Амплитуды двухфотонного обмена в процессе упругого		
	рассеяния электрона на точечном протоне	. 92	
A.4	Интегралы, возникающие при вычислении реальных		
	радиационных поправок	. 95	
Прилож	кение Б. Вычисление вклада $\Delta(1232)$ в радиационные поправки	и 100	
Б.1	Токовые тензоры и свертки	. 100	
Б.2	Приближенное выражение для $\left \mathcal{M}_{\Delta}^{(1)}\right ^2$. 101	
Б.3	Приближенное вычисление интерференции $\mathcal{M}_e^{(s)\dagger}\mathcal{M}_{\Delta}^{(1)}$. 104	

Введение

Диссертация посвящена вычислению и анализу радиационных поправок к сечениям процессов упругого рассеяния электронов и позитронов на протонах. Упругое рассеяние является важнейшим процессом лептон-протонного взаимодействия и основным инструментом исследования внутренней структуры протона.

Формфакторы протона — это феноменологические величины, которые вводятся для параметризации вершины взаимодействия реального протона с виртуальным фотоном. Для протона, т. е. частицы со спином 1/2, данная вершина содержит два независимых формфактора, которые являются функциями квадрата переданного протону импульса q^2 (виртуальности фотона). Существует несколько способов определения этой пары функций, но обычно из экспериментов по упругому электрон-протонному рассеянию извлекают данные об электрическом G_E и магнитном G_M формфакторах протона. В течение долгого времени формфакторы измерялись в экспериментах по упругому рассеянию электронов на протонах мишени [1–13]. Начальные частицы в этой постановке эксперимента не поляризованы, поляризация конечных частиц не измеряется. Дифференциальное сечение такого процесса в борновском приближении определяется формулой Розенблюта [14]. Согласно этой формуле измерение сечения при фиксированном значении передачи импульса протону, но разных энергиях налетающих электронов, позволяет разделить вклады электрического и магнитного формфакторов. Было обнаружено, что отношение $\mu_p G_E/G_M$, где μ_p – магнитный момент протона, практически не меняется с ростом передачи импульса, оставаясь близким к единице, вплоть до значений $Q^2 = -q^2$ порядка 6 (ГэВ/c)². Нужно отметить, что с ростом Q^2 относительный вклад электрического формфактора в дифференциальное сечение уменьшается, и его измерение становится менее надёжным и более чувствительным к процедуре учёта радиационных поправок, которая применяется при обработке эксперимента.

Начиная с 2000 г. стали появляться данные экспериментов по электрон-протонному рассеянию с использованием поляризованных частиц [15—19]. В наиболее распространённой постановке поляризованные электроны рассеивались на неполяризованных протонах мишени, и измерялись степени поляризации протона отдачи в продольном и поперечном его импульсу направлениях. В борновском приближении отношение степеней поляризации пропорционально отношению формфакторов протона. Это даёт более надёжный метод для измерения отношения формфакторов. В поляризационных экспериментах отношение $\mu_p G_E/G_M$ практически линейно уменьшалось с ростом передачи импульса (отношение падало от значений близких к 1 при малых Q^2 до значений порядка 0.2 при $Q^2 \simeq 6$ (ГэВ/c)² [20]), что оказалось в явном противоречии с предыдущими результатами.

В настоящее время одним из возможных объяснений этого противоречия является недостаточно аккуратный учёт вклада амплитуд двухфотонного обмена в радиационные поправки к сечению упругого рассеяния. Выражение для этого вклада не может быть найдено из первых принципов, и в стандартной процедуре учёта радиационных поправок он вычислялся в мягкофотонном приближении (один из виртуальных фотонов, которыми обмениваются частицы считается «мягким»). Появилось большое число работ, посвящённых аппроксимации «жёсткой» части амплитуды двухфотонного обмена с использованием различных моделей и подходов. С другой стороны, вклад амплитуды двухфотонного обмена может извлекаться из зарядовой асимметрии (т. е. отличия от единицы отношения сечений упругого рассеяния электронов и позитронов на протонах), и недавно было проведено сразу несколько экспериментов, в которых измерялось это отношение [21–23]. В данной работе проводится анализ радиационных поправок, которые необходимо учесть при извлечении вклада двухфотонного обмена из данных экспериментов по измерению отношения сечений. Анализ включает сравнение подходов, основанных на мягкофотонном приближении, а также исследование вклада тормозного излучения за рамками традиционного мягкофотонного приближения, в частности учёт возбуждения $\Delta(1232)$ в промежуточном состоянии.

Выше мы говорили о передачах импульса, сравнимых по величине или превышающих значение массы протона. В случае же малых передач импульса измерение дифференциального сечения упругого *ер*-рассеяния становится инструментом для изучения пространственного распределения заряда внутри протона и извлечению его зарядового радиуса. Следует отметить, что в настоящее время имеется расхождение в значениях зарядового радиуса протона, извлекаемых из сечения упругого электрон-протонного рассеяния и данных спектрометрических экспериментов с электронным и мюонным водородом. Прецизионное измерение зарядового радиуса протона в экспериментах по спектроскопии мюонного водорода [24; 25] в начале 2010-х гг. привело к значению на 4% (порядка семи величин стандартных отклонений) меньшему чем, то, к которому сходились в то время данные спектроскопии в электронном водороде и экспериментов по рассеянию [26]. Эта поразительная разница в результатах экспериментов привела к всплеску интереса теоретиков и экспериментаторов к проблеме, получившей название «загадки протонного радиуса» [27; 28]. Самые последние результаты по электрон-протонному рассеянию [29-31] и по спектроскопии электронного водорода [32-34] все ещё не могут разрешить противоречие: на текущий момент ситуация такова, что они приводят к существенно различным результатам, даже в рамках только рассеивательных или только спектрометрических экспериментов. Недавно был предложен новый эксперимент по измерению зарядового радиуса протона в электрон-протонном рассеянии в постановке с регистрацией протона отдачи [35]. Отдельный раздел диссертации посвящён теоретическому описанию интересного свойства этой постановки эксперимента: сокращение главных вкладов в радиационные поправки к сечению упругого рассеяния.

Целью данной работы является

- Сравнение расчётов радиационных поправок, основанных на мягкофотонном приближении, между собой и с точным результатом для бесструктурного протона.
- Исследование вклада тормозного излучения в радиационные поправки с учётом возбуждения Δ(1232) в экспериментах по изучению вклада амплитуд двухфотонного обмена.
- 3. Описание механизма сокращения главных вкладов в радиационные поправки для экспериментов по измерению зарядового радиуса протона.

Научная новизна.

Впервые проведён исчерпывающий анализ двух подходов к вычислению радиационных поправок к сечению упругого электрон-протонного рассеяния, основанных на мягкофотонном приближении. Установлено, что и традиционный подход Мо-Тсая [36], и более современный подход Максимона-Тьена [37] к учёту вклада диаграмм двухфотонного обмена дают адекватное приближение в модели точечного протона, и нельзя отдать предпочтение ни одному из них. В части радиационных поправок, связанных с излучением реального фотона, автором подтверждается результат Максимона-Тьена и установлено место в промежуточных

вычислениях традиционной процедуры Мо-Тсая, в котором была использована необоснованная замена переменных.

- Исследован вклад тормозного излучения в радиационные поправки с учётом возбуждения ∆(1232) для экспериментов по измерению отношения сечений электрон-протонного и позитрон-протонного рассеяния. Выполнен расчёт с использованием современных данных для параметризации переходных формфакторов протона и учётом конкретных кинематических ограничений недавнего эксперимента на накопителе ВЭПП-3 в Институте ядерной физики им. Г. И. Будкера Сибирского отделения Российской академии наук.
- В работе впервые представлено объяснение механизма сокращения радиационных поправок для экспериментов по измерению зарядового радиуса протона. Сокращение получено с использованием различных методов и с разной степенью точности.

Теоретическая и практическая значимость. Теоретическая значимость данной работы заключается в полном объяснении расхождения в результатах известных расчётов радиационных поправок, основанных на мягкофотонном приближении, и устранении обнаруженных неточностей. Обнаруженная малость вклада $\Delta(1232)$ в реальные радиационные поправки важна для интерпретации результатов эксперимента в терминах вклада «жёсткой» части амплитуд двухфотонного обмена. Эти результаты работы были использованы для обработки данных эксперимента по измерению отношения сечений электрон-протонного и позитрон-протонного рассеяния, выполненного на накопителе ВЭПП-3 в Институте ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук (ИЯФ СО РАН). Они применимы и для других экспериментов, выполненных в сходной постановке.

С точки зрения теории сокращение вкладов в радиационные поправки к сечениям упругого рассеяния для экспериментов по измерению зарядового радиуса протона представляет особый интерес не только тем, что получило простое и физически прозрачное объяснение с логарифмической точностью, но и тем, что более аккуратными расчётами в однопетлевом приближении удаётся показать, что это сокращение происходит с точностью до константы, и вычислить первые поправки, содержащих степени передачи импульса. Кроме того, определены условия, когда с логарифмической точностью сокращение происходит и в более высоких порядках теории возмущений. Это часть исследования важна для выбора конкретных условий постановки эксперимента такого типа и его последующей обработки.

Методология и методы исследования. При работе использовались современные методы численных и аналитических вычислений в рамках квантовой электродинамики.

Основные положения, выносимые на защиту

- Проанализированы точные и приближенные выражения для амплитуд двухфотонного обмена в модели точечного протона. Обнаружено, что явные недостатки существующих подходов, применённых к отдельным диаграммам двухфотонного обмена, компенсируются в полных выражениях для вклада в виртуальные радиационные поправки, и, таким образом, в этой части нельзя отдать предпочтение тому или иному расчёту. В то же время, в вычислениях радиационных поправок, связанных с излучением реального фотона, установлена неточность традиционной процедуры, которая привела к расхождению между предшествующими и более современными результатами.
- 2. С использованием современных данных по переходным формфакторам получены оценки для вклада Δ(1232) в реальные радиационные поправки для эксперимента на накопителе ВЭПП-3 в ИЯФ СО РАН. Автором проведены вычисления с использованием приближенных аналитических методов и численного интегрирования и обнаружено, что этот вклад не может повлиять на величину отношения сечений, наблюдаемую в эксперименте ИЯФ.
- 3. Представлено описание механизма сокращения радиационных поправок в экспериментах по измерению зарядового радиуса с использованием различных подходов. Вычислены первые члены в разложении остаточного электронного вклада в радиационные поправки по степеням отношения передачи импульса к энергии налетающего электрона. Определены условия, когда с логарифмической точностью сокращение происходит и в более высоких порядках теории возмущений.

Достоверность. Достоверность результатов обеспечивается использованием современных методов исследования и подтверждается согласованностью приближенных аналитических и численных результатов, а также анализом частных случаев. Апробация работы. Основные результаты докладывались на нескольких российских и международных конференциях: Olympus Symposium «Experimental and theoretical aspects of the proton form factors» (Gatchina, Russia, 9–11 July 2012), International Workshop «Scattering and annihilation electromagnetic processes» (Trento, Italy, 18-22 February 2013), International Conference on the Structure and the Interactions of the Photon, PHOTON 2015 (Novosibirsk, Russia, 15–19 June 2015), 53-я Зимняя школа НИЦ «Курчатовский институт» (ПИЯФ, Рощино, Ленинградская обл., Россия, 2-7 марта 2019 г.), Сессия-конференция Секции ядерной физики ОФН РАН (Академпарк, Новосибирск, 10–12 марта 2020 г.); включены в труды XXI Международного семинара «Нелинейные явления в сложных системах» (Минск, 20–23 мая 2014 г.), а также обсуждались на семинарах теоретического отдела в Институте ядерной физике им. Г. И. Будкера СО РАН.

Личный вклад. Все основные результаты, представляемые на защиту, получены автором лично либо при определяющем участии. Автором были вычислены точные значения для вкладов фейнмановских диаграмм двухфотонного обмена в модели точечного протона и проведено сравнение с приближенными выражениями. Автор определил конкретное место в вычислениях реальных радиационных поправок с использованием мягкофотонного приближения, которое приводило к расхождению между традиционным и более современным расчётами. С использованием современных данных по переходным формфакторам им были получены численные оценки значений вклада $\Delta(1232)$ в реальные радиационные поправки для эксперимента на накопителе ВЭПП-3 в ИЯФ СО РАН. Автором дано описание механизма сокращения радиационных поправок в экспериментах по измерению зарядового радиуса с использованием различных подходов. Им также были выполнены вычисления в однопетлевом приближении, подтверждающие сокращение логарифмических и константных вкладов и приводящие к первым ненулевым поправкам.

Публикации. Основные результаты по теме диссертации изложены в 4 печатных изданиях, 3 из которых изданы в журналах, рекомендованных ВАК, 1 — в тезисах докладов конференции:

 Герасимов, Р. Е. и Фадин, В. С. Анализ приближений, используемых при вычислении радиационных поправок к сечению электрон-протонного рассеяния // Ядерная физика. - 2015. - т. 78, № 1/2. - С. 73–96.

- 2. Gerasimov, R. E. and Fadin, V. S. Contribution of $\Delta(1232)$ to real photon radiative corrections for elastic electron-proton scattering // Journal of Physics G: Nuclear and Particle Physics. 2016. V. 43, I. 12. P.:125003.
- Fadin, V. S. and Gerasimov, R. E. On the cancellation of radiative corrections to the cross section of electron-proton scattering // Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. - 2019. - V. 795.
 - P. 172–176.
- Gerasimov R. E. Approximations used in calculations of radiative corrections to electron-proton scattering cross section // Nonlinear Dynamics and Applications: Proceedings of the Twenty first Annual Seminar NPCS'2014, Minsk, 20-23 May 2014. - 2014. - V. 20. - P. 56-63.

Глава 1. Упругое рассеяние электронов на протонах в борновском приближении

Начиная с середины 1950-ых годов упругое электрон-протонное рассеяние является важнейшим инструментом для изучения внутренней структуры протона. Выражение для дифференциального сечения этого процесса впервые было получено Розенблютом [14]. Его формула описывает процесс рассеяния в борновском приближении, при этом взаимодействие протона с электромагнитным полем параметризуется двумя формфакторами.

1.1 Формула Розенблюта и электромагнитные формфакторы протона

Фейнмановская диаграмма, описывающая процесс рассеяния в борновском приближении, представлена на Рис. 1, где в вершине взаимодействия протона с виртуальным фотоном вводятся формфакторы Дирака $F_1(Q^2)$ и Паули $F_2(Q^2)$:

$$\Gamma^{\mu}(q) = F_1(Q^2) \,\gamma^{\mu} - F_2(Q^2) \,\frac{[\gamma^{\mu}, \gamma^{\nu}] \,q_{\nu}}{4M} \,, \tag{1.1}$$

так что протонный ток имеет вид

$$J^{\mu} = \bar{u}(p') \,\Gamma^{\mu}(q) \,u(p) \,\,, \tag{1.2}$$

где p и p'- это 4-импульсы протона в начальном и конечном состояниях; q = p' - p — передача импульса протону ($Q^2 = -q^2$), где M — масса протона. Электромагнитный протонный ток получается умножением на заряд протона Z|e| (e = -|e| — заряд электрона; для протона Z = 1, но мы удерживаем его согласно принятой традиции для идентификации разных вкладов в радиационные поправки). Значения формфакторов $F_{1,2}(Q^2)$ при $Q^2 = 0$ определяются зарядом и аномальным магнитным моментом протона: $F_1(0) = 1$, $F_2(0) = \mu_p - 1 \approx 1.79$, где $\mu_p \approx 2.79$ — полный магнитный момент протона. Электронный ток записывается как

$$j^{\mu} = \bar{u}(l') \gamma^{\mu} u(l) , \qquad (1.3)$$

где l и l'-4-импульсы электрона в начальном и конечном состоянии (электромагнитный ток получается умножением на заряд электрона e). В итоге,

Рисунок 1— Диаграмма Фейнмана для рассеяния электрона на протоне в приближении однофотонного обмена

диаграмме на Рис. 1 соответствует матричный элемент

$$\mathcal{M}_B = \frac{Z e^2}{Q^2} \, j_\mu \, J^\mu \,, \tag{1.4}$$

причём передача импульса в упругом процессе q = p' - p = l - l'.

Дифференциальное по углу вылета конечного электрона сечение рассеяния электронов на протонной мишени в случае неполяризованных частиц и при условии, что электроны являются ультрарелятивистскими, определяется по формуле

$$\frac{\mathrm{d}\sigma_B}{\mathrm{d}\Omega} = \frac{1}{(4\pi)^2} \frac{\bar{\Sigma} |\mathcal{M}_B|^2}{4M^2 \eta^2} \,. \tag{1.5}$$

Квадрат матричного элемента суммируется по поляризациям конечных частиц и усредняется по поляризациям начальных частиц; параметр η связывает энергии начального (*E*) и конечного электрона (*E'*), рассеявшегося под углом θ :

$$\eta = \frac{E}{E'} = 1 + \frac{2E}{M}\sin^2\left(\frac{\theta}{2}\right),\tag{1.6}$$

при условии $E, E' \gg m$, где m – масса электрона.

Квадрат матричного элемента, просуммированный и усреднённый по поляризациям, выражается через токовые тензоры:

$$\sum_{\nu} \left| \mathcal{M}_B \right|^2 = \frac{Z^2 e^4}{Q^4} L_{\nu \rho} T^{\nu \rho}.$$
 (1.7)

Выражения для токовых тензоров хорошо известны в литературе. Электронный токовый тензор имеет вид

$$L^{\nu\rho} = \sum_{\nu} j^{\nu} j^{\rho\dagger} = \frac{1}{2} \operatorname{Tr} \left[\gamma^{\nu} \left(\hat{l} + m \right) \gamma^{\rho} \left(\hat{l}' + m \right) \right]$$

= $q^2 g^{\nu\rho} - q^{\nu} q^{\rho} + K^{\nu} K^{\rho},$ (1.8)

где K = l + l'. Протонный токовый тензор

$$T^{\nu\rho} = \sum_{k=1}^{n} J^{\nu} J^{\rho\dagger} = \frac{1}{2} \operatorname{Tr} \left[\Gamma^{\nu}(q) \left(\hat{p} + M \right) \Gamma^{\rho,\dagger}(q) \left(\hat{p}' + M \right) \right] = G_{M}^{2}(Q^{2}) \left(q^{2} g^{\nu\rho} - q^{\nu} q^{\rho} \right) + \left(4M^{2} G_{E}^{2}(Q^{2}) + Q^{2} G_{M}^{2}(Q^{2}) \right) \frac{P^{\nu} P^{\rho}}{P^{2}},$$
(1.9)

где P = p + p', $P^2 = 4M^2 + Q^2$. Здесь оказывается удобным ввести электрический (G_E) и магнитный (G_M) формфакторы протона:

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2} F_2(Q^2), \qquad G_M(Q^2) = F_1(Q^2) + F_2(Q^2), \qquad (1.10)$$

что эквивалентно преобразованию протонного тока

$$J^{\mathbf{v}} = \bar{u}(p') \left(G_M \,\boldsymbol{\gamma}^{\mathbf{v}} + (G_E - G_M) \,\frac{2MP^{\mathbf{v}}}{P^2} \right) u(p) \;, \tag{1.11}$$

в последнем выражении и ниже для краткости мы будем опускать аргументы формфакторов.

В итоге, подставляя (1.8) и (1.9) в (1.7), мы приходим к формуле Розенблюта [14]:

$$\frac{\mathrm{d}\sigma_B}{\mathrm{d}\Omega} = \frac{Z^2 \alpha^2 \cos^2\left(\frac{\theta}{2}\right)}{4E^2 \eta \sin^4\left(\frac{\theta}{2}\right)} \frac{\tau G_M^2 + \varepsilon G_E^2}{\varepsilon(1+\tau)},\tag{1.12}$$

где электромагнитная константа связи $\alpha = e^2/(4\pi) \approx 1/137$, параметр τ зависит только от передачи импульса, а параметр ε – от передачи импульса и угла рассеяния электрона (передачи импульса и энергии начального электрона):

$$\tau = \frac{Q^2}{4M^2} , \qquad \qquad \varepsilon = \left(1 + 2(1+\tau)\operatorname{tg}^2\left(\frac{\theta}{2}\right)\right)^{-1}. \qquad (1.13)$$

Вся зависимость дифференциального сечения (1.12) от внутренней структуры протона содержится в так называемом «редуцированном сечении»

$$\sigma_R = \tau \, G_M^2 + \varepsilon \, G_E^2 \, . \tag{1.14}$$

Значения ε ограничены $0 \le \varepsilon \le 1$, а параметр τ растёт с ростом передачи импульса. Это приводит к тому, что с ростом Q^2 уменьшается относительный вклад в сечение электрического формфактора G_E . Зависимость σ_R (1.14) от параметра ε изображается прямой с наклоном G_E^2 , пересекающей ось ординат в точке τG_M^2 . Отношение G_E^2/G_M^2 методом розенблютовского разделения определяется по наклону этой прямой, который уменьшается с ростом передачи импульса. Поэтому определение отношения G_E/G_M таким способом при больших передачах импульса чрезвычайно чувствительно к зависящим от ε радиационным поправкам к сечению и становится невозможным, когда вклад G_E в сечение оказывается в пределах точности их вычисления.

Впервые отличие в поведении дифференциального сечения от предсказания модели точечного протона было обнаружено в экспериментах на линейном ускорителе в Стэнфорде (SLAC) [1–3]. Эти исследования положили начало серии экспериментов с постепенным увеличением энергий и передач импульса налетающих электронов. В экспериментах в Стэнфорде и Корнелле [4; 5] определялись значения формфакторов F_1 и F_2 . Примерно в это же время различными группами авторов [38–40] было отмечено удобство введения формфакторов G_E и G_M , и в последующих экспериментах по упругому рассеянию электронов на протонах извлекались значения электрического и магнитного формфакторов.

1.2 Формфакторы протона в поляризационных экспериментах

Отношение электромагнитных формфакторов G_E/G_M может быть измерено в экспериментах с поляризованными частицами [41—43]. В наиболее распространённой постановке эксперимента продольно поляризованные электроны упруго рассеиваются на неполяризованных протонах мишени, и измеряется поляризация конечных протонов.

Токовый тензор для поляризованных электронов в начальном состоянии имеет вид (сравните с (1.8))

$$L^{\nu\rho}(a) = \frac{1}{2} \operatorname{Tr} \left[\gamma^{\nu} \left(\hat{l} + m \right) (1 - \hat{a} \gamma^5) \gamma^{\rho} \left(\hat{l}' + m \right) \right]$$

= $L^{\nu\rho} - 2im \varepsilon^{\nu\rho\sigma\tau} q_{\sigma} a_{\tau},$ (1.15)

где a - 4-вектор, описывающий поляризацию начального электрона. В случае продольно поляризованных электронов со значением спиральности $\lambda = \pm 1$ имеем

$$a^{\mu}(\lambda) = \lambda \frac{E}{m} \left\{ \frac{|\mathbf{l}|}{E}, \frac{1}{|\mathbf{l}|} \right\}.$$
 (1.16)

Частично поляризованное вдоль импульса состояние электрона характеризуется средним значением спиральности $-1 < \lambda < 1$, и при $\lambda = 0$ мы возвращаемся к рассеянию неполяризованных электронов. В ультрарелятивистском пределе $m \ll E$ получаем $a(\lambda) \approx \lambda l^{\mu}/m$, так что

$$L^{\nu\rho}(\lambda) = L^{\nu\rho} - 2i\lambda\varepsilon^{\nu\rho\sigma\tau}l_{\sigma}l'_{\tau}.$$
(1.17)

Рассмотрим процесс, в котором спиновое состояние начального протона описывается двухкомпонентным спинором φ , а детектор регистрирует протон, описывающийся двухкомпонентным спинором φ' . Тогда выражение для сечения этого процесса

$$\frac{\mathrm{d}\sigma_B(\lambda,\varphi,\varphi')}{\mathrm{d}\Omega} = \frac{Z^2 \alpha^2}{4M^2 \eta^2 \left(q^2\right)^2} \ L_{\nu\rho}(\lambda) \ T^{\nu\rho}(\varphi,\varphi'), \tag{1.18}$$

где $T^{\nu\rho}(\phi,\phi') = J^{\nu}J^{\rho\dagger}$ – произведение протонных токов при фиксированных спиновых состояниях начального и конечного протона.

Если начальные протоны не поляризованы, то в (1.18) нужно провести усреднение по состояниям φ. Поляризация конечного протона определяется тогда из соотношения

$$\sum_{\varphi}^{-} \frac{\mathrm{d}\sigma_{B}(\lambda,\varphi,\varphi')}{\mathrm{d}\Omega} \propto \varphi'^{\dagger} \, \frac{1+\sigma\mathscr{P}}{2} \, \varphi', \qquad (1.19)$$

где матрица плотности $(1 + \sigma \mathscr{P})/2$ характеризует спиновое состояние конечного протона, вектор \mathscr{P} определяет направление и степень его поляризации, вектор σ составлен из матриц Паули.

Удобнее всего преобразовать (1.18) в системе Брейта. Выбрав ось z вдоль направления q, а ось x направив в плоскости рассеяния (Рис. 2), мы получим для ультрарелятивистских электронов

$$l(l') = \frac{Q}{2} \left\{ \sin^{-1} \left(\frac{\Psi}{2} \right), \ \operatorname{tg}^{-1} \left(\frac{\Psi}{2} \right), \ 0, \ \pm 1 \right\}$$

$$p(p') = \left\{ \frac{\sqrt{4M^2 + Q^2}}{2}, \ 0, \ 0, \ \mp \frac{Q}{2} \right\},$$

$$q = Q \left\{ 0, \ 0, \ 0, \ 1 \right\},$$
(1.20)

где угол рассеяния электрона $(\pi - \psi)$ связан с углом рассеяния в лабораторной системе

$$\operatorname{tg}\left(\frac{\Psi}{2}\right) = \sqrt{1+\tau} \operatorname{tg}\left(\frac{\theta}{2}\right)$$
 (1.21)

Рисунок 2 — Упругое ер-рассеяние в системе Брейта

Мы можем переписать протонный ток (1.2) через двухкомпонентные спиноры в виде

$$J^{\mu} = \varphi^{\prime \dagger} F^{\mu} \varphi , \qquad (1.22)$$

где в системе Брейта для стандартного представления *γ*-матриц и биспиноров с учётом (1.11) и (1.20) мы получим

$$F^0 = 2MG_E$$
, $\mathbf{F} = iG_M[\mathbf{\sigma} \times \mathbf{q}]$. (1.23)

Здесь можно заметить, что, выбрав в качестве базисных состояния начального и конечного протонов с определенным значением спиральности в системе Брейта, мы получим, что переходы с изменением спиральности дают нулевую компоненту тока, пропорциональную G_E , а с сохранением спиральности дают вклад в пространственные компоненты тока, пропорциональный G_M . Ясно, что эти два типа переходов не могут интерферировать, поэтому и дифференциальное сечение рассеяния неполяризованных частиц содержит квадраты электрического и магнитного формфакторов и не содержит их перекрёстного произведения.

Если начальные протоны не поляризованы и поляризация конечных не измеряется, то в борновском приближении сечение рассеяния поляризованных электронов совпадает с формулой Розенблюта (1.12)

$$\sum_{\rho,\phi'} \frac{\mathrm{d}\sigma_B(\lambda,\phi,\phi')}{\mathrm{d}\Omega} = \frac{Z^2 \alpha^2}{4M^2 \eta^2 Q^4} L_{\nu\rho}(\lambda) \frac{Tr\left[F^{\nu}F^{\dagger\rho}\right]}{2} = \frac{d\sigma_B}{d\Omega}.$$
 (1.24)

Предыдущее соотношение даёт общий коэффициент в формуле (1.19), и мы можем определить поляризацию конечного протона *Э* из соотношения

$$\mathscr{P}\frac{d\sigma_B}{d\Omega} = \frac{Z^2 \alpha^2}{4M^2 \eta^2 Q^4} L_{\nu\rho}(\lambda) \frac{Tr\left[F^{\nu}F^{\dagger\rho}\sigma\right]}{2}.$$
 (1.25)

Прямое вычисление (1.25) с использованием формул (1.17), (1.20)–(1.23) приводит к соотношениям

$$\mathscr{P}_{x} \frac{\sigma_{R}}{\varepsilon(1+\tau)} = -2\lambda \sqrt{\frac{\tau}{1+\tau}} G_{E} G_{M} \operatorname{tg}\left(\frac{\theta}{2}\right),$$

$$\mathscr{P}_{y} = 0,$$

$$\mathscr{P}_{z} \frac{\sigma_{R}}{\varepsilon(1+\tau)} = 2\lambda \sqrt{\frac{\tau}{1+\tau}} \frac{E+E'}{2M} G_{M}^{2} \operatorname{tg}^{2}\left(\frac{\theta}{2}\right).$$

(1.26)

Таким образом, отношение формфакторов G_E/G_M может быть извлечено из отношения поперечной и продольной степеней поляризации конечного протона

$$\frac{G_E}{G_M} = -\frac{\mathscr{P}_x}{\mathscr{P}_z} \frac{E + E'}{2M} \operatorname{tg}\left(\frac{\theta}{2}\right)$$
(1.27)

Приведённые формулы были известны с начала 1970-х годов, но эксперименты стали возможны только спустя тридцать лет в лаборатории Джефферсона (JLab) [15—19]. Поляризация протона отдачи в них измерялась в поляриметре по асимметрии во вторичном рассеянии протонов. Как уже было отмечено во Введении, результаты поляризационных экспериментов оказались в явном противоречии с экспериментами по розенблютовскому разделению. Для их проверки был проведён эксперимент с неполяризованными частицами в постановке, когда регистрируется конечный протон [44]. Он также дал слабую зависимость G_E/G_M от передачи импульса и, таким образом, ещё более обострил возникшее после работ [15—17] противоречие.

1.3 Упругое электрон-протонное рассеяние при малых передачах импульса

С учётом связи между углом рассеяния электрона и передачей импульса формула Розенблюта (1.12) может быть переписана в следующем виде

$$\frac{\mathrm{d}\sigma_B}{\mathrm{d}Q^2} = \frac{4\pi Z^2 \alpha^2}{Q^4} \frac{M\left(E^2 + E'^2 + M(E - E')\right)}{E^2 \left(2M + E - E'\right)} \left(\tau \, G_M^2 \left(Q^2\right) + \varepsilon \, G_E^2 \left(Q^2\right)\right), \quad (1.28)$$

где

$$\varepsilon = \frac{2EE' - M(E - E')}{E^2 + E'^2 + M(E - E')},$$
(1.29)

причём энергия рассеянного электрона E' выражается через E и Q^2 :

$$E' = E - \frac{Q^2}{2M}.$$
 (1.30)

При малых передачах $Q \ll E \sim M$ формула (1.28) преобразуется к виду

$$\frac{d\sigma_B}{dQ^2} = \frac{4\pi Z^2 \alpha^2}{Q^4} F_1^2(Q^2) \left(1 - \frac{Q^2}{4M^2} \left(\frac{M^2}{E^2} \left(1 + \frac{2E}{M}\right) - (\mu_p - 1)^2\right)\right) , \quad (1.31)$$

где мы выполнили разложение дифференциального сечения до первых поправок по степеням Q^2 . С указанной точностью в формуле (1.31) следует считать $F_1(Q^2) = 1 + F'_1(0)Q^2$ и оставить только члены $\propto 1/Q^4$ и $\propto 1/Q^2$. Производная $F'_1(0)$ связана с зарядовым радиусом протона, и измерение дифференциального сечения при малых передачах позволяет определить эту величину.

Поразительная разница в значениях радиуса протона, полученном в Институте Пауля Шеррера (Paul Sherrer Institute, PSI) из анализа перехода 2S - 2Pв мюонном водороде [24; 25], и полученном из электрон-протонного рассеяния и спектроскопии водорода [26] (см. также обзор [45]) привела к всплеску интереса теоретиков и экспериментаторов к проблеме, получившей название «загадка протонного радиуса» [27; 28]. Последние эксперименты по электронному рассеянию в JLab [30] и MAMI [29], а также эксперименты по спектроскопии водорода [32; 33] не только не смогли разрешить противоречие, но сделали его ещё более непонятным.

В настоящее время готовятся новые эксперименты по рассеянию электронов на протоне. Интересной особенностью одного из них [35], который был предложен А. А. Воробьевым и будет проведён с пучком электронов низкой интенсивности в МАМІ, является то, что вместо регистрации рассеянного электрона, как в прошлых экспериментах, предлагается регистрировать протон отдачи в области низких значений квадрата передачи импульса Q^2 от 0.001 до $0.04 \ \Gamma \Rightarrow B^2$. Цель данного эксперимента в том, чтобы извлечь радиус протона с точностью 0.6%, которая может оказаться решающей для загадки протонного радиуса. Чтобы достичь этого, планируется измерить дифференциальное сечение $d\sigma/(dQ^2)$ с точностью 0.2%.

Глава 2. Радиационные поправки к сечению упругого ер-рассеяния

Формула Розенблюта даёт сечение упругого электрон-протонного рассеяния в борновском приближении по электромагнитному взаимодействию. Однако экспериментально наблюдаемым является сечение процесса, который сопровождается излучением произвольного числа «мягких» фотонов. Наблюдаемое значение сечения пропорционально сечению упругого процесса, полученному в борновском приближении, а найти коэффициент пропорциональности позволяет процедура учёта радиационных поправок. Важными особенностями этой процедуры является необходимость работы с расходящимися вкладами от «мягких» фотонов, модельная зависимость расчётов, выходящих за рамки мягкофотонного приближения, и зависимость вклада тормозного излучения от конкретной постановки эксперимента.

К началу 1960-ых годов была сформулирована последовательная теория суммирования и интерпретации инфракрасных расходимостей в квантовой электродинамике. В работе Йенни, Фраучи и Суура [46] был предложен метод, позволяющий выделить и сократить расходящиеся члены от «мягких» реальных и виртуальных фотонов во всех порядках теории возмущения по электромагнитной константе взаимодействия α . Несколькими группами авторов были получены формулы для постановки эксперимента по розенблютовскому разделению с использованием магнитного спектрометра, в которой измеряется угол вылета и энергия рассеянного электрона. Среди результатов, которые использовались при обработке экспериментальных данных, следует отметить работы Тсая [47], Мейстера и Йенни [48], а также Мо и Тсая [36]. Эти работы основаны на мягкофотонном приближении, инфракрасные расходимости регуляризуются введением массы фотона и сокращаются в первом порядке теории возмущений, в результате конечный ответ имеет вид

$$\frac{d\sigma_{\exp}}{d\Omega} = (1+\delta) \frac{d\sigma_B}{d\Omega} , \qquad (2.1)$$

где радиационная поправка δ пропорциональна первой степени электромагнитной константы связи α и вычисляется как сумма виртуальной и реальной части $\delta = \delta_{virt} + \delta_{real}$. Виртуальную поправку (δ_{virt}) даёт интерференция борновской амплитуды с однопетлевыми поправками к упругому процессу (Рис. 3 и

Рисунок 3 — Диаграммы Фейнмана для радиационных поправок к упругому *ер*-рассеянию: поправки к электронной \mathcal{M}^{e}_{vertex} и протонной \mathcal{M}^{p}_{vertex} вершинам, и поправка \mathcal{M}_{vac} , связанная поляризация вакуума

Рис. 4). Реальная поправка (δ_{real}) обусловлена излучением одного фотона, соответствующие диаграммы Фейнмана показаны на Рис. 5.

Впервые выражение для радиационных поправок к сечению упругого рассеяния электронов на протонах в постановке эксперимента с магнитным спектрометром было найдено в работе Тсая [47]. С небольшими исправлениям, внесёнными в статье Мо и Тсая [36], эта процедура учёта радиационных поправок традиционно использовалась при обработке данных по упругому рассеянию электронов на протонах с регистрацией рассеянного электрона в большинстве экспериментов вплоть до сравнительно недавних [7–13].

Интерес к теме радиационных поправок к упругому электрон-протонному рассеянию снова возник после появления результатов поляризационных экспериментов. Значительным улучшением результатов Мо и Тсая считается [49] более современный расчёт радиационных поправок, выполненный Максимоном и Тьеном [37]. Наиболее существенны различия двух расчётов для вкладов диаграмм двухфотонного обмена и тормозного излучения. Кроме этого, есть разница в вычислении виртуальной поправки к протонной вершине. В следующих разделах этой главы мы анализируем расхождения между результатами Мо-Тсая [36] и Максимона-Тьена [37], используемые в этих расчётах приближения и точность, на которую можно рассчитывать в рамках этих приближений. Для полноты изложения мы приведём также и те поправки, в вычислении которых нет расхождений.

Рисунок 4 — Диаграммы Фейнмана для радиационных поправок к упругому ep-рассеянию: амплитуды двухфотонного обмена \mathcal{M}_{box} и \mathcal{M}_{xbox}

Рисунок 5 — Диаграммы Фейнмана для радиационных поправок к упругому ep-рассеянию: тормозное излучение с электронной $\mathcal{M}^e_{\text{brem}}$ и протонной $\mathcal{M}^p_{\text{brem}}$ линий

2.1 Виртуальные радиационные поправки

В виртуальную поправку δ_{virt} даёт вклад поляризация вакуума δ_{vac} , поправки к электронной и протонной вершинам (δ_{vertex}^e и δ_{vertex}^p соответственно) и двухфотонный обмен $\delta_{2\gamma}$:

$$\delta_{\text{virt}} = \delta_{\text{vac}} + \delta_{\text{vertex}}^e + \delta_{2\gamma}^p. \tag{2.2}$$

2.1.1 Поляризация вакуума

Поправка от поляризации вакуума δ_{vac} (соответствует вкладу амплитуды \mathcal{M}_{vac} на Рис. 3) равна удвоенному значению поляризационного оператора $\mathcal{P}(q^2)$,

$$\delta_{\rm vac} = 2\mathcal{P}(q^2). \tag{2.3}$$

Выделяют лептонный (электронный, мюонный и тау-лептонный) и адронный вклады в поляризацию вакуума:

$$\mathcal{P}(q^2) = \mathcal{P}_e(q^2) + \mathcal{P}_\mu(q^2) + \mathcal{P}_\tau(q^2) + \mathcal{P}_h(q^2).$$
(2.4)

Однопетлевой электронный вклад в поляризацию вакуума $\mathcal{P}_e(q^2)$, хорошо известен (см., например, [50])

$$\mathcal{P}_e(q^2) = \frac{\alpha}{3\pi} \left(2\left(1 + \frac{2m^2}{q^2}\right) \left(\frac{\beta}{2} \ln\left(\frac{\beta+1}{\beta-1}\right) - 1\right) + \frac{1}{3}\right), \quad (2.5)$$

где $\beta = \sqrt{1 - 4m^2/q^2}$. Это выражение принимает вещественные значения при отрицательных значениях квадрата передачи импульса $q^2 < 0$. Вклад мюонов и тау-лептонов отличается только заменой на соответствующую массу лептона.

Для электронного вклада при $Q^2=-q^2\gg m^2$ имеем

$$\mathcal{P}_e(Q^2) = \frac{\alpha}{3\pi} \left(\ln\left(\frac{Q^2}{m^2}\right) - \frac{5}{3} \right).$$
(2.6)

Мо и Тсай в работе [36] учитывали только этот вклад. Впоследствии наряду с электронным учитывались также мюонный и тау-лептонный вклады, а также вклад адронов (например, в сравнительно недавнем эксперименте в SLAC [11]). Адронный вклад $\mathcal{P}_h(q^2)$, включающий в себя эффекты сильного взаимодействия, нельзя найти из первых принципов. Значение $\mathcal{P}_h(q^2)$ при отрицательных значениях виртуальности фотона $q^2 < 0$ восстанавливается по дисперсионному соотношению из обработки данных экспериментов по аннигиляции e^+e^- в адроны.

2.1.2 Поправка к электронной вершине

Выражение для поправки к электронной вершине δ^{e}_{vertex} (соответствует вкладу амплитуды \mathcal{M}^{e}_{vertex} на Рис. 3) также широко известно в литературе. В данном случае задача сводится к вычислению электромагнитных формфакторов электрона

$$j^{\mu} = \bar{u}(l') \left(f(q^2) \gamma^{\mu} + g(q^2) \frac{[\gamma^{\mu}, \hat{q}]}{4m} \right) u(l) , \qquad (2.7)$$

где в нулевом приближении по электромагнитной константе связи $f(q^2) = 1$, $g(q^2) = 0$, а поправку порядка α даёт верхний блок на диаграмме $\mathcal{M}^e_{\text{vertex}}$ (Рис. 3). Вычисление однопетлевой поправки к вершине приводит к

$$f(q^{2}) - 1 = \frac{\alpha}{2\pi} \left(-K(l, l') + K(l, l) + 3\left(\frac{\beta}{2}\ln\left(\frac{\beta+1}{\beta-1}\right) - 1\right) - \left(\frac{\beta^{2} - 1}{2\beta}\ln\left(\frac{\beta+1}{\beta-1}\right) - 1\right) \right),$$

$$g(q^{2}) = \frac{\alpha}{2\pi} \frac{\beta^{2} - 1}{2\beta}\ln\left(\frac{\beta+1}{\beta-1}\right),$$

$$(2.8)$$

где $\beta = \sqrt{1 - 4m^2/q^2}$. В процессе вывода (2.8) учитывается условие перенормировки f(0) = 1, и мы используем обозначения из статьи Тсая [47]:

$$K(p_i, p_j) = (p_i \cdot p_j) \int_0^1 \frac{dy}{p_x^2} \ln\left(\frac{p_x^2}{\lambda^2}\right) , \qquad (2.9)$$

где $p_x = xp_i + (1 - x)p_j$. Некоторые детали, касающиеся определения и явного вычисления этих функций можно найти в Приложении.

В пределе $Q^2 \gg m^2$ амплитуда, соответствующая поправке к электронной вершине, пропорциональна борновской. Это можно понять, заметив, что поправка к электронному формфактору $g(q^2)$ (2.8), который стоит при дополнительной γ -матричной структуре в электронном токе, быстро падает с ростом передачи импульса: $g \propto \ln \frac{Q^2}{m^2} / \frac{Q^2}{m^2}$. В итоге, вклад в виртуальные поправки можно записать в виде

$$\delta_{\text{vertex}}^{e} = \frac{\alpha}{\pi} \left(-K(l, l') + K(l, l) + \frac{3}{2} \ln\left(\frac{Q^2}{m^2}\right) - 2 \right), \quad (2.10)$$

причем из определения (2.9)

$$K(l,l) = \ln\left(\frac{m^2}{\lambda^2}\right),\tag{2.11}$$

и при $Q^2 \gg m^2$ (см. Приложение)

$$K(l,l') = \ln\left(\frac{Q^2}{m^2}\right)\ln\left(\frac{m^2}{\lambda^2}\right) + \frac{1}{2}\ln^2\left(\frac{Q^2}{m^2}\right) - \frac{\pi^2}{6}.$$
 (2.12)

Таким образом, с учётом дополнения о вкладе тяжёлых лептонов и адронов в поляризацию вакуума подходы Максимона–Тьена и Мо–Тсая совпадают для рассмотренных выше вкладов в виртуальную часть радиационных поправок. Подчеркнём, что единственное приближение, которое использовалось при выводе (2.6) и (2.10) — это то, что $Q^2 \gg m^2$.

2.1.3 Поправка к протонной вершине

Амплитуда \mathcal{M}_{vertex}^{p} , содержащая электромагнитную поправку к протонной вершине, не может быть вычислена в общем случае. Обе группы авторов использовали для неё одночастичное приближение. В схеме перенормировок на массовой поверхности оно изображается соответствующей диаграммой на Рис. 3. В этом приближении из всех виртуальных адронных состояний удерживаются только протонные, причём используются борновские пропагаторы протонов, а вершины взаимодействия фотонов с протонами берутся на массовой поверхности последних, т. е. в форме (1.1).

Мо и Тсай [47] пошли на дальнейшее упрощение и использовали для этой амплитуды стандартное мягкофотонное приближение, при котором импульсы фотонов в числителях фермионных пропагаторов полагаются равными нулю. Это приближение приводит к

$$\mathcal{M}_{\text{vertex}}^{p} = \frac{Z^{2} \alpha}{2\pi} \left(-K(p, p') + K(p, p) \right) \mathcal{M}_{B}, \qquad (2.13)$$

и, соответственно,

$$\delta_{\text{vertex}}^p = \frac{Z^2 \alpha}{\pi} \left(-K(p, p') + K(p, p) \right). \tag{2.14}$$

Максимон и Тьен применили одночастичное приближение без дальнейших упрощений. Для входящих в фотонные вершины формфакторов использовались модели с монопольной и дипольной зависимостью от передачи импульса

$$F_i(Q^2) \propto \left(\frac{\Lambda^2}{Q^2 + \Lambda^2}\right)^n, \quad n = 1, 2, \quad \Lambda^2 \simeq 1 \ \left(\Gamma \mathfrak{s} \mathbf{B}/c\right)^2,$$
 (2.15)

и с использованием этих моделей вычислялась добавка $\delta_{\text{virt}}^{(1)}$ к тому, что даёт мягкофотонное приближение (2.14):

$$\delta_{\text{vertex}}^{p,\text{MTj}} = \delta_{\text{vertex}}^{p} + \delta_{\text{virt}}^{(1)}$$
(2.16)

Было обнаружено, что поправка $\delta_{\text{virt}}^{(1)}$ положительна и пренебрежимо мала в экспериментальной области энергий и передач импульса ($\delta_{\text{virt}}^{(1)} < 0.012$ при $Q^2 < 16 \ (\Gamma \Rightarrow B/c)^2$) [37]. Но при бо́льших передачах отличие становится существенным, и, согласно Максимону и Тьену, поправка $\delta_{\text{virt}}^{(1)}$ должна учитываться

в экспериментах по электрон-протонному рассеянию при энергиях электронов больше 8 ГэВ.

Однако целесообразность такого учёта представляется сомнительной, поскольку вопрос о том, приближает ли учёт $\delta_{virt}^{(1)}$ поправку к точной, остаётся открытым. В самом деле, учёт $\delta_{virt}^{(1)}$ означает вычисление вклада в виртуальные поправки (2.2) от протонной вершины в описанном выше одночастичном приближении (или, в терминологии [37], с учётом структуры протона), при отбрасывании многоадронных вкладов. Доказательство того, что это приближение лучше, чем стандартное мягкофотонное, отсутствует.

Вместе с тем следует отметить, что протонная вершина имеет вид (1.1) и с учётом электромагнитных радиационных поправок, так что, на первый взгляд, не имеет смысл выделять их. Это выделение представляется физически бессмысленным, поскольку оно означает использование ненаблюдаемых величин — формфакторов без учёта электромагнитного взаимодействия. Но проблема в том, что формфакторы ненаблюдаемы даже при включении в них электромагнитного взаимодействия, поскольку они определены для упругого рассеяния, а физически наблюдаемы только процессы с излучением любого числа «мягких» недетектируемых фотонов. Сечение любого эксклюзивного процесса обращается в нуль при учёте радиационных поправок, связанных с «мягкими» фотонами, во всех порядках теории возмущений α. В каждом данном порядке это проявляется через инфракрасные расходимости в виртуальных и реальных поправках к эксклюзивным сечениям, которые сокращаются только в их сумме. Поэтому с учётом электромагнитных поправок формфакторы содержат в каждом порядке инфракрасные расходимости, а при суммировании поправок обращаются в нуль.

Итак, включение электромагнитных поправок в формфакторы делает их бессмысленными из-за инфракрасных расходимостей. Но эти расходимости связаны с «мягкими» фотонами. Они известны во всех порядках теории возмущений, факторизуются в экспоненту с показателем равным расходящейся части поправки 1-го порядка (см., например, [46]) и не имеют отношения к структуре протона и многоадронным промежуточным состояниям.

Представляется естественным и физически осмысленным включить в определение формфакторов все поправки, кроме факторизующихся в экспоненту инфракрасно расходящихся. Ввиду неоднозначности выделения расходящейся части поправки, такое определение содержит произвол и требует уточнения. Удобно использовать для этого стандартное мягкофотонное приближение. Тогда вся поправка от протонной вершины содержится в (2.14) (и сокращается с соответствующей реальной поправкой), а поправка $\delta_{virt}^{(1)}$ и неучтенная в [37] поправка от многоадронных промежуточных состояний включены в определение формфакторов, и вычислять их нет необходимости.

Заметим, что хотя включение всех электромагнитных поправок в формфакторы делает каждый из них бессмысленным, их отношение остается конечным и имеющим физический смысл, поскольку, благодаря факторизации инфракрасно расходящихся поправок, они не влияют на это отношение.

2.1.4 Амплитуды двухфотонного обмена

Наибольшие сложности при вычислении виртуальных поправок связаны с амплитудами двухфотонного обмена. В одночастичном приближении, когда удерживается только протонное промежуточное состояние, эти амплитуды изображаются диаграммами на Рис. 4. В фейнмановской калибровке для первой амплитуды имеем

$$i\mathcal{M}_{\text{box}} = Z^2 e^4 \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{1}{\mathrm{d}_1 \mathrm{d}_2 \mathrm{d}_3 \mathrm{d}_4} \left(\bar{u}(l') \gamma^{\mu} \left(\hat{k} + \frac{\hat{K}}{2} + m \right) \gamma^{\nu} u(l) \right) \quad (2.17)$$
$$\times \left(\bar{u}(p') \Gamma^{\mu} \left(k + \frac{q}{2} \right) \left(-\hat{k} + \frac{\hat{P}}{2} + M \right) \Gamma^{\nu} \left(\frac{q}{2} - k \right) u(p) \right),$$

а для второй

$$i\mathcal{M}_{\text{xbox}} = Z^2 e^4 \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{1}{d_1 d_2 d_3 d'_4} \left(\bar{u}(l') \gamma^{\mu} \left(\hat{k} + \frac{\hat{K}}{2} + m \right) \gamma^{\nu} u(l) \right)$$
(2.18)

$$\times \left(u(p') \Gamma^{\nu} \left(\frac{q}{2} - k \right) \left(\hat{k} + \frac{\hat{P}}{2} + M \right) \Gamma^{\mu} \left(k + \frac{q}{2} \right) u(p) \right).$$

Здесь приняты обозначения для знаменателей пропагаторов виртуальных частиц

$$d_1 = \left(k - \frac{q}{2}\right)^2 - \lambda^2 + i\varepsilon, \qquad (2.19)$$

$$d_2 = \left(k + \frac{K}{2}\right)^2 - m^2 + i\varepsilon, \qquad (2.20)$$

$$d_3 = \left(k + \frac{q}{2}\right)^2 - \lambda^2 + i\varepsilon, \qquad (2.21)$$

$$d_4 = \left(k - \frac{P}{2}\right)^2 - M^2 + i\varepsilon, \qquad (2.22)$$

$$d'_{4} = \left(k + \frac{P}{2}\right)^{2} - M^{2} + i\varepsilon$$
 (2.23)

Дальнейшие упрощения этих амплитуд, использованные обеими группами авторов, основаны на мягкофотонном приближении в разных его вариантах. Предполагается, что основной вклад происходит от областей, в которых один из двух фотонов «мягкий» (петлевой импульс k близок к значениям $\pm q/2$). Мо и Тсай использовали стандартный вариант, когда импульсом «мягкого» фотона пренебрегают везде, кроме знаменателей пропагаторов этого фотона и взаимодействующих с ним частиц. С учётом уравнений Дирака это приводит к

$$i\mathcal{M}_{\text{box}}^{\text{soft}} = 4(l \cdot p) \left(-Ze^2\right) \int \frac{d^4k}{(2\pi)^4} \left(\frac{1}{d_1d_2d_4} + \frac{1}{d_2d_3d_4}\right) \mathcal{M}_B , \qquad (2.24)$$

$$i\mathcal{M}_{\text{xbox}}^{\text{soft}} = 4(l \cdot p') \left(-Ze^2\right) \int \frac{d^4k}{(2\pi)^4} \left(\frac{1}{d_1 d_2 d'_4} + \frac{1}{d_2 d_3 d'_4}\right) \mathcal{M}_B , \qquad (2.25)$$

или с учётом определения функций $K(p_i, p_j)$

$$\mathcal{M}_{\text{box}}^{\text{soft}} = -\frac{Z\alpha}{2\pi} \left(K(l, -p) + K(l', -p') \right) \mathcal{M}_B = -\frac{Z\alpha}{\pi} K(l, -p) \mathcal{M}_B, \quad (2.26)$$

$$\mathcal{M}_{\text{xbox}}^{\text{soft}} = \frac{Z\alpha}{2\pi} \left(K(l,p') + K(l',p) \right) \mathcal{M}_B = \frac{Z\alpha}{\pi} K(l,p') \mathcal{M}_B.$$
(2.27)

Дополнительное упрощение, использованное в [47], состоит в замене K(l, -p) на K(l, p) в выражении для box-диаграммы (2.26):

$$\mathcal{M}_{\text{box}}^{\text{MoT}} = -\frac{Z\alpha}{\pi} K(l, p) \mathcal{M}_B, \qquad (2.28)$$

$$\mathcal{M}_{\text{xbox}}^{\text{MoT}} = \frac{Z\alpha}{\pi} K(l,p') \mathcal{M}_B.$$
(2.29)

Эта замена обосновывалась тем, что в виртуальные поправки даёт вклад только реальная часть K(l, -p), и что отличием $\operatorname{Re}(K(l, -p))$ от K(l,p) можно пренебречь. Последнее утверждение никак не было обосновано. По существу, оно и неверно. Как показано в Приложении,

$$\operatorname{Re}\left(K(l,-p)\right) - K(l,p) = -\frac{\pi^2}{2} + \int_{1-\frac{M^2}{s-M^2}}^{1+\frac{M^2}{s-M^2}} \mathrm{d}\xi \,\frac{\ln|1-\xi|}{\xi}, \quad (2.30)$$

где $s = (l+p)^2$. Видно, что разница скорее велика, чем мала. В пределе больших энергий $s \gg M^2$ она равна $-\pi^2/2$. Нетрудно понять ее происхождение: она связана с разницей дважды логарифмических членов при s > 0 и s < 0. С дважды логарифмической точностью поправку к электронной вершине можно найти, например, в книге Берестецкого, Лифшица и Питаевского [51]. Приведённый там способ выделения дважды логарифмической асимптотики с незначительными изменениями из-за различия масс $m \neq M$ работает и для функции K(l, p) и даёт

$$K(l,p) = \ln \frac{mM}{\lambda^2} \ln \frac{-(l-p)^2}{mM} + \frac{1}{2} \ln \frac{-(l-p)^2}{m^2} \ln \frac{-(l-p)^2}{M^2}$$
(2.31)

с положительными аргументами логарифмов. Замена $p \to -p$ означает, что этот результат следует аналитически продолжить в область отрицательных аргументов, что и приводит к добавке $-\pi^2/2$ в Re(K(l, -p)).

Представив вклад двухфотонных амплитуд в виртуальные радиационные поправки как

$$\delta_{2\gamma} = \delta_{\text{box}} + \delta_{\text{xbox}}, \qquad (2.32)$$

выпишем окончательные выражения для δ_{box} и δ_{xbox} , которое использовалось в подходе Мо и Тсая,

$$\delta_{\text{box}}^{\text{MoT}} = -\frac{2Z\alpha}{\pi} K(l,p), \qquad (2.33)$$

$$\delta_{\text{xbox}}^{\text{MoT}} = \frac{2Z\alpha}{\pi} K(l,p'). \tag{2.34}$$

Как показано выше, проделанная при получении (2.34) из (2.26) замена K(l, -p) на K(l, p) заметно (при большой энергии на величину $\sim \pi \alpha$) меняет значение поправки. Поэтому такая замена кажется существенным недостатком. Но здесь следует заметить, что само стандартное мягкофотонное приближение (2.26) (так же, как и (2.27)) при больших энергиях (в реджевской области $s \gg$

 $M^2, |t|$) имеет существенный недостаток, так как даёт дважды логарифмические члены типа $\ln^2(-s)$ (см. (2.31)), которых, как хорошо известно, заведомо нет в точном ответе. Члены такого типа возникают из-за того, что точный матричный элемент box-диаграммы (2.17), в котором подавление вклада больших импульсов виртуальных фотонов связано как с *s*, так и с *t*, заменяется на сумму матричных элементов двух треугольных диаграмм (2.26), в которых это подавление связано только с *s*. Детально этот вопрос рассмотрен в следующем разделе.

Этот недостаток устранён в приближении, используемом Максимоном и Тьеном. Оно получается приведением членов в (2.17) и (2.18) к общему знаменателю и заменой в числителе $d_1 + d_3$ на q^2 (равенство $d_1 + d_3 = q^2$ имеет место при нулевых импульсах любого из фотонов). В результате

$$i\mathcal{M}_{\text{box}}^{\text{MTj}} = 4(l \cdot p) \left(-Ze^2\right) q^2 \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{1}{d_1 d_2 d_3 d_4} \mathcal{M}_B, \qquad (2.35)$$

$$i\mathcal{M}_{\text{xbox}}^{\text{MTj}} = 4(l \cdot p') \left(-Ze^2\right) q^2 \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{1}{d_1 d_2 d_3 d'_4} \mathcal{M}_B, \qquad (2.36)$$

что даёт после вычисления интегралов

$$\delta_{\text{box}}^{\text{MTj}} = -\frac{2Z\alpha}{\pi} \frac{E}{|\mathbf{l}|} \ln\left(\frac{E+|\mathbf{l}|}{m}\right) \ln\left(\frac{Q^2}{\lambda^2}\right), \qquad (2.37)$$

$$\delta_{\text{xbox}}^{\text{MTj}} = \frac{2Z\alpha}{\pi} \frac{E'}{|\mathbf{l}'|} \ln\left(\frac{E' + |\mathbf{l}'|}{m}\right) \ln\left(\frac{Q^2}{\lambda^2}\right).$$
(2.38)

Способ получения этих выражений приведён в Приложении. Отметим только, что результаты (2.37) и (2.38) получены из (2.35) и (2.36) без предположения $m \ll E, E'$.

Поскольку приближение Максимона и Тьена устраняет рассмотренный выше недостаток стандартного мягкофотонного приближения, оно кажется более предпочтительным, чем приближение Мо и Тсая. Однако такое заключение преждевременно. Как было показано выше, при выводе (2.33) было сделано два приближения — стандартное мягкофотонное приближение и замена K(l, -p) на K(l, p), каждое из которых имеет свои явные недостатки. Но оказывается, что частично эти недостатки компенсируют друг друга. В самом деле, замена K(l, -p) на K(l, p) приводит к отбрасыванию $-\pi^2$ в членах $\ln^2(-(l + p)^2)$, имеющихся в K(l, -p) при больших энергиях. Но, как уже обсуждалось, в точном ответе нет дважды логарифмических членов типа $\ln^2(-(l + p)^2)$, а значит нет и содержащихся в них $-\pi^2$, так что отбрасывание последних частично устраняет

недостаток стандартного мягкофотонного приближения. Конечно, только частично, поскольку остаётся главный член, $\ln^2(l+p)^2$, которого заведомо не должно быть в реджевской области, так что в этой области приближение (2.33) для вклада box-диаграммы грубо неправильно. Но физический смысл имеет только сумма вкладов (2.33) и (2.34); по отдельности вклады box- и xbox-диаграмм вообще не калибровочно-инвариантны. А в сумме члены с $\ln^2(l+p)^2$ от box-диаграммы и $-\ln^2(-(l-p')^2)$ от xbox-диаграммы сокращаются в реджевской области, где $-(l-p')^2 \simeq (l+p)^2$, так что в $\delta_{2\gamma}^{MoT} = \delta_{box}^{MoT} + \delta_{xbox}^{MoT}$ очевидные недостатки исчезают. Вопрос о том, насколько полно происходит сокращение, насколько близко приближение Мо и Тсая к точному ответу, требует более детального анализа.

В похожем положении находится и приближение Максимона и Тьена. Как было сказано, оно устраняет недостаток стандартного мягкофотонного приближения (появление членов типа $\ln^2(-(l+p)^2)$ или $\ln^2(-(l-p')^2)$), но в нем имеется другой явный недостаток: появление лишних дважды логарифмических сингулярностей по электронной массе во вкладах отдельных диаграмм. В сумме $\delta_{2\gamma} = \delta_{\text{box}} + \delta_{\text{xbox}}$ они сокращаются, но опять вопрос об эффективности этого сокращения остаётся открытым. В следующем разделе вопрос о том, насколько хорошо описываются box- и xbox-амплитуды мягкофотонным приближением, исследуется для рассеяния электрона на точечном (бесструктурном) протоне, когда амплитуды двухфотонного обмена вычисляются точно.

2.1.5 Сравнение приближенных и точных амплитуд с двухфотонным обменом в рассеянии электрона на точечном протоне

Амплитуды двухфотонного обмена для рассеяния на точечном протоне определяются формулами (2.17), (2.18) с заменой $\Gamma^{\mu}(\frac{q}{2} \pm k) \rightarrow \gamma^{\mu}$. В Приложении приведены детали необходимых вычислений, здесь же выпишем только результат в случае $m \rightarrow 0$ (в следующих формулах предполагается, что квадрат масс протона M^2 может быть порядка абсолютных значений инвариантов

$$s = (l+p)^{2}, t = (l-l')^{2} = -Q^{2}, u = (l-p')^{2}):$$
$$\mathcal{M}_{\text{box}} = \frac{Z^{2} e^{4}}{(4\pi)^{2}} \left(A_{vv}(s,t) \left(\gamma^{\mu} \otimes \gamma^{\mu}\right) + A_{aa}(s,t) \left(\gamma^{\mu}\gamma^{5} \otimes \gamma^{\mu}\gamma^{5}\right) - A_{vt}(s,t) \left(\gamma^{\mu} \otimes \frac{[\gamma^{\mu},\hat{q}]}{4M}\right) \right),$$
(2.39)

где принято обозначение $a \otimes b = (\bar{u}(l') \, a \, u(l)) \, (\bar{u}(p') \, b \, u(p)).$

Инвариантные амплитуды имеют следующий вид

$$A_{vv}(s,t) = 2(s - M^{2}) D(s,t) - 2 C_{2}(t) - 2 C_{4}(t)$$

$$+(s + M^{2}) \frac{\partial J(s,t)}{\partial s} - J(s,t)$$

$$-2M^{2} X_{4}(s,t) + 2M^{2} \frac{\partial J(s,t)}{\partial M^{2}},$$

$$A_{aa}(s,t) = -(s - M^{2}) \frac{\partial J(s,t)}{\partial s} + J(s,t),$$

$$(2.41)$$

$$A_{vt}(s,t) = -2M^2 X_4(s,t) - 2M^2 \frac{\partial J(s,t)}{\partial M^2}, \qquad (2.42)$$

где

$$X_4(s,t) = \frac{1}{2((s-M^2)^2 + s\,t)} \left[t \left(C_2(t) - C_4(t) \right) + 2(s-M^2) C_2(t) + (s-M^2) \left(t D(s,t) - C_1(s) - C_3(s) \right) \right],$$
(2.43)

и явные выражения для функций D, C_i, J приведены в Приложении.

Амплитуда \mathcal{M}_{xbox} получается заменой $s \leftrightarrow u$:

$$\mathcal{M}_{\text{xbox}} = \frac{Z^2 e^4}{(4\pi)^2} \left\{ -A_{vv}(u,t) \left(\gamma^{\mu} \otimes \gamma^{\mu} \right) + A_{aa}(u,t) \left(\gamma^{\mu} \gamma^5 \otimes \gamma^{\mu} \gamma^5 \right) + (2.44) \right. \\ \left. + A_{vt}(u,t) \left(\gamma^{\mu} \otimes \frac{[\gamma^{\mu},\hat{q}]}{4M} \right) \right\}.$$

Выпишем в явном виде инвариантные амплитуды в пределе, когда обе массы малы ($m, M \rightarrow 0$):

$$A_{vv}^{(0)}(s,t) = 2s D^{(0)}(s,t) - 2C_2^{(0)}(t) - 2C_4^{(0)}(t) \qquad (2.45)$$

+ $s \frac{\partial J^{(0)}(s,t)}{\partial s} - J^{(0)}(s,t),$
$$A_{aa}^{(0)}(s,t) = -s \frac{\partial J^{(0)}(s,t)}{\partial s} + J^{(0)}(s,t), \qquad (2.46)$$

$$A_{vt}^{(0)}(s,t) = 0, (2.47)$$

32

причём

$$D^{(0)}(s,t) = \frac{2}{st} \ln\left(\frac{-t}{\lambda^2}\right) \left(\ln\left(\frac{s}{mM}\right) - i\pi\right), \qquad (2.48)$$

$$D^{(0)}(u,t) = \frac{2}{u\,t} \,\ln\left(\frac{-t}{\lambda^2}\right) \,\ln\left(\frac{-u}{m\,M}\right),\tag{2.49}$$

$$J^{(0)}(s,t) = \frac{1}{s+t} \left(-\frac{1}{2} \ln^2 \left(\frac{s}{-t} \right) + i\pi \ln \left(\frac{s}{-t} \right) \right), \qquad (2.50)$$

$$J^{(0)}(u,t) = \frac{1}{u+t} \left(-\frac{1}{2} \ln^2 \left(\frac{u}{t} \right) - \frac{\pi^2}{2} \right).$$
 (2.51)

$$C_2^{(0)}(t) = \frac{1}{t} \left(\frac{1}{2} \ln^2 \left(\frac{-t}{M^2} \right) + \frac{2\pi^2}{3} \right), \qquad (2.52)$$

$$C_4^{(0)}(t) = \frac{1}{t} \left(\frac{1}{2} \ln^2 \left(\frac{-t}{m^2} \right) + \frac{2\pi^2}{3} \right).$$
(2.53)

Функции $C_2^{(0)}(t)$ и $C_4^{(0)}(t)$ сокращаются в сумме вкладов box- и xbox-диаграмм. Для суммы амплитуд получаем:

$$\mathcal{M}_{\text{box}}^{(0)} + \mathcal{M}_{\text{xbox}}^{(0)} = \frac{Z^2 e^4}{2 (4\pi)^2 t} \times \left\{ \gamma^{\mu} \otimes \gamma^{\mu} \left(-8 \ln \left(\frac{-t}{\lambda^2} \right) \left(\ln \left(-\frac{u}{s} \right) + i\pi \right) \right) + \right. \\ \left. + \gamma^{\mu} \otimes \gamma^{\mu} \left(\frac{s - u}{t} \left(\frac{\ln^2 \left(\frac{u}{t} \right) + \pi^2}{\left(-\frac{s}{t} \right)^2} + \frac{\ln^2 \left(-\frac{s}{t} \right)}{\left(\frac{u}{t} \right)^2} \right) + \right. \\ \left. + 2 \left(\frac{\ln \left(\frac{u}{t} \right)}{\left(-\frac{s}{t} \right)} + \frac{\ln \left(-\frac{s}{t} \right)}{\left(\frac{u}{t} \right)} \right) - 2\pi i \left(\frac{s - u}{t} \left(\frac{\ln \left(-\frac{s}{t} \right)}{\left(\frac{u}{t} \right)^2} \right) + \frac{t}{u} \right) \right) + \right. \\ \left. + \gamma^{\mu} \gamma^5 \otimes \gamma^{\mu} \gamma^5 \left(\frac{s - u}{t} \left(\frac{\ln^2 \left(\frac{u}{t} \right) + \pi^2}{\left(-\frac{s}{t} \right)^2} - \frac{\ln^2 \left(-\frac{s}{t} \right)}{\left(\frac{u}{t} \right)^2} \right) + \right. \\ \left. + 2 \left(\frac{\ln \left(\frac{u}{t} \right)}{\left(-\frac{s}{t} \right)} - \frac{\ln \left(-\frac{s}{t} \right)}{\left(\frac{u}{t} \right)} \right) + 2\pi i \left(\frac{s - u}{t} \left(\frac{\ln \left(-\frac{s}{t} \right)}{\left(\frac{u}{t} \right)^2} \right) + \frac{t}{u} \right) \right) \right\}.$$

$$(2.54)$$

В работе [52] амплитуды двухфотонного обмена при M = m = 0 представлены в форме, содержащей $\hat{P} \otimes \hat{K}$. Поскольку уже при m = 0 справедливо соотношение

$$\hat{P} \otimes \hat{K} = (s - u) \left(\gamma^{\mu} \otimes \gamma^{\mu} \right) + t \left(\gamma^{\mu} \gamma^{5} \otimes \gamma^{\mu} \gamma^{5} \right),$$
(2.55)

можно привести (2.54) к виду

$$\mathcal{M}_{\text{box}}^{(0)} + \mathcal{M}_{\text{box}}^{(0)} = \frac{Z^2 e^2}{-t} \frac{e^2}{4\pi^2} \times \left\{ \gamma^{\mu} \otimes \gamma^{\mu} \left[\ln \left(-\frac{s}{u} \right) \ln \left(\frac{\lambda^2}{\sqrt{-s u}} \right) + \frac{\pi^2}{2} \right] + \right. \\ \left. + \gamma^{\mu} \otimes \gamma^{\mu} \left[\frac{1}{2} \ln \left(-\frac{s}{u} \right) + \frac{t}{4} \left(\frac{\ln^2 \left(\frac{u}{t} \right)}{s} - \frac{\ln^2 \left(-\frac{s}{t} \right)}{u} + \frac{\pi^2}{s} \right) - \right. \\ \left. - i\pi \left(\ln \left(\frac{\lambda^2}{s} \right) - \frac{t}{2u} \ln \left(-\frac{s}{t} \right) + \frac{1}{2} \right) \right] + \\ \left. + \frac{\hat{P} \otimes \hat{K}}{4} \left[\frac{1}{s u} \left(s \ln \left(-\frac{s}{t} \right) + u \ln \left(\frac{u}{t} \right) + \right. \\ \left. + \frac{s - u}{2} \left(\frac{s}{u} \ln^2 \left(-\frac{s}{t} \right) - \frac{u}{s} \ln^2 \left(\frac{u}{t} \right) - \frac{u}{s} \pi^2 \right) \right) - \\ \left. - i\pi \frac{1}{u} \left(\frac{s - u}{u} \ln \left(-\frac{s}{t} \right) + 1 \right) \right] \right\},$$

$$(2.56)$$

который полностью совпадает с выражением из статьи [52].

Для вклада box- и xbox-диаграмм в виртуальные поправки при $m \to 0$ получаем из выражений (2.39) и (2.44), что

$$\delta_{\text{box}} = -\frac{Z\alpha}{2\pi} Re \Big[t A_{vv}(s,t) - \frac{2t^2(s-u)}{t(t+4M^2) + (s-u)^2} A_{aa}(s,t) + \frac{2t^3}{t(t+4M^2) + (s-u)^2} A_{vt}(s,t) \Big],$$

$$(2.57)$$

$$\delta_{\text{xbox}} = -\frac{Z\alpha}{2\pi} \Big[-t A_{vv}(u,t) - \frac{2t^2(s-u)}{t(t+4M^2) + (s-u)^2} A_{aa}(u,t) - \frac{2t^3}{t(t+4M^2) + (s-u)^2} A_{vt}(u,t) \Big].$$
(2.58)

В высокоэнергетическом пределе $(m,M\to 0)$ для полного вклада в виртуальные поправки от двухфотонных диаграмм $\delta_{2\gamma}=\delta_{\rm box}+\delta_{\rm xbox}$ имеем

$$\delta_{2\gamma} = \frac{Z\alpha}{\pi} \Big[-2\ln\left(-\frac{s}{u}\right)\ln\left(-\frac{t}{\lambda^2}\right) \\ -\frac{t(s-u)}{2(s^2+u^2)} \Big(\ln^2\left(-\frac{s}{t}\right) + \ln^2\left(\frac{u}{t}\right) + \pi^2\Big) \\ -\frac{t^2}{s^2+u^2} \Big(\frac{u}{t}\ln\left(-\frac{s}{t}\right) - \frac{s}{t}\ln\left(\frac{u}{t}\right)\Big) \Big].$$

$$(2.59)$$

В последнем выражении первое слагаемое в квадратных скобках соответствует приближению Максимона–Тьена.

Рассмотрим вклад каждой из диаграмм в виртуальные поправки в пределе высоких энергий и сравним эти результаты с тем, что дают различные приближения. Сопоставляя формулы (2.40) и (2.35), мы видим, что приближение Максимона и Тьена соответствует тому, что в инвариантных амплитудах для box- и xbox-диаграмм удержан только самый первый член в A_{vv} , а все остальные слагаемые в A_{vv} и полностью вклады A_{aa} , A_{vt} отброшены. Для разницы между точным ответом и приближениями Максимона–Тьена и Мо–Тсая получаем следующие формулы:

$$\delta_{\text{box}} - \delta_{\text{box}}^{\text{MTj}} = \frac{Z\alpha}{\pi} \left[-\frac{t(s-u)}{2(s^2+u^2)} \ln^2\left(-\frac{s}{t}\right) - \frac{tu}{s^2+u^2} \ln\left(-\frac{s}{t}\right) + \frac{1}{2}\ln^2\left(\frac{-t}{m^2}\right) + \frac{1}{2}\ln^2\left(\frac{-t}{M^2}\right) + \frac{4\pi^2}{3} \right],$$
(2.60)

$$\delta_{\text{xbox}} - \delta_{\text{xbox}}^{\text{MTj}} = \frac{Z\alpha}{\pi} \left[-\frac{t(s-u)}{2(s^2+u^2)} \left(\ln^2 \left(\frac{u}{t}\right) + \pi^2 \right) + \frac{ts}{s^2+u^2} \ln \left(\frac{u}{t}\right) - \frac{1}{2} \ln^2 \left(\frac{-t}{m^2}\right) - \frac{1}{2} \ln^2 \left(\frac{-t}{M^2}\right) - \frac{4\pi^2}{3} \right],$$

$$\delta_{\text{box}} - \delta_{\text{box}}^{\text{MoT}} = \frac{Z\alpha}{\pi} \left[-\frac{t(s-u)}{2(s^2+u^2)} \ln^2 \left(-\frac{s}{t}\right) - \frac{tu}{s^2+u^2} \ln \left(-\frac{s}{t}\right) - \frac{tu}{s^2+u^2} \ln \left(-\frac{s}{t}\right) \right]$$
(2.61)

$$\sum_{\text{px}} - \delta_{\text{box}} = \frac{\pi}{\pi} \left[-\frac{1}{2(s^2 + u^2)} \prod \left(-\frac{\pi}{t} \right) - \frac{1}{s^2 + u^2} \prod \left(-\frac{\pi}{t} \right) + \ln^2 \left(-\frac{s}{t} \right) + \pi^2 \right],$$

$$(2.62)$$

$$\delta_{\text{xbox}} - \delta_{\text{xbox}}^{\text{MoT}} = \frac{Z\alpha}{2\pi} \left[-\frac{t\left(s-u\right)}{2\left(s^{2}+u^{2}\right)} \left(\ln^{2}\left(\frac{u}{t}\right) + \pi^{2}\right) + \frac{ts}{s^{2}+u^{2}}\ln\left(\frac{u}{t}\right) - \ln^{2}\left(\frac{u}{t}\right) - \pi^{2} \right].$$

$$(2.63)$$

Мы видим, что в разнице вкладов отдельных диаграмм с приближением Максимона и Тьена возникают квадраты больших логарифмом $\ln^2(-t/m^2)$ и $\ln^2(-t/M^2)$. Этот результат следует пояснить. Рассмотрим интеграл D(s,t), через который выражается приближение Максимона–Тьена:

$$D(s,t) = \int \frac{d^4k}{i\pi^2} \frac{1}{d_1 d_2 d_3 d_4}.$$
(2.64)

Заметим, что этот интеграл соответствует box-диаграмме без числителей. Рассмотрим его при $s, |t| \gg m^2, M^2$. Стандартное мягкофотонное приближение позволяет найти вклад в интеграл от кинематических областей, в которых один из фотонов «мягкий», а импульс второго близок к q. В этом приближении box-диаграмма заменяется на сумму двух треугольных s-канальных диаграмм с множителем 1/t. Подчеркнём, что область «мягких» фотонов дает большой вклад не только потому, что он содержит инфракрасно расходящийся логарифм $\ln \lambda^2$. Этот вклад велик и тогда, когда все массы одного порядка, $\sim \mu$, благодаря так называемым судаковским дважды логарифмам $\ln^2(s/\mu^2)$.

Поскольку интеграл (2.64) не содержит числителей фермионных пропагаторов, аналогичным образом мы можем вычислить «мягкофермионный» вклад, т. е. вклад от области малых импульсов фермионов. Этот вклад даётся суммой двух треугольных *t*-канальных диаграмм с множителем 1/s. И он тоже содержит судаковские дважды логарифмы, теперь $\ln^2(-t/m^2)$ и $\ln^2(-t/M^2)$. Но правильный ответ не должен их содержать, потому что область «мягких» фермионов подавлена числителями фермионных пропагаторов, имеющимися в точном матричном элементе. Именно эти «лишние» дважды логарифмы и проявляются в разностях (2.60) и (2.61). Вместе с тем отсутствие вклада от «мягких» фермионов при использовании точного матричного элемента означает, что вклад от области «мягких» фотонов должен давать хорошее приближение к точному ответу в этом случае, если эта область правильно выделена.

Посмотрим, насколько хорошо работает описанная выше процедура выделения кинематических областей «мягких» частиц для D(s,t) (2.64). Пользуясь ею, получаем следующее приближение:

$$Re\left[D^{(0)}(s,t)\right] \approx Re\left[\frac{1}{t}\left(C_{1}^{(0)}(s) + C_{3}^{(0)}(s)\right) + \frac{1}{s}\left(C_{2}^{(0)}(t) + C_{4}^{(0)}(t)\right)\right] = \\ = \frac{2}{ts}\left(\ln\frac{Mm}{\lambda^{2}}\ln\frac{s}{Mm} + \frac{1}{2}\ln\frac{s}{M^{2}}\ln\frac{s}{m^{2}}\right) + \frac{1}{ts}\left(\frac{1}{2}\ln^{2}\frac{(-t)}{M^{2}} + \frac{1}{2}\ln^{2}\frac{(-t)}{m^{2}}\right) \\ = \frac{1}{ts}\left(2\ln\frac{(-t)}{\lambda^{2}}\ln\frac{s}{Mm} + \ln^{2}\frac{s}{(-t)}\right).$$

$$(2.65)$$

Сравнивая с точным ответом для $D^{(0)}(s,t)$, мы видим, что это приближение неплохо работает при $s \sim |t|$, но неприменимо в реджевской области $s \gg |t|$ (и в не достижимой при *ep*-рассеянии области $|t| \gg |s|$). Ясно, почему в этих областях процедура перестаёт работать. В box-диаграмме есть *s*-канальные и *t*-канальные ограничения на область применимости мягкочастичного приближения. Заменяя box-диаграмму на сумму треугольных, мы отбрасываем одно из них. Это можно делать, когда оба инварианта одного порядка, но заведомо неправильно, когда один из них много больше другого, и мы оставляем только наиболее слабое ограничение. Таким образом, мы приходим к заключению, что применимость приближения Мо–Тсая к вычислению δ_{box} и δ_{xbox} нарушается только в реджевской области. Что же касается приближения Максимона и Тьена, то его применимость к вычислению δ_{box} и δ_{xbox} нарушается уже при $|t| \gg m^2$, т. е. оно неприменимо во всей представляющий интерес области. Эти заключения подтверждаются графиками на Рис. 6.

Но физический интерес представляет только сумма $\delta_{2\gamma} = \delta_{\text{box}} + \delta_{\text{xbox}}$. Нетрудно понять, что в этой сумме члены, явно нарушающие применимость приближений, сокращаются, как в приближении Мо и Тсая, так и в приближении Максимона и Тьена (соответствующие графики представлены на Рис. 7). В самом деле, поскольку члены, нарушающие применимость последнего приближения для $\delta_{\text{box}}^{\text{MTj}}$, связаны с вкладом «мягких» фермионов в $D^{(0)}(s,t)$, имеющим в области $s, |t| \gg m^2, M^2$ вид $s^{-1}f(t)$, где f(t) отвечает t-канальным треугольным диаграммам, то, с учётом множителя $2(l \cdot p)t$ из (2.35), в $\delta_{\text{box}}^{\text{MTj}}$ с точностью до численного коэффициента они имеют вид $2(l \cdot p)ts^{-1}f(t) \simeq tf(t)$; а в δ_{xbox} , с учётом множителя $2(l \cdot p')t$ в (2.36), с точностью до того же численного коэффициента они имеют вид $2(l \cdot p')tu^{-1}f(t) \simeq -tf(t)$; так что в сумме они сокращают друг друга.

Что касается приближения Мо и Тсая, то из формул (2.28) и (2.29) видно, что $\delta_{\text{box}}^{\text{MoT}}$ зависит только от $(l \cdot p)$, а $\delta_{\text{xbox}}^{\text{MoT}}$ получаются из неё заменой $p \leftrightarrow p'$ и изменением знака. Поскольку в реджевском пределе $(l \cdot p) = (l \cdot p')$, очевидно, что тогда $\delta_{2\gamma}^{\text{MoT}} = \delta_{\text{box}}^{\text{MoT}} + \delta_{\text{xbox}}^{\text{MoT}}$ обращается в нуль, как и должно быть, так как амплитуда двухфотонного обмена в этом пределе чисто мнима. Ещё раз отметим, что это сокращение происходит после замены в стандартном мягкофотонном приближении $K(l, -p) \to K(l, p)$, которая означает отбрасывание слагаемого вида $\pi^2/2$.

На графиках на Рис. 8 мы представили разницу между точным значением вклада амплитуд двухфотонного обмена в виртуальные поправки к сечению рассеяния электрона на точечном протоне и тем, что дают приближения Максимона–Тьена и Мо–Тсая для различных значениях Q^2 в зависимости от параметра ε .

Рисунок 6 — Разница (в единицах α/π в зависимости от отношения Q^2/s) между точными значениями вкладов диаграмм двухфотонного обмена δ_{box} и δ_{xbox} в виртуальные радиационные поправки к сечению упругого рассеяния электрона на точечном протоне и приближениями Максимона–Тьена (сплошная линия — различие во вкладе box-диаграммы, точечная — во вкладе xbox-диаграммы) и Мо–Тсая (пунктирная линия — для box-диаграммы, штрихпунктирная — для xbox-диаграммы)

Рисунок 7 — Различие между точным значением вклада диаграмм двухфотонного обмена δ_{2γ} в виртуальные радиационные поправки к сечению рассеяния электрона на точечном протоне и приближениями Максимона–Тьена (сплошная линяя) и Мо–Тсая (пунктирная линия)

Рисунок 8 — Разница (в единицах α/π в зависимости от параметра ε) между точным значениям вклада диаграмм двухфотонного обмена в виртуальные радиационные поправки к сечению рассеяния электрона на точечном протоне и приближениями Максимона–Тьена (сплошная линяя) и Мо–Тсая (пунктирная линия) при $Q^2 = 1$ (ГэВ/c)² и $Q^2 = 10$ (ГэВ/c)²

2.2 Реальные радиационные поправки

Реальная радиационная поправка δ_{real} равна отношению дифференциального по углу вылета электрона сечения тормозного излучения, проинтегрированного по импульсам фотона с учётом ограничений, накладываемых в эксперименте для отбора «упругих» событий, к дифференциальному сечению упругого рассеяния в борновском приближении. Диаграммы тормозного излучения электроном \mathcal{M}_{brem}^{e} и протоном \mathcal{M}_{brem}^{p} представлены на Рис. 5.

И в работе Максимона–Тьена, и в работе Мо–Тсая расчёт реальных радиационных поправок основан на мягкофотонном приближени. В этом приближении амплитуды тормозного излучения пропорциональны борновской [51]:

$$\mathcal{M}_{\text{brem}}^e + \mathcal{M}_{\text{brem}}^p = e \, j_\mu(k) e^\mu(k) \, \mathcal{M}_B, \qquad (2.66)$$

где

$$j_{\mu}(k) = \frac{l'_{\mu}}{(k \cdot l')} - \frac{l_{\mu}}{(k \cdot l)} - Z \frac{p'_{\mu}}{(k \cdot p')} + Z \frac{p_{\mu}}{(k \cdot p)}, \qquad (2.67)$$

а $k^{\mu} = \left\{ \boldsymbol{\omega} = \sqrt{\mathbf{k}^2 + \lambda^2}, \, \mathbf{k} \right\}$ и $e^{\mu}(k) - 4$ -векторы импульса и поляризации фотона.

В эксперименте с магнитным спектрометром фиксируется угол рассеяния и ставится ограничение на энергию конечного электрона E'. Критерием отбора «упругих» событий является то, что E' мало отличается от значения $E'_{el} = E/\eta$, определяемого кинематикой упругого процесса:

$$(E'_{\rm el} - E') \leqslant \Delta E \ . \tag{2.68}$$

Мягкофотонное приближение справедливо при достаточно малом значении ΔE , когда можно пренебречь влиянием излучения на входящие в (2.66) и (2.67) импульсы заряженных частиц и учитывать его только в ограничении на доступную кинематическую область импульсов фотона.

$$\frac{\mathrm{d}\sigma_{\mathrm{brem}}}{\mathrm{d}\Omega} = \frac{\mathrm{d}\sigma_B}{\mathrm{d}\Omega} \times \frac{\alpha}{4\pi^2} \int \frac{\mathrm{d}^3 \mathbf{k}}{\omega} (-j^2(k)) \ \theta \left(E' - E/\eta + \Delta E\right), \tag{2.69}$$

где в j(k) можно считать, что импульсы заряженных частиц принимают те значения, которые они имели бы в упругом процессе, а в θ -функции энергию конечного электрона E' выразить с помощью законов сохранения через энергию начального электрона E, угол рассеяния электрона θ и импульс фотона. Мера интегрирования инвариантна и его можно провести в любой системе отсчёта. Как было замечено Тсаем [47] и использовалось в вычислениях Максимона и Тьена [37], удобно перейти из лабораторной системы в специальную систему $\mathbf{l} + \mathbf{p} - \mathbf{l}'_{el} = 0$, где индекс «el» означает значение в упругом процессе. Можно получить связь между энергией электрона в лабораторной системе отсчёта

$$W^{2} = (l + p - l')^{2} = M^{2} + 2M(E - \eta E'), \qquad (2.70)$$

и частотой фотона ω' в специальной системе, используя предположение о слабом влиянии излучения на кинематику,

$$W^2 = (p'+k)^2 \approx M^2 + 2M\omega', \quad \omega' \ll M$$
. (2.71)

Преимущество специальной системы отсчёта в том, что интегрирование в формуле (2.69) производится по всем направлениям вылета фотона, при этом верхняя граница по частоте фотона ω'_{max} не зависит от этого направления. Из соотношений (2.70), (2.71) и (2.68) получаем

$$\omega_{\max}' = E - \eta E_{\min}' = \eta \Delta E \tag{2.72}$$

Окончательное выражение для реальных радиационных поправок в экспериментах с магнитным спектрометром выражается в виде интеграла по частоте фотона и углу его вылета в специальной системе:

$$\delta_{\text{real}} = \frac{\alpha}{\pi} \int_{\lambda}^{\eta \, \Delta E} |\mathbf{k}'| \, d\omega' \int \frac{d\Omega'_{\gamma}}{4\pi} \, \left(-j^2(k)\right) \, . \tag{2.73}$$

Это выражение совпадает с приведённым в статье Максимона и Тьена [37], т. е.

$$\delta_{\text{real}}^{\text{MTj}} = \delta_{\text{real}} \ . \tag{2.74}$$

Тсай в работе [47] использовал в качестве переменной интегрирования величину W^2 , связанную с ω' соотношением (2.71). Переходя в промежуточных формулах этой работы от интегрирования по W^2 к интегрированию по ω' можно показать, что учтённый им вклад в реальные радиационные поправки имеет вид

$$\delta_{\text{real}}^{\text{MoT}} = \frac{\alpha}{\pi} \int_{\lambda}^{\eta \,\Delta E} \omega' d\omega' \int \frac{d\Omega'_{\gamma}}{4\pi} \left(-j^2(k) \right). \tag{2.75}$$

Таким образом, сравнивая (2.73) и (2.75) мы видим, что обе группы авторов исходили из одних и тех же предположений, но по ходу вычислений Мо и Тсаем было сделано преобразование эквивалентное замене $|\mathbf{k}'| \rightarrow \omega'$. В Приложении выписаны некоторые детали вычисления интегралов (2.73) и (2.75) Здесь же мы только приводим сравнение результатов.

Замена $|{\bf k}'| \to \omega'$ не влияет на инфракрасно расходящиеся члены, так что разница $\delta_{real} - \delta_{real}^{MoT}$ конечна. Ее можно записать в следующей форме:

$$\begin{split} \delta_{\text{real}} &- \delta_{\text{real}}^{\text{MoT}} = \frac{\alpha}{\pi} \bigg\{ \bigg[\text{Li}_2 \left(\cos^2 \left(\frac{\theta}{2} \right) \right) - \frac{\pi^2}{6} \bigg] \\ &- 2Z \left[\ln \eta \, \ln \xi - \text{Li}_2 \left(1 - \frac{\eta}{\xi} \right) + \text{Li}_2 \left(1 - \frac{1}{\eta \, \xi} \right) \right. \\ &+ \frac{1}{2} \, \text{Li}_2 \left(1 - \eta \, \frac{2E'_p}{M} \right) - \frac{1}{2} \, \text{Li}_2 \left(1 - \frac{2E'_p}{\eta \, M} \right) \bigg] \\ &+ Z^2 \left[\frac{E'_p}{|\mathbf{p}'|} \left(\ln \xi - \text{Li}_2 \left(1 - \frac{1}{\xi^2} \right) + \text{Li}_2 \left(-\frac{1}{\xi^2} \right) + \frac{\pi^2}{12} \right) \\ &- \ln \left(\frac{4E'_p}{M} \right) + 1 \bigg] \bigg\}, \end{split}$$

$$(2.76)$$

где $\xi = (E'_p + |\mathbf{p}'|)/M$, а энергия протона $E'_p = M + Q^2/(2M)$, т. е. E'_p и ξ зависят только от передачи импульса Q^2 .

Таким образом, в работе Мо и Тсая оказались пропущены члены, стоящие в правой части (2.76). Слагаемые, не содержащие Z, были добавлены впоследствии Тсаем (правда, с опечаткой в общем знаке) в препринте [53], и включались (с правильным знаком) при анализе некоторых экспериментов (например, при обработке эксперимента в SLAC [11]). Эта добавка (называемая поправкой Швингера δ_{Sch} в работе [53]) необходима для правильного перехода в пределе $M \to \infty$, $\eta \to 1$, $\xi \to 1$ к рассеянию на кулоновском центре, рассмотренному ранее Швингером [54]. Тсай в работе [53] справедливо замечает, что эти слагаемые возникли из инфракрасноконечной части сечения излучения «мягких» фотонов. Однако автор не приводит соответствующих расчётов, а отличия в интерференционных членах и в слагаемых, связанных с излучением с протонной линии, в препринте [53] не обсуждаются. В работе Максимона и Тьена [37] поправка Швингера возникает в ответе автоматически, и правильная асимптотика считается одним из достоинств их конечного результата. Авторы справедливо связывают факт расхождения своих результатов с результатами Мо и Тсая с некими математическими допущениями Тсая, но не конкретизируют их. Мы надеемся, что наше рассмотрение заполнило этот пробел.

На следующих графиках (Рис. 9) мы приводим разницу между результатами Максимона–Тьена и Мо–Тсая для реальных радиационных поправок, а также вклады в неё от излучения с электронной линии (не содержащие Z), от излучения с протонной линии ($\propto Z^2$) и от интерференции ($\propto Z$). Важной особенностью является то, что вклад излучения с протонной линии зависит только от передачи Q^2 , в то время как, излучение с электронной линии и интерференция зависят и от Q^2 и ε , поэтому ошибка в этих членах могла бы оказать влияние на отношение формфакторов, извлекаемое методом розенблютовского разделения (тем не менее численное значение мало для того, чтобы существенно изменить результаты по розенблютовскому разделению формфакторов).

2.3 Результаты

В этой главе мы подробно рассмотрели основанные на мягкофотонном приближении расчёты радиационных поправок к сечению упругого неполяризованного электрон-протонного рассеяния. Поправка к электронной вершине и

Рисунок 9 — Разница (в единицах α/π) между результатами Максимона–Тьена и Мо–Тсая для реальных радиационных поправок в упругом *ер*-рассеянии при $Q^2 = 1 \ (\Gamma \ni \mathbf{B}/c)^2$ и $Q^2 = 10 \ (\Gamma \ni \mathbf{B}/c)^2$ в зависимости от параметра ε . Пунктирная линия на графике — вклад членов, не содержащих Z (излучение фотона электроном); штрихпунктирная — пропорциональных Z (интерференция), точечная — пропорциональных Z^2 (излучение фотона протоном), сплошная — общая разница между результатами двух групп авторов

поправка, связанная с поляризацией вакуума, вычисляются точно либо хорошо изучены. Для поправки к протонной вершине мы привели доводы, в пользу того, чтобы придерживаться стандартного мягкофотонного приближения и прескрипции Мо и Тсая. Для вклада амплитуд двухфотонного обмена мы сравнили варианты мягкофотонного приближения Мо-Тсая и Максимона-Тьена с тем, что получается для рассеяния на точечном протоне. Оказалось, что оба варианта, имея явные недостатки в промежуточных результатах, дают адекватное приближение конечного результата, и нельзя отдать предпочтение какому-то одному из них. Реальные радиационные поправки существенно зависят от экспериментальных условий. Для постановки эксперимента с магнитным спектрометром, мы провели аккуратное сравнение результатов двух групп авторов и указали конкретное место, в котором была сделана неправильная замена, приводящая к расхождению при одинаковых начальных предположениях.

Глава 3. Вклад $\Delta(1232)$ в радиационные поправки, связанные с излучением реального фотона

В предыдущей главе мы рассмотрели вычисление радиационных поправок, которые использовались в экспериментах по розенблютовскому разделению формфакторов протона. Эти вычисления были основаны на мягкофотонном приближении. В работе [55] было высказано предположение, что более аккуратный учёт амплитуды двухфотонного обмена (учёт вклада «жёстких» фотонов) сможет уменьшить расхождение между поляризационными экспериментами и розенблютовским разделением. Исследование эффектов двухфотонного обмена с теоретической точки зрения выполнялись с использованием различных моделей (см. обзоры [49; 56; 57] и приведённые там ссылки). Например, в рамках адронной модели амплитуда двухфотонного обмена может быть аппроксимирована последовательным рассмотрением виртуального протона, $\Delta(1232)$ и более высоких резонансов в промежуточном состоянии. Соответствующие вычисления были выполнены несколькими группами авторов с помощью параметризации упругих и переходных формфакторов и вычисления петлевых интегралов [58-62], или с помощью дисперсионных соотношений для протона и $\Delta(1232)$ в промежуточном состоянии [63; 64], а также рассмотрением резонансов в πN промежуточном состоянии [65; 66]. Все работы сходятся в том, что учёт вклада промежуточного протона и резонансов в «жёсткую» часть амплитуды двухфотонного обмена существенен и приближает результаты по розенблютовскому разделению формфакторов протона к результатам поляризационных экспериментов.

С экспериментальной точки зрения эффекты двухфотонного обмена могут изучаться в сравнении упругих сечений рассеяния электронов и позитронов на протонах. За последнее время было проведено три эксперимента [21; 22; 67] нацеленных на то, чтобы измерить с высокой точностью отношение этих сечений. Далее в этой главе мы обсудим процедуру учёта радиационных поправок в экспериментах такого типа, в частности нас будет интересовать возможный вклад $\Delta(1232)$ в радиационные поправки, связанные с излучением реального фотона.

3.1 Вклад амплитуд двухфотонного обмена и отношение сечений $e^{\pm}p$ -рассеяния

В первом порядке по электромагнитной константе связи отношение сечений $R = \sigma(e^+p)/\sigma(e^-p)$ может быть записано в виде

$$R = 1 - 2\delta_{2\gamma} - 2\delta_{\text{brem,odd}} , \qquad (3.1)$$

где виртуальные радиационные поправки $\delta_{2\gamma}$ возникают от интерференции амплитуды двухфотонного обмена с борновской амплитудой; а *C*-нечётные реальные радиационные поправки $\delta_{\text{brem, odd}}$ возникают от интерференции амплитуд тормозного излучения электроном и протоном. Обе поправки содержат инфракрасные расходимости, которые сокращаются в их сумме, поэтому мы условно разделим полные вклады на инфракраснорасходящиеся вклады «мягких» фотонов и инфракрасноконечные вклады «жёстких» фотонов

$$\delta_{2\gamma} = \delta_{2\gamma}^{\text{soft}} + \delta_{2\gamma}^{\text{hard}}, \qquad \delta_{\text{brem, odd}} = \delta_{\text{brem, odd}}^{\text{soft}} + \delta_{\text{brem, odd}}^{\text{hard}}.$$
(3.2)

Чтобы извлечь «жёсткую» часть $\delta_{2\gamma}^{hard}$ вклада амплитуды двухфотонного обмена из R, мы должны учесть мягкофотонные вклады и «жёсткую» часть реальных радиационных поправок $\delta_{brem,odd}$. Так как виртуальные поправки не зависят от постановки эксперимента для мягкофотонной части вклада амплитуд двухфотонного обмена $\delta_{2\gamma}^{\text{soft}}$ традиционно используется соглашение Мо-Тсая [36], которое мы подробно рассмотрели ранее:

$$\delta_{2\gamma}^{\text{soft}} = \delta_{\text{box}}^{\text{MoT}} + \delta_{\text{xbox}}^{\text{MoT}} = -\frac{2Z\alpha}{\pi} \left(K(l,p) - K(l,p') \right) , \qquad (3.3)$$

где обозначения для процесса электрон-протонного рассеяния соответствуют принятым в предыдущих главах. Реальные радиационые поправки существенно зависят от конкретной постановки эксперимента. В данной главе мы в основном обращаемся к эксперименту ИЯФ на накопителе ВЭПП-3 [21]. Особенностью этого эксперимента является то, что одновременно регистрируются и рассеянный электрон, и протон отдачи. Условное разбиение $\delta_{\text{brem, odd}}$ на «мягкий» и «жёсткий» вклады можно выполнить установкой границы по частоте фотона ω_0 в лабораторной системе отсчёта. Вклад «мягких» фотонов, конечно, будет отличаться от того, что был вычислен в предыдущей главе, так как там ограничение ставилось на частоту фотона не в лабораторной, а в специальной системе отсчёта. Тем не менее, использованный Максимоном и Тьеном [37] универсальный подход к вычислению реальной радиационной поправки, который опирается на формулы т'Хофта и Вельтмана [68], применим и в данной случае. Эти выводы были использованы при написании Монте-Карло генератора событий ESEPP [69], применённого в обработке эксперимента на накопителе ВЭПП-3.

Генератор ESEPP [69] учитывает, только виртуальный протон в промежуточном состоянии для тормозного излучения протоном. Используя адронную модель мы должны аналогично учесть вклады резонансов в промежуточном состоянии. Их вклад не содержит инфракрасных расходимостей, так как спектр тормозных фотонов в этом случае отличается от инфракрасного $d\omega/\omega$ из-за того, что резонансы имеют массы отличные от массы протона, и это препятствует появлению частоты фотона ω в знаменателе. Мы можем ожидать, что $\Delta(1232)$ даст основной вклад, так как это ближайший резонанс и он имеет существенный бранчинг распада $\Delta \rightarrow p\gamma$. В следующем разделе мы выпишем определения переходных $\gamma p \rightarrow \Delta$ вершин и формфакторов, необходимых для дальнейших вычислений. Затем мы дадим грубую оценку, которая не учитывает всех экспериментальных ограничений и приводит к существенному значению этого вклада. Только более аккуратное вычисление, учитывающее условия эксперимента на накопителе ВЭПП-3, убеждает нас в том, что эта поправка на самом деле мала.

3.2 Переходные вершины и формфакторы

Рассмотрим процесс $\gamma(q), p(p) \to \Delta(p_{\Delta})$. Мы будем использовать следующее определение для переходного матричного элемента:

$$i\mathcal{M}_{\gamma p \to \Delta} = iZe J_{p \to \Delta}^{\mathbf{v}}(p, p_{\Delta}) e_{\mathbf{v}}(q), \qquad (3.4)$$

где переходный ток имеет вид

$$J_{p\to\Delta}^{\nu}(p,p_{\Delta}) = \bar{u}_{\beta}(p_{\Delta}) \,\Gamma_{\gamma p\to\Delta}^{\nu\beta}(p_{\Delta},q) \,u(p) \;, \tag{3.5}$$

здесь определения Z и e соответствует введённым ранее, $e_{\nu}(q)$ — это вектор поляризации фотона, u(p) — биспинор начального протона, а $u_{\beta}(p_{\Delta})$ описывает состояние Δ (спин 3/2).

Электромагнитный ток должен быть эрмитовым. Из (3.5) можно вывести соотношение между переходными вершинами в прямом $\gamma p \to \Delta$ и обратном $\Delta \to \gamma p$ процессах, как это было подчёркнуто в [62]:

$$\Gamma^{\nu\beta}_{\Delta\to\gamma p}(p_{\Delta},q) = \gamma^0 \left(\Gamma^{\nu\beta}_{\gamma p\to\Delta}(p_{\Delta},q)\right)^{\dagger} \gamma^0 , \qquad (3.6)$$

где в обеих частях равенства p_{Δ} — импульс Δ , q — импульс фотона, и $p = p_{\Delta} - q$ — импульс протона.

В работе Zhou и Yang [62] использована следующая параметризация вершины взаимодействия

$$\Gamma_{\gamma p \to \Delta}^{(ZY), \nu\beta}(p_{\Delta}, q) = -\sqrt{\frac{2}{3}} \frac{1}{2M_{\Delta}^{2}} \gamma^{5} \left\{ G_{1}(q^{2}) \left[g^{\nu\beta} \hat{q} \hat{p}_{\Delta} - p_{\Delta}^{\nu} \hat{q} \gamma^{\beta} - (p_{\Delta} \cdot q) \gamma^{\beta} \gamma^{\nu} + q^{\beta} \hat{p}_{\Delta} \gamma^{\nu} \right]
+ G_{2}(q^{2}) \left[p_{\Delta}^{\nu} q^{\beta} - g^{\nu\beta} (p_{\Delta} \cdot q) \right]
- \frac{G_{3}(q^{2})}{M_{\Delta}} \left[q^{2} \left(p_{\Delta}^{\nu} \gamma^{\beta} - g^{\nu\beta} \hat{p}_{\Delta} \right) + q^{\nu} \left(q^{\beta} \hat{p}_{\Delta} - \gamma^{\beta} (p_{\Delta} \cdot q) \right) \right] \right\},$$
(3.7)

где $\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3$, M_{Δ} — масса $\Delta(1232)$. Формфакторы G_i зависят только от q^2 , и поэтому являются действительными функциями в области $q^2 < 0$. В дальнейшем для получения численных результатов мы применяем модель из работы [62], которая параметризует формфакторы

$$G_i(q^2) = g_i F_{\Delta}^{(i)}(q^2), \qquad i = 1, 2, 3,$$
(3.8)

с помощью трёх параметров $\{g_1, g_2, g_3\} = \{6.59, 9.08, 7.12\}$ (значений формфакторов при $q^2 = 0$) и множителей, зависящих от q^2 ,

$$F_{\Delta}^{(1)}(q^2) = F_{\Delta}^{(2)}(q^2) = \left(\frac{-\Lambda_1^2}{q^2 - \Lambda_1^2}\right)^2 \frac{-\Lambda_3^2}{q^2 - \Lambda_3^2},\tag{3.9}$$

$$F_{\Delta}^{(3)}(q^2) = \left(\frac{-\Lambda_1^2}{q^2 - \Lambda_1^2}\right)^2 \frac{-\Lambda_3^2}{q^2 - \Lambda_3^2} \left[a \frac{-\Lambda_2^2}{q^2 - \Lambda_2^2} + (1 - a) \frac{-\Lambda_4^2}{q^2 - \Lambda_4^2}\right],\tag{3.10}$$

где $\Lambda_1 = 0.84$ GeV, $\Lambda_2 = 2$ GeV, $\Lambda_3 = \sqrt{2}$ GeV, $\Lambda_4 = 0.2$ GeV, a = -0.3.

Известна также другая параметризация из работы Jones и Scadron [70] переходной вершины с помощью магнитного $G_M^*(q^2)$, электрического $G_E^*(q^2)$

и кулоновского $G^*_C(q^2)$ переходных формфакторов:

$$\Gamma_{\gamma p \to \Delta}^{(JS), \nu\beta}(p_{\Delta}, q) = -i\sqrt{\frac{2}{3}} \frac{3(M_{\Delta} + M)}{2M \left[(M_{\Delta} + M)^2 - q^2\right]} \Biggl\{ G_M^*(q^2) \ \varepsilon^{\nu\beta\rho\sigma}(p_{\Delta})_{\rho}q_{\sigma} + G_E^*(q^2) \left[\frac{4 \ \varepsilon^{\nu\tau\rho\sigma}(p_{\Delta})_{\rho}q_{\sigma} \ g_{\tau\tau'} \ \varepsilon^{\beta\tau'\lambda\kappa}(p_{\Delta})_{\lambda}q_{\kappa}}{(M_{\Delta} - M)^2 - q^2} (i\gamma^5) - \varepsilon^{\nu\beta\rho\sigma}(p_{\Delta})_{\rho}q_{\sigma} \right] + G_C^*(q^2) \frac{2 \left(q^2 \ p_{\Delta}^{\nu} - (q \ \cdot p_{\Delta}) \ q^{\nu}\right) \ q^{\beta}}{(M_{\Delta} - M)^2 - q^2} (i\gamma^5) \Biggr\},$$

$$(3.11)$$

где $\varepsilon^{0123} = +1$, а M — это масса протона.

Если рассмотреть матричный элемент $\mathcal{M}_{\gamma p \to \Delta}$ для определённых значений спиральностей частиц, то мы придём к соотношениям между двумя наборами формфакторов:

$$G_{M}^{*}(q^{2}) = \frac{M}{3(M_{\Delta} + M)} \left[\frac{(M_{\Delta} + M)^{2} - q^{2}}{M_{\Delta}^{2}} G_{1}(q^{2}) - \frac{M_{\Delta}^{2} - M^{2} + q^{2}}{2M_{\Delta}^{2}} (G_{1}(q^{2}) - G_{2}(q^{2})) - \frac{-q^{2}}{M_{\Delta}^{2}} G_{3}(q^{2}) \right],$$

$$G_{E}^{*}(q^{2}) = \frac{M}{3(M_{\Delta} + M)} \left[-\frac{M_{\Delta}^{2} - M^{2} + q^{2}}{2M_{\Delta}^{2}} (G_{1}(q^{2}) - G_{2}(q^{2})) - \frac{-q^{2}}{M_{\Delta}^{2}} G_{3}(q^{2}) \right],$$

$$G_{C}^{*}(q^{2}) = \frac{2M}{3(M_{\Delta} + M)} \left[-(G_{1}(q^{2}) - G_{2}(q^{2})) + \frac{(M_{\Delta}^{2} - M^{2} + q^{2})}{2M_{\Delta}^{2}} G_{3}(q^{2}) \right].$$
(3.12)

Эти формулы при $q^2 = 0$ можно найти в [62]. Чтобы проверить их при $q^2 \neq 0$ можно скомбинировать выражения из [62] и обзора [71].

3.3 Оценка вклада $\Delta(1232)$ в радиационные поправки

Используя адронную модель мы должны рассмотреть две диаграммы Фейнмана, представленные на Рис. 10. Чтобы найти соответствующий вклад в радиационные поправки необходимо вычислить квадрат модуля их суммы и интерференцию этих амплитуд с амплитудами тормозного излучения электроном и протоном. Затем нужно проинтегрировать результат по фазовому

Рисунок 10 — Диаграммы Фейнмана для тормозного излучения с протонной линии с $\Delta(1232)$ в промежуточном состоянии

объёму, доступному конечным частицам, принимая во внимание конкретные экспериментальные условия. Разделив полученное значение на сечение упругого процесса, мы получим вклад δ_{Δ} в радиационные поправки, связанные с излучением реального фотона.

Можно заметить, что первая амплитуда на Рис. 10 имеет «резонансное» поведение: передача энергии виртуальным фотоном приводит к тому, что промежуточное состояние Δ становится ближе к положению полюса для реальной частицы, поэтому квадрат этой амплитуды может дать осмысленную оценку общего вклада в радиационные поправки. Следует заметить, что обе амплитуды калибровочно инвариантны, и поэтому их можно рассматривать независимо. Оценка для δ_{Δ} тогда может быть получена, если мы рассмотрим процесс тормозного излучения, как два последовательных процесса $ep \rightarrow e\Delta$ и затем $\Delta \rightarrow p\gamma$, предположив, что все фотоны от распада дадут вклад в радиационные поправки связанные с излучением реального фотона:

$$\delta_{\Delta} \simeq \frac{d\sigma_{\Delta}/d\Omega}{d\sigma_{B}/d\Omega} \frac{\Gamma_{\Delta \to p\gamma}}{\Gamma_{\Delta}}, \qquad (3.13)$$

где $d\sigma_B/d\Omega$ — это дифференциального по углу рассеяния электрона сечение упругого процесса $ep \to ep$; $d\sigma_{\Delta}/d\Omega$ — это дифференциальное по углу рассеяния электрона сечение процесса $ep \to e\Delta$; $\Gamma_{\Delta \to p\gamma}$ и Γ_{Δ} — это парциальная и полная ширины $\Delta(1232)$, их отношение определяет вероятность того, что распад Δ окажется электромагнитным. Очевидно, что оценка (3.13) является грубой, потому что она не учитывает никаких экспериментальных ограничений на импульс фотона. В следующем разделе мы покажем для экспериментов с магнитным спектрометром, что даже резонансный вклад от $|\mathcal{M}_{\Delta}^{(1)}|^2$ сильно подавлен, поэтому и остальные вклады в радиационные поправки не могут дать существенного вклада в радиационные поправки. Однако для эксперимента на накопителе ВЭПП-3 ограничения на энергию фотона относительно слабые, и только C-нечётные вклады в радиационные поправки важны, поэтому интерференция с тормозным излучением с электронной линии потребует дальнейшего рассмотрения.

Чтобы воспользоваться формулой (3.13), нам необходимо дифференциальное сечение процесса $e(l) p(p) \rightarrow e(\tilde{l}')\Delta(\tilde{p}')$. В данном разделе выражения с символом «~» относятся к процессу $ep \rightarrow e\Delta$. Начальное состояния совпадают с тем, которое было в упругом процессе : 4-импульсы электрона и протона равны $l = \{E, \mathbf{l}\}$ и $p = \{M, 0\}$ соответственно. Конечное состояние в процессе с рождением Δ : $\tilde{l}' = \{\tilde{E}', \tilde{\mathbf{l}}'\}$ и $\tilde{p}' = \{\tilde{E}'_p, \tilde{\mathbf{p}}'\}$. Передача импульса $\tilde{q} = l - \tilde{l}'$.

Матричный элемент для процесса рождения Δ имеет следующий вид

$$\mathbf{i}\mathcal{M}_{\Delta} = -\frac{\mathbf{i}Ze^2}{\tilde{q}^2} \, j_{\nu}(l,\tilde{l}') \, J^{\nu}_{p\to\Delta}(p,\tilde{p}'),\tag{3.14}$$

где электронный ток

$$j^{\nu}(l,l') = \bar{u}(l') \,\gamma^{\nu} \, u(l), \qquad (3.15)$$

а переходный ток $J_{p\to\Delta}$ определён в (3.5).

Дифференциальное сечение для неполяризованных частиц в случае ультрарелятивистских электронов:

$$\frac{\mathrm{d}\sigma_{\Delta}}{\mathrm{d}\Omega} = \frac{1}{(4\pi)^2} \frac{1}{4M^2 \eta} \frac{\tilde{E}'}{E} \bar{\sum} |\mathcal{M}_{\Delta}|^2, \qquad (3.16)$$

где

$$\eta = 1 + \frac{2E}{M}\sin^2\frac{\theta}{2}, \qquad \frac{\tilde{E}'}{E} = \frac{1}{\eta}\left(1 - \frac{M_{\Delta}^2 - M^2}{2ME}\right).$$
 (3.17)

Квадрат матричного элемента можно представить в виде произведения токовых тензоров:

$$\sum_{\nu} |\mathcal{M}_{\Delta}|^2 = \frac{Z^2 e^4}{(\tilde{q}^2)^2} L_{\nu\rho}(l, \tilde{l}') T_{p \to \Delta}^{\nu\rho}(p, \tilde{p}').$$
(3.18)

Токовые тензоры либо хорошо известны в литературе, либо легко могут быть вычислены. Мы приводим соответствующие формулы в приложении.

Используя (3.18) для процесса $ep \rightarrow e\Delta$ можно получить выражение

$$\frac{\mathrm{d}\sigma'}{\mathrm{d}\Omega} = \frac{Z^2 \alpha^2 \cos^2 \frac{\theta}{2}}{4E^2 \eta \sin^4 \frac{\theta}{2}} \frac{(M+M_\Delta)^2}{4M^2} \times \frac{\tilde{\tau} \left(G_{\mathrm{M}}^{*2}(\tilde{q}^2) + 3G_{\mathrm{E}}^{*2}(\tilde{q}^2) + \tilde{\varepsilon} \frac{-\tilde{q}^2}{M_\Delta^2} G_{\mathrm{C}}^{*2}(\tilde{q}^2) \right)}{\tilde{\varepsilon}(1+\tilde{\tau})}, \quad (3.19)$$

где

$$\tilde{\tau} = \frac{-\tilde{q}^2}{(M_\Delta + M)^2}, \qquad \tilde{\varepsilon} = \left(1 + 2\left(1 + \frac{\nu^2}{-\tilde{q}^2}\right) \operatorname{tg}^2 \frac{\theta}{2}\right)^{-1}, \qquad (3.20)$$

в котором $\nu = E - \tilde{E}' = (M_{\Delta}^2 - M^2 - \tilde{q}^2)/(2M).$

Переходя к отношению сечений

$$\frac{\mathrm{d}\sigma_{\Delta}/\mathrm{d}\Omega}{\mathrm{d}\sigma_{B}/\mathrm{d}\Omega} = \frac{\varepsilon(1+\tau)}{\tilde{\varepsilon}(1+\tilde{\tau})} \frac{(M+M_{\Delta})^{2}}{4M^{2}} \frac{\tilde{\tau}\left(G_{\mathrm{M}}^{*2}(\tilde{q}^{2})+3G_{\mathrm{E}}^{*2}(\tilde{q}^{2})+\tilde{\varepsilon}\frac{-\tilde{q}^{2}}{M_{\Delta}^{2}}G_{\mathrm{C}}^{*2}(\tilde{q}^{2})\right)}{\tau G_{\mathrm{M}}^{2}(q^{2})+\varepsilon G_{\mathrm{E}}^{2}(q^{2})}, \quad (3.21)$$

в условиях эксперимента на накопителе ВЭПП-3 [21] мы обнаружим, что оно порядка 1. И поэтому для оценки (3.13) вклада Δ в радиационные поправки мы могли бы написать следующее

$$\delta_{\Delta} \simeq \frac{\mathrm{d}\sigma'/\mathrm{d}\Omega}{\mathrm{d}\sigma/\mathrm{d}\Omega} \frac{\Gamma_{\Delta \to p\gamma}}{\Gamma_{\Delta}} \simeq 0.5\%.$$
 (3.22)

Здесь мы использовали парциальную ширину $Br(\Delta \rightarrow N\gamma) = 0.55 - 0.65\%$ из обзора PDG [72] и значения переходных формфакторов $G^*_{M,E,C}$, вычисленные для параметризации (3.12). Это очень грубая оценка, и её численное значение кажется существенным для анализа результатов эксперимента на накопителе ВЭПП-3, где вклад «жёсткой» части двухфотонного обмена был получен на уровне 1%. Поэтому в дальнейшем мы представляем более аккуратное вычисление.

3.4 Тормозное излучение протоном с учётом $\Delta(1232)$ в промежуточном состоянии

В этом и последующих разделах этой главы мы рассматриваем процесс тормозного излучения $e(l) p(p) \rightarrow e(l') p(p') \gamma(k)$, который даёт вклад в реальные радиационные поправки. Причём нас будут интересовать только добавки от возбуждения $\Delta(1232)$ в промежуточном состоянии. Есть две диаграммы Фейнмана для тормозного излучения протоном (см. Рис. 10), им соответствуют амплитуда

$$i\mathcal{M}_{\Delta} = i\mathcal{M}_{\Delta}^{(1)} + i\mathcal{M}_{\Delta}^{(2)}, \qquad (3.23)$$

где

$$i\mathcal{M}_{\Delta}^{(1)} = \frac{iZ^2 e^3}{q_e^2} j_{\nu}(l,l') e_{\mu}^*(k) \ \frac{\bar{u}(p') \,\Delta^{\mu\nu}(t;k,q_e) \,u(p)}{t^2 - M_{\Delta}^2 + i\Gamma_{\Delta}M_{\Delta}}, \tag{3.24}$$

где

$$\Delta^{\mu\nu}(t;k,q_e) = \Gamma^{\mu\alpha}_{\Delta\to\gamma p}(t,k) \left(\hat{t} + M_\Delta\right) \mathcal{P}_{\alpha\beta}(t) \Gamma^{\nu\beta}_{\gamma p \to \Delta}(t,q_e), \qquad (3.25)$$

И

$$i\mathcal{M}_{\Delta}^{(2)} = \frac{iZ^2 e^3}{q_e^2} j_{\nu}(l,l') e_{\mu}^*(k) \ \frac{\bar{u}(p') \,\Delta^{\nu\mu}(t';-q_e,-k) \,u(p)}{t'^2 - M_{\Delta}^2}$$
(3.26)

где мы используем обозначение t = l + p - l' и t' = p - k для передачи импульса электроном $q_e = l - l'$. В пропагаторе Δ возникает тензор [62]

$$\mathcal{P}^{\alpha\beta}(t) = -g^{\alpha\beta} + \frac{\gamma^{\alpha}\gamma^{\beta}}{3} + \frac{\hat{t}\gamma^{\alpha}t^{\beta} + t^{\alpha}\gamma^{\beta}\hat{t}}{3t^{2}}.$$
(3.27)

Мы удерживаем ширину Γ_{Δ} для первого вклада $\mathcal{M}_{\Delta}^{(1)}$ потому, что существует резонансная область, в которой t^2 близко к M_{Δ}^2 , и она может дать основной вклад Δ в радиационные поправки связанные с излучением реального фотона. Во втором слагаемом $\mathcal{M}_{\Delta}^{(2)}$ излучение реального фотона сдвигает амплитуду из резонансной области, поэтому ширину можно не учитывать, и это не окажет существенного влияния на результат.

Мы будем использовать дополнительное упрощение, оставляя в ответе только члены, которые содержат минимальные степени энергии фотона в ω и разницы $M_{\Delta} - M$, предполагая

$$\omega \ll M, \quad M_{\Delta} - M \ll M. \tag{3.28}$$

Первый предел — это часть стандартного мягкофотонного приближения. Это приближение более справедливо для экспериментов с магнитным спектрометром, где энергетические ограничения на ненаблюдаемые фотон и протон относительно строгие. В эксперименте на накопителе ВЭПП-3 энергетические ограничения более консервативные, поэтому вклад «жёстких» фотонов существенен. Второй предел позволяет нам существенно упростить результат вычисления следов в $|\mathcal{M}_{\Delta}|^2$ и в интерференции амплитуды \mathcal{M}_{Δ} с амплитудой тормозного излучение электроном. Мы не модифицируем знаменатели пропагаторов Δ , так как они определяют резонансное поведение амплитуды \mathcal{M}_{Δ} . Второе условие означает по отношению к числителям выражений, что выполняется разложение по степеням малого параметра $(M_{\Delta} - M)/M$ и удержание только лидирующих слагаемых.

3.4.1 Вклад $\Delta(1232)$ в экспериментах с магнитным спектрометром

Квадрат матричного элемента $|\mathcal{M}_{\Delta}|^2$ приводит к *C*-чётному вкладу, поэтому он не оказывает влияние на отношение *R* сечений упругого $e^{\pm}p$ -рассеяния в лидирующем порядке по электромагнитной константе связи. Однако он, в принципе, мог бы повлиять на результаты экспериментов, в которых измеряется сечение неполяризованного *ер*-рассеяния.

Как мы предположили выше основной вклад $|\mathcal{M}_{\Delta}|^2$ в дифференциальное сечение тормозного излучения возникает от

$$\bar{\sum} \left| \mathcal{M}_{\Delta}^{(1)} \right|^2 = \frac{Z^4 e^6}{(q_e^2)^2} \, \frac{L_{\nu\nu'}(l,l') \, H^{\nu\nu'}(t;k,q_e)}{(t^2 - M_{\Delta}^2)^2 + \Gamma_{\Delta}^2 M_{\Delta}^2},\tag{3.29}$$

где

$$H^{\boldsymbol{\nu}\boldsymbol{\nu}'}(t;k,q_e) = \frac{(-g_{\boldsymbol{\mu}\boldsymbol{\mu}'})}{2} \operatorname{Tr}\left[(\hat{p}'+M)\Delta^{\boldsymbol{\mu}\boldsymbol{\nu}}(t;k,q_e)(\hat{p}+M)\gamma^0 \left[\Delta^{\boldsymbol{\mu}'\boldsymbol{\nu}'}(t;k,q_e) \right]^{\dagger} \gamma^0 \right] \quad (3.30)$$

Вычисление следов и их свёртка достаточно прямолинейное, но затратное занятие, даже с учётом приближения (3.28). Некоторые детали мы привели в приложении.

Для вклада в дифференциальное по углу вылета электрона сечения мы получаем

$$\frac{\mathrm{d}\sigma_{\Delta}^{(1)}}{\mathrm{d}\Omega} = \frac{1}{(4\pi)^2} \frac{1}{4M_p^2 \eta} \int \frac{E' \mathrm{d}E'}{E'_{\mathrm{el}}} \frac{M}{W} \int \frac{\omega^2 \mathrm{d}\Omega_{\gamma}}{(2\pi)^3 2\omega} \bar{\sum} \left| \mathcal{M}_{\Delta}^{(1)} \right|^2 , \qquad (3.31)$$

где $W^2 = (l + p - l')^2$, мы использовали ультрарелятивистский предел $E, E' \gg m$:

$$\frac{W^2 - M^2}{2M\eta} = E'_{\rm el} - E', \qquad \eta = 1 + \frac{2E}{M}\sin^2\frac{\theta}{2}, \qquad E'_{\rm el} = \frac{E}{\eta}, \tag{3.32}$$

 $E'_{\rm el}$ – энергия конечного электрона в процессе упругого рассеяния; интегрирование по углу вылета фотона происходит в специальной системе отсчёта $\mathbf{t} = \mathbf{l} + \mathbf{p} - \mathbf{l}' = 0$, ω – энергия фотона этой системе, ее можно найти из соотношения $W^2 = t^2 = (l + p - l')^2 = (p' + k)^2$:

$$\omega = \frac{W^2 - M^2}{2W},\tag{3.33}$$

Интегрирование по dE' и d Ω_{γ} в (3.31) должно выполняться с учётом конкретных экспериментальных ограничений. Для экспериментов с магнитным спектрометром (например, эксперимент SLAC [11]) мы должны установить нижнюю границу на энергию конечного электрона $E'_{el} - E' < \Delta E$ и проинтегрировать по всему телесному углу для направлений вылета конечного фотона. Что касается эксперимента на накопителе ВЭПП-3 [21], в котором конечные электрон и протон детектируются на совпадение, то в нем помимо менее строгой нижней границы на энергию электрона ставятся ограничения на угол вылета протона в лабораторной системе ($\Delta \theta_p$ и $\Delta \varphi_p$).

Используя приближение (3.28) и формулы из приложения мы можем найти вклад в реальные радиационные поправки для случая спектрометрических экспериментов по измерению сечения:

$$\delta_{\Delta}^{(1)} = \frac{\mathrm{d}\sigma_{\Delta}^{(1)}/\mathrm{d}\Omega}{\mathrm{d}\sigma/\mathrm{d}\Omega} \approx \frac{\mathrm{d}\sigma_{\Delta}/\mathrm{d}\Omega}{\mathrm{d}\sigma/\mathrm{d}\Omega} \frac{\Gamma_{\Delta \to \gamma p}}{\Gamma_{\Delta}} \times \frac{1}{\pi} \int_{0}^{2M\eta\Delta E} \frac{\Gamma_{\Delta}M_{\Delta}}{(x - M_{\Delta}^{2} + M^{2})^{2} + \Gamma_{\Delta}^{2}M_{\Delta}^{2}} \frac{x^{3}\mathrm{d}x}{(M_{\Delta}^{2} - M^{2})^{3}},$$
(3.34)

где $x = W^2 - M^2$. Наличие интеграла в правой части достаточно легко понять: квадрат пропагатора Δ приводит к первому сомножителю под интегралом; степень x (или, что тоже самое, частоты фотона ω) возникает из фазового объёма (ω^1) и матричного элемента, разложение которого начинается с ω^1 в мягкофотонном пределе, поэтому его квадрат пропорционален ω^2 ; в пределе $\Gamma_{\Delta} \to 0$ подынтегральное выражение пропорционально $\delta(x - M_{\Delta}^2 + M^2)$, так что весь интеграл вместе со множителем $1/\pi$ даёт 1 в этом пределе.

Итак, на самом деле существует вклад пропорциональный отношению сечений умноженному на бранчинг, как мы получили в грубой оценке (3.13), которая не учитывала экспериментальных ограничений на импульс фотона. Но он умножается на фактор, который сильно подавляет результат при типичных экспериментальных ограничениях в спектрометрических экспериментах $(W_{\text{max}}^2 = M^2 + 2M\eta \Delta E < (M + m_{\pi})^2$, т.е. ниже порога рождения пиона). Численные результаты для $\delta_{\Delta}^{(1)}$ представлены на Рис. 11, на котором представлена зависимость этой поправки от энергетического ограничения W_{max}^2 . Сначала мы не ставим дополнительных ограничений (это соответствует постановке эксперимента с магнитным спектрометром по измерению упругого сечения). Можно видеть, что приближенная формула (3.34) находится в достаточно хорошем согласии с аккуратным вычислением вклада $|M_{\Delta}^{(1)}|^2$. И, хотя значение грубой

Рисунок 11 — Вклад $\Delta(1232)$ в радиационные поправки, связанные с излучением реального фотона $\delta_{\Delta}^{(1)}$ для энергии $E_{\text{beam}} = 1.594 \text{ GeV}$ и передачи импульса $Q^2 = 1.51 \text{ (GeV}/c)^2$, т.е. в условиях Run I, No. 1 эксперимента на накопителе ВЭПП-3 [21]. Серая сплошная линия представляет оценку (3.34); чёрная штрихпунктирная линия — результат численного интегрирования формулы (3.31) с ограничением только W_{max}^2 ; чёрная сплошная линия — результат интегрирования с учётом ограничений на угол вылета протона $\Delta \theta_p = \Delta \varphi_p = 3^\circ$, соответствующих реальным ограничениям в экспериментальной точке Run I, No. 1 на накопителе ВЭПП-3

оценки (3.13) порядка 0.5% в принципе могут достигаться, типичное значение $W_{\text{max}}^2 = 1.12 \text{ GeV}^2$ (из эксперимента SLAC [11]) приводит к сильному подавлению вклада $\Delta(1232)$. Мы также проиллюстрировали то, как влияют ограничения на угол вылета конечного протона. Можно заметить, что для консервативного значение $W_{\text{max}}^2 \approx 1.6 \text{ GeV}^2$ в точке Run I, No. 1 эксперимента на накопителе ВЭПП-3 малость поправки возникает уже за счёт сильных ограничений на угол вылета протона. Здесь и в последующем полное вычисление матричных элементов выполнялось с помощью пакета FeynCalc [73; 74] и системы компьютерной алгебры Wolfram Mathematica [75], а для численного интегрирования методом Монте-Карло мы использовали классы ROOT и библиотеку MathMore [76].

Из следующего графика на Рис. 12 можно видеть, что наше предположение о доминировании вклада $\mathcal{M}_{\Delta}^{(1)}$ находится в согласии с численными результатами. Мы сравниваем вклады $|\mathcal{M}_{\Delta}^{(1)}|^2$, $2 \operatorname{Re}[\mathcal{M}_{\Delta}^{(1)}\mathcal{M}_{\Delta}^{(2)\dagger}]$ и $|\mathcal{M}_{\Delta}^{(2)}|^2$ с учётом ограничений на угол вылета протона, в точке Run I, No. 1 в эксперименте на накопителе ВЭПП-3. Последние два члена дают вклад меньший, чем первый, как мы и предполагали. Следует отметить, что для интерференционного слагаемого области $W^2 < M_{\Delta}^2$ и $W^2 > M_{\Delta}^2$ дают вклады противоположных знаков, и результат может быть подавлен интегрированием в широком диапазоне W^2 .

Рисунок 12 — Составляющие вклада $\Delta(1232)$ в радиационные поправки, связанные с излучением реального фотона: сплошная линия представляет $\delta_{\Delta}^{(1)}$, т.е. вклад $\left| \mathcal{M}_{\Delta}^{(1)} \right|^2$; пунктирная линия — $\delta_{\Delta}^{(2)}$, т.е. вклад $\left| \mathcal{M}_{\Delta}^{(2)} \right|^2$; штриховая линия — значение $\left| \delta_{\Delta}^{(12)} \right|$, взятое по модулю, т.е. интерференция 2 Re $\left[\mathcal{M}_{\Delta}^{(1)} \mathcal{M}_{\Delta}^{(2)\dagger} \right]$ (интерференция меняет знак с положительного на отрицательный при $W_{max}^2 \simeq 1.9 \text{ GeV}^2$). Численное интегрирование выполнено для $E_{\text{beam}} = 1.594 \text{ GeV}$, $Q^2 = 1.51 (\text{GeV}/c)^2$ с ограничениями на углы вылета протона $\Delta \theta_p = \Delta \varphi_p = 3^\circ$, соответствующими точке Run I, No. 1 в эксперименте на накопителе ВЭПП-3

3.4.2 Вклад $\Delta(1232)$ в радиационные поправки в эксперименте на накопителе ВЭПП-3

В этом разделе мы рассматриваем C-нечётную интерференцию амплитуды тормозного излучения с протонной линии с $\Delta(1232)$ в промежуточном состоянии и амплитуды тормозного излучения с электронной линии. Предполагая приближение (3.28) мы разбиваем тормозное излучения с электронной линии на две части «мягкую» (s) и «жёсткую» (h):

$$i\mathcal{M}_{brem}^e = i\mathcal{M}_e^{(s)} + i\mathcal{M}_e^{(h)}, \qquad (3.35)$$

$$i\mathcal{M}_{e}^{(s)} = -\frac{iZe^{3}}{q_{p}^{2}} j_{\nu}(l,l') J^{\nu}(p,p') \left[\frac{l'_{\mu}}{(l'\cdot k)} - \frac{l_{\mu}}{(l\cdot k)}\right] e^{*\mu}(k), \qquad (3.36)$$

$$\mathbf{i}\mathcal{M}_{e}^{(h)} = -\frac{\mathbf{i}Ze^{3}}{q_{p}^{2}} \ \bar{u}(l') \left(\frac{\gamma_{\mu}\hat{k}\gamma_{\nu}}{2(l'\cdot k)} + \frac{\gamma_{\nu}\hat{k}\gamma_{\mu}}{2(l\cdot k)}\right) u(l) \ J^{\nu}(p,p') \ e^{*\mu}(k), \tag{3.37}$$

где $q_p = p' - p$ передача импульса протону.

В качестве оценки для интерференции мы используем

$$2\operatorname{Re}\left[\sum^{-}\mathcal{M}_{\operatorname{brem}}^{e}^{\dagger}\mathcal{M}_{\Delta}\right] \approx 2\operatorname{Re}\left[\sum^{-}\mathcal{M}_{e}^{(s)\dagger}\mathcal{M}_{\Delta}^{(1)}\right].$$
(3.38)

Мы можем переписать ее в следующем виде

$$\bar{\sum} \mathcal{M}_{e}^{(s)\dagger} \mathcal{M}_{\Delta}^{(1)} = \frac{Z^{3} e^{6}}{q_{e}^{2} q_{p}^{2}} \left[\frac{l_{\mu}'}{(l' \cdot k)} - \frac{l_{\mu}}{(l \cdot k)} \right] \frac{L_{\nu\nu'}(l, l') G^{\mu\nu\nu'}(t; k, q_{e})}{t^{2} - M_{\Delta}^{2} + \mathrm{i}\Gamma_{\Delta}M_{\Delta}},$$
(3.39)

где

$$G^{\mu\nu\nu'}(t;k,q_e) = \frac{1}{2} \operatorname{Tr} \left[(\hat{p}' + M) \,\Delta^{\mu\nu}(t;k,q_e) \,(\hat{p} + M) \,\Gamma^{\dagger\nu'}(q_p) \right].$$
(3.40)

Некоторые детали вычислений мы приводим в приложении. Здесь мы воспроизводим только результат в рамках приближения (3.28):

$$2\operatorname{Re}\left[\bar{\sum}\mathcal{M}_{e}^{(s)\dagger}\mathcal{M}_{\Delta}^{(1)}\right] \approx \frac{Z^{3}e^{6}}{(q^{2})^{2}} \frac{2(W^{2}-M_{\Delta}^{2})}{(W^{2}-M_{\Delta}^{2})^{2}+\Gamma_{\Delta}^{2}M_{\Delta}^{2}} \frac{2G_{1}(0)}{3} \frac{(M_{\Delta}+M)}{M_{\Delta}^{2}} \\ \times \frac{2M(KP)}{P^{2}} \left(G_{E}(q^{2})G_{M}^{*}(q^{2}) + \frac{-q^{2}}{4MM_{\Delta}}G_{M}(q^{2})G_{C}^{*}(q^{2})\right) \\ \times \left[\frac{l'_{\mu}}{(l'\cdot k)} - \frac{l_{\mu}}{(l\cdot k)}\right] (-g_{\lambda\lambda'})\varepsilon^{\lambda\tau\rho\mu}t_{\tau}k_{\rho}\,\varepsilon^{\lambda'\tau'\sigma\nu}t_{\tau'}(q_{e})_{\sigma}\,K_{\nu},$$
(3.41)

где $q_p^2 \approx q_e^2 \approx q^2$, K = l + l', P = p + p'.

Вклад в радиационные поправки, связанные с излучением реального фотона, представляется в виде

$$\delta_{\Delta}^{(\text{int})} = \frac{\mathrm{d}\sigma_{\Delta}^{(\text{int})}/\mathrm{d}\Omega}{\mathrm{d}\sigma/\mathrm{d}\Omega},\tag{3.42}$$

где

$$\frac{\mathrm{d}\sigma_{\Delta}^{(\mathrm{int})}}{\mathrm{d}\Omega} = \frac{1}{(4\pi)^2} \frac{1}{4M^2 \eta} \int \frac{E' \mathrm{d}E'}{E'_{\mathrm{el}}} \frac{M}{W} \int \frac{\omega^2 \mathrm{d}\Omega_{\gamma}}{(2\pi)^3 2\omega} \bar{\Sigma} 2\mathrm{Re} \left[\mathcal{M}_e^{\dagger} \mathcal{M}_{\Delta}\right], \qquad (3.43)$$

в котором область интегрирования зависит от конкретных экспериментальных ограничений, как это уже упоминалось для формулы (3.31).

В специальной системе отсчёта (в которой $\mathbf{l} + \mathbf{p} - \mathbf{l}' = 0$) зависимость приближенного значения интерференции от направления излучения фотона определяется фактором

$$2\operatorname{R}e\left[\sum_{e} \mathcal{M}_{e}^{(s)\dagger} \mathcal{M}_{\Delta}^{(1)}\right] \propto \left[\frac{l'_{\mu}}{(l'\cdot k)} - \frac{l_{\mu}}{(l\cdot k)}\right] (-g_{\lambda\lambda'})\varepsilon^{\lambda\tau\rho\mu}t_{\tau}k_{\rho}\varepsilon^{\lambda'\tau'\sigma\nu}t_{\tau'}(q_{e})_{\sigma}K_{\nu}$$
$$= W^{2}\left(\left[\mathbf{k}\times\left(\frac{\mathbf{l'}}{(l'\cdot k)} - \frac{\mathbf{l}}{(l\cdot k)}\right)\right]\cdot\left[\mathbf{q}_{e}\times\mathbf{K}\right]\right), \quad (3.44)$$

где все векторы рассмотрены в этой специальной системе. Тогда интегрирование по всему телесному углу приводит к

$$\int d\Omega_{\gamma} \, \frac{\mathbf{k}}{(l \cdot k)} \propto \mathbf{l}, \quad \int d\Omega_{\gamma} \, \frac{\mathbf{k}}{(l' \cdot k)} \propto \mathbf{l}', \tag{3.45}$$

но тогда первое векторное произведение (3.44) и в целом приближенное значение вклада интерференции в рамках приближений (3.28) и (3.38) обращается в ноль для экспериментов, в которых все направления вылета фотона допустимы (например, в экспериментах с магнитным спектрометром).

Однако для эксперимента на накопителе ВЭПП-3 интегрирование по всему телесному угла вылета фотона в специальной системе совместимо с ограничениями на угол вылета протона ($\Delta \theta_n$ и $\Delta \varphi_n$) только внутри определённого диапазона энергии электрона Е' (не слишком сильно отличающейся от упругого значения E'_{el}). Область интегрирования по углам вылета фотона имеет сложную структуру, поэтому результат может быть получен только численно. В Таблице 1 мы представляем вклад $\Delta(1232)$ в реальные радиационные поправки для эксперимента на накопителе ВЭПП-3: «мягкая» и «жёсткая» части интерференционного вклада. В таблице представлены отдельные вклады вида $\delta^{(s,1)}_{\Lambda}$ (возникающие от вкладов $\mathcal{M}_{e}^{(s)\dagger}\mathcal{M}_{\Lambda}^{(1)}$) и полное значение вклада $\delta_{\Lambda}^{(\text{int})}$, вычисленное независимо для дополнительной проверки. Значения представлены вместе с оценкой ошибки метода Монте-Карло, и в пределах ошибок полное значение находится в согласии с суммой отдельных вкладов. Как и можно было ожидать, результаты сильно зависят от экспериментальных условий и ограничений. Мы видим, что мягкофотонное приближение работает лучше в условиях Run II эксперимента на накопителе ВЭПП-3, а для условий Run I оно даёт оценку только по порядку величины. В любом случае, полученное значение $\delta^{(int)}_{\Lambda} < 0.01\%$ убеждает нас, что этот вклад не может повлиять на результаты этого эксперимента, где вклад «жёсткой» части двухфотонного обмена в радиационные поправки был обнаружен на уровне 1%.

3.5 Результаты

В этом разделе мы рассмотрели вклад резонанса $\Delta(1232)$ в радиационные поправки, связанные с излучением реального фотона. Было показано, что грубая

Таблица 1 — Вклад $\Delta(1232)$ в радиационные поправки, связанные с излучением реального фотона в эксперименте на накопителе ВЭПП-3 [21]

	Run I, No. 1	Run I, No. 2	Run II, No. 1	Run II, No. 2
E_{beam} (GeV)	1.594	1.594	0.998	0.998
$Q^2 \; ({\rm GeV}/c)^2$	1.51	0.298	0.976	0.830
$\Delta E/E'_{\rm el}$	0.25	0.45	0.29	0.29
$\Delta \theta_p, \Delta \varphi_p$	3.0°	5.0°	3.0°	3.0°
$\delta^{(s,1)}_{\Delta}, 10^{-5}$	0.633 ± 0.002	0.272 ± 0.002	2.951 ± 0.001	2.476 ± 0.001
$\delta^{(h,1)}_{\Delta}, 10^{-5}$	-0.755 ± 0.001	6.217 ± 0.001	-0.813 ± 0.001	-0.977 ± 0.001
$\delta^{(s,2)}_{\Delta}, 10^{-5}$	1.255 ± 0.001	-1.818 ± 0.001	1.209 ± 0.001	1.008 ± 0.001
$\delta^{(h,2)}_{\Delta}, 10^{-5}$	-0.881 ± 0.001	-1.581 ± 0.001	-0.498 ± 0.001	-0.552 ± 0.001
$\delta^{(\mathrm{int})}_{\Delta}, 10^{-5}$	0.253 ± 0.003	3.092 ± 0.002	2.852 ± 0.001	1.955 ± 0.002

оценка без учёта экспериментальных ограничений даёт существенное значение, однако более аккуратное вычисление значения поправки в зависимости от типа эксперимента подавлено либо строгими ограничениями на энергию рассеянного электрона, либо дополнительными условиями на углы вылета конечного протона. Обнаруженный эффект оказался пренебрежимо мал как для экспериментов с магнитным спектрометром по измерению упругого *ер*-рассеяния, так и для недавнего эксперимента на накопителе ВЭПП-3 по изучению эффектов двухфотонного обмена.

Глава 4. Сокращение радиационных поправок в экспериментах по измерению зарядового радиуса протона

В этой главе мы обратимся к рассмотрению радиационных поправок в экспериментах по измерению зарядового радиуса протона. Эти эксперименты отличаются от тех, которые рассматривались в предыдущих двух главах тем, что ставятся при малых передачах импульса протону. Наибольший вклад в радиационные поправки к сечению электрон-протонного рассеяния при высоких энергиях даёт излучение реальных и виртуальных фотонов электроном. Эти поправки содержат большие логарифмы, происходящие от мягких и коллинеарных фотонов. Сокращение вкладов «мягких» фотонов в виртуальные и реальные поправки хорошо известно и было описано нами в Главе 2. Менее известен тот факт, что вклады фотонов коллинеарных рассеянным электронам также сокращаются в большинстве экспериментов. С другой стороны, вклады фотонов, коллинеарных начальным электронам, как правило, не сокращаются. Однако как будет показано далее, постановка эксперимента, предложенная А. А. Воробьевым [35] для измерения зарядового радиуса протона, обладает новым неожиданным и замечательным свойством – происходит существенное сокращение основных вклады в радиационные поправки. Данная глава будет посвящена выводу и объяснению этого факта.

4.1 Главные вклады в радиационные поправки

Всюду ниже мы будем подразумевать условия малости массы электрона и передач импульса (это соответствует условиям эксперимента [35]):

$$m^2 \ll Q^2 \ll M^2 \sim ME \sim E^2 , \qquad (4.1)$$

где E — энергия начального электрона, Q^2 — квадрат переданного импульса протону, m — масса электрона, M — масса протона.

Экспериментально наблюдаемое сечение представляется в виде

$$d\sigma_{\exp} = d\sigma_B \left(1 + \delta\right),\tag{4.2}$$

где радиационные поправки δ даются суммой поправки δ_{virt} , учитывающей вклады высших порядков теории возмущений в сечение упругого рассеяния, и поправки δ_{real} , возникающей за счет неупругих процессов, удовлетворяющих экспериментальным ограничениям, которые накладываются при отборе упругих событий: $\delta = \delta_{virt} + \delta_{real}$. В первом порядке по электромагнитной константе связи α «виртуальная» поправка определяется интерференцией борновской амплитуды с амплитудами однопетлевых поправок, а «реальная» поправка связана с однофотонным тормозным излучением. В этой главе мы будем обсуждать только вклады однопетлевой поправки к электронной вершине и испускания тормозного фотона электроном:

$$\delta^e = \delta^e_{\text{vertex}} + \delta^e_{\text{brem}}.$$
(4.3)

Эти вклады содержат большие логарифмы, возникающие от «мягких» фотонов низкой энергии и «коллинеарных» фотонов, испущенных вдоль направления движения электронов. В первом порядке по α , как уже обсуждалось в Главе 2, в полной поправке δ есть ещё вклад поляризации вакуума (он существенен, но хорошо изучен), и есть вклад от взаимодействия протона с электромагнитным полем (он не содержит больших логарифмов, т. к. протоны в указанной постановке эксперимента нерелятивистские, но должен учитываться, и это предмет отдельного рассмотрения).

Поправка к электронной вершине не зависит от экспериментальной постановки и уже была выписана ранее (2.10):

$$\delta_{\text{vertex}}^e = -\frac{\alpha}{\pi} \left(\left(\ln\left(\frac{Q^2}{m^2}\right) - 1 \right) \ln\left(\frac{m^2}{\lambda^2}\right) + \frac{1}{2} \ln^2\left(\frac{Q^2}{m^2}\right) - \frac{\pi^2}{6} - \frac{3}{2} \ln\left(\frac{Q^2}{m^2}\right) + 2 \right)$$

$$(4.4)$$

она содержит инфракрасную расходимость, которая регуляризуется «массой» фотона λ.

Фотоны, излучённые в процессе рассеяния электроном, удобно разделить, как это обычно делается, на «мягкие», не влияющие на упругую кинематику процесса, и «жёсткие». «Мягкие» фотоны могут быть определены как те, которые в имеют энергию не превышающую ω_0 (для достаточно малых значений ω_0) в заданной системе отсчета. Для таких фотонов справедлива теорема о факторизации [46] и их вклад δ_{soft}^e в реальные поправки δ_{real} может быть найден, как уже обсуждалось, используя общий подход и формулы из работы т'Хофта

и Вельтмана [68]. Если ограничение на энергию фотона $\omega < \omega_0$ установлено в системе покоя начального протона, тогда (см. Главу 2 и формулы в приложении)

$$\delta_{\text{soft}}^{e} = \frac{\alpha}{\pi} \left(\left(\ln \left(\frac{Q^2}{m^2} \right) - 1 \right) \left(\ln \left(\frac{\omega_0^2}{\lambda^2} \right) - \ln \left(\frac{EE'}{m^2} \right) \right) + \frac{1}{2} \ln^2 \left(\frac{Q^2}{m^2} \right) - \frac{\pi^2}{6} - \frac{1}{2} \ln^2 \left(\frac{E}{E'} \right) + \text{Li}_2 \left(1 - \frac{Q^2}{4EE'} \right) - \frac{\pi^2}{6} \right).$$

$$(4.5)$$

Сумма поправки к вершине и поправок от излучения «мягких» фотонов свободна от инфракрасных расходимостей

$$\delta_{\text{vertex}}^{e} + \delta_{\text{soft}}^{e} = \frac{\alpha}{\pi} \left(-\left(\ln\left(\frac{Q^2}{m^2}\right) - 1\right) \ln\left(\frac{EE'}{\omega_0^2}\right) + \frac{3}{2} \ln\left(\frac{Q^2}{m^2}\right) - 2 -\frac{1}{2} \ln^2\left(\frac{E}{E'}\right) + \text{Li}_2\left(1 - \frac{Q^2}{4EE'}\right) - \frac{\pi^2}{6}\right),$$

$$(4.6)$$

так что вклад «жёстких» фотонов в δ_{real} можно вычислять при нулевой массе фотона. Сокращение инфракрасных расходимостей в (4.6) является следствием общего утверждения [46] о сокращении инфракрасных расходимостей в сумме виртуальных поправок и поправок за счет излучения «мягких» фотонов. Однако в сумме (4.6) содержится член $\ln\left(\frac{Q^2}{m^2}\right)$, который связан с коллинеарными расходимостями по массе электрона. В общем случае, этот член останется и после учёта вклада жёстких фотонов, потому что теорема о сокращении коллинеарных расходимостей [77; 78], очевидно, не может быть применена к электрон-протонному рассеянию. Однако, в условиях эксперимента [79] этот вклад отсутствует.

К сумме вкладов (4.6) мы должны добавить вклад от излучения «жёстких» фотонов. С логарифмической точностью эта поправка имеет простую физическую интерпретацию. Она состоит из двух частей, соответствующих излучению фотона начальными и конечным электронами. Обе эти части вклада «жёстких» фотонов могут быть вычислены с использованием метода квазиреальных электронов [80]. Для излучения конечным электроном этот метод дает

$$\frac{\omega \mathrm{d}\sigma^{f.e.e.}}{\mathrm{d}^3 \mathbf{k}} = \frac{\alpha}{4\pi^2} \left(\frac{E'^2 + (E' - \omega)^2}{\omega E'(k \cdot l')} - \frac{m^2}{(k \cdot l')^2} \frac{(E' - \omega)}{E'} \right) \,\mathrm{d}\sigma_B, \qquad (4.7)$$

где k и ω — 4-импульс и энергия фотона, l' и E' — 4-импульс и энергия конечного электрона в упругом процессе, а $d\sigma_B$ — сечение упругого процесса. С логарифмической точностью верхний предел интегрирования по углу излучения фотона

$$\frac{x \operatorname{d} \sigma^{f.e.e.}}{\operatorname{d} x} = \frac{\alpha}{2\pi} \ln\left(\frac{Q^2}{m^2}\right) \left(1 + (1-x)^2\right) \operatorname{d} \sigma_B, \tag{4.8}$$

где $x = \omega / E'$. Интегрирование по x может быть выполнено от ω_0 / E' до 1, что дает

$$d\sigma^{f.e.e.} = \frac{\alpha}{\pi} \ln\left(\frac{Q^2}{m^2}\right) \left(\ln\left(\frac{E'}{\omega_0}\right) - \frac{3}{4}\right) d\sigma_B, \tag{4.9}$$

Сравнивая это с (4.6) мы видим, что вклад (4.9) сокращает коллинеарно расходящийся член с коэффициентом $\ln\left(\frac{E'}{\omega_0}\right)$ и половину вклада с независящим от энергии коэффициентом.

Для поправки за счет излучения начальным электроном мы имеем с той же точностью

$$\frac{\omega \mathrm{d}\sigma^{i.e.e.}}{\mathrm{d}^3 \vec{k}} = \frac{\alpha}{4\pi^2} \left(\frac{E^2 + (E-\omega)^2}{\omega E(k\cdot l)} - \frac{m^2}{(k\cdot l)^2} \frac{(E-\omega)}{E} \right) \mathrm{d}\sigma_B|_{\vec{l}\to\vec{l}-\vec{k}}, \qquad (4.10)$$

и после интегрирования с логарифмической точностью по углу излучения фотона

$$d\sigma^{i.e.e.} = \frac{\alpha}{2\pi} \int_{w_0/E}^{1} \frac{dx}{x} \left(1 + (1-x)^2 \right) d\sigma_B|_{\mathbf{l} \to \mathbf{l}(1-x)}, \qquad (4.11)$$

где $x = \omega/E$.

Излучение фотона начальным электроном изменяет его энергию, и поэтому оно меняет и сечение процесса индуцированного электроном после излучения (квазиреальным электроном). Это является причиной, по которой виртуальные поправки не сокращаются с реальными в большинстве экспериментов. Но в эксперименте, предложенным Воробьевым А. А. [79], планируется измерить сечение дифференциальное по передаче импульса конечному протону do /(dQ²), измерения предлагается делать в области (4.1), где мы имеем без учета поправок, содержащих дополнительные степени Q^2 ,

$$\frac{\mathrm{d}\sigma_B}{\mathrm{d}Q^2} \simeq \frac{4\pi Z^2 \alpha^2}{Q^4} F_1^2 \left(Q^2\right) \tag{4.12}$$

т. е. $d\sigma_B / (dQ^2)$ не зависит от энергии электрона *E* при фиксированном Q^2 , так что $d\sigma^{i.e.e.}$ равно $d\sigma^{f.e.e.}$ и в сумме они сокращают члены, содержащие $\ln \left(\frac{Q^2}{m^2}\right)$ в (4.6).

4.2 Учёт тормозного излучения с использованием спектра тормозных фотонов

Оказывается, что в однопетлевом приближении сокращение имеет место не только с логарифмической точностью, но сокращаются также и члены, которые не содержат коллинеарных расходимостей (константные члены). Конечно, такое сокращение не может быть доказано каким-либо приближенным методом и требует более строго подхода.

Следуя методу, описанному в книге [81], мы можем получить выражения для дифференциального сечения тормозного излучения по передаче импульса протону Q^2 и частоте фотона ω в лабораторной системе отсчёта без использования предположений о малости массы электрона и передачи импульса. Опустив детали этих вычислений, приведём только результаты, которые позволяют вычислить вклад в радиационные поправки с точностью до членов $\propto (Q/E)$. При вычислении дифференциального сечения тормозного излучения выделяется три области:

(I):
$$\omega_0 \leq \omega \leq \omega_-$$

(II): $\omega_- \leq \omega \leq \omega_+$
(III): $\omega_+ \leq \omega \leq \omega_{max}$,
(4.13)

где $\omega_{-} = \frac{Q}{2} - \frac{Q^2}{4M}$, $\omega_{+} = E' - \omega_{-}$, и $\omega_{\text{max}} = E' - \text{максимальная частота}$ тормозного фотона, совпадающая в пределе малой массы электрона с энергией рассеянного электрона в упругом процессе $E' = E - \frac{Q^2}{2M}$. Выражение для дифференциального сечения в этих областях:

$$\left[\frac{d\sigma_{\text{hard}}^{e}}{d\omega \, dQ^{2}} \middle/ \frac{d\sigma_{B}}{dQ^{2}}\right]^{(1)} = \frac{\alpha}{\pi} \frac{\ln \frac{Q^{2}}{m^{2}} - 1}{\omega} \frac{E^{2} + (E - \omega)^{2}}{E^{2}}, \qquad (4.14)$$

$$\left[\frac{d\sigma_{\text{hard}}^{e}}{d\omega \, dQ^{2}} \middle/ \frac{d\sigma_{B}}{dQ^{2}}\right]^{(11)} = \frac{\alpha}{\pi} \left\{\frac{\ln \frac{Q^{2}}{m^{2}} - 1}{\omega} \frac{E^{2} + (E - \omega)^{2}}{E^{2}} + \frac{\omega}{E^{2}} + \frac{1}{2\omega} \ln \left[\frac{E(E - \omega)}{(E - \omega_{-})(E - \omega + \omega_{-})}\right] \frac{E^{2} + (E - \omega)^{2}}{E^{2}} + \frac{\omega}{E^{2}} + \frac{1}{2\omega} \ln \left[\frac{E(E - \omega)}{(E - \omega_{-})(E - \omega + \omega_{-})}\right] \frac{E^{2} + (E - \omega)^{2}}{E^{2}} + \frac{\omega}{E^{2}} + \frac{\omega}{E^{2}} + \frac{1}{2\omega} \ln \left[\frac{1}{E^{2}} - \frac{\omega\omega_{-}}{2E^{2}} \left(\frac{1}{E - \omega} - \frac{1}{E}\right) - \frac{Q^{2}}{4E} \frac{\frac{1}{2} \ln \left[\frac{4(E - \omega)^{2}\omega_{-}}{(E - \omega)^{2}}\right] - 1}{(E - \omega)^{2}} \right\},$$

$$\left[\frac{d\sigma_{\text{hard}}^{e}}{d\omega \ dQ^{2}} \middle/ \frac{d\sigma_{B}}{dQ^{2}}\right]^{(\text{III})} = \frac{\alpha}{2\pi} \left\{ \frac{\ln\frac{Q^{2}}{m^{2}} + 1}{E} + \frac{1}{E} \ln\left[\frac{4(E' - \omega)^{2}}{Q^{2}}\right] - \frac{1}{E} \left(1 - \frac{Q^{2}}{4(E' - \omega)^{2}}\right) \ln\left[\frac{4(\omega_{-}^{2} - (E' - \omega)^{2})}{Q^{2}}\right] \right\}.$$
(4.16)

В итоге, вклад «жесткого» тормозного излучения получается интегрированием приведённых выше выражений по частоте фотона. С точностью до членов $\propto \frac{Q}{E}$ этот вклад имеет вид

$$\delta_{\text{hard}}^{e} = \frac{\alpha}{\pi} \left\{ \left(\ln \frac{Q^2}{m^2} - 1 \right) \ln \frac{E^2}{\omega_0^2} - \frac{3}{2} \ln \frac{Q^2}{m^2} + 2 - \frac{Q}{4E} \left(\ln \frac{Q^2}{m^2} + \ln \frac{4E^2Q^2}{m^4} + 1 \right) \right\}$$
(4.17)

Прибавляя к этому выражению вклад «мягких» и виртуальных фотонов (4.6), мы получаем с точностью до первых поправок пропорциональных передаче $\propto Q$

$$\delta_{\text{vertex}}^e + \delta_{\text{soft}}^e + \delta_{\text{hard}}^e = -\frac{\alpha}{\pi} \frac{Q}{4E} \left(\ln \frac{4E^2 Q^2}{m^4} + 1 \right) , \qquad (4.18)$$

т. е., как и было заявлено, происходит сокращение главных вкладов в радиационные поправки не только с логарифмической точностью, но и с точностью до константных членов.

4.3 Использование метода структурных функций

Результат (4.18) можно получить альтернативным способом, используя метод структурных функций. Сечение электрон-протонного рассеяния с учётом радиационных поправок за счёт только взаимодействия электрона с электромагнитным полем можно рассматривать как сечение инклюзивного протон-электронного рассеяния. Если быть более точным, оно может быть записано как

$$(2\pi)^3 2E'_p \frac{d\sigma}{d^3 \vec{p'}} = \frac{\pi e^4}{Q^4} \frac{1}{\sqrt{(p \cdot l)^2 - m^2 M^2}} T^{\mu\nu} W_{\mu\nu}(l,q), \qquad (4.19)$$

где $T^{\mu\nu}$ — протонный токовый тензор (1.9)

$$T^{\mu\nu} = G_M^2 \left(Q^2 \right) \left(g^{\mu\nu} q^2 - q^{\mu} q^{\nu} \right) + \frac{4M^2 G_E^2 \left(Q^2 \right) + Q^2 G_M^2 \left(Q^2 \right)}{4M^2 + Q^2} P^{\mu} P^{\nu}, \quad (4.20)$$

где q = p - p', P = p + p'; а $W_{\mu\nu}(l,q)$ – тензор глубоконеупругого рассеяния

$$W_{\mu\nu}(l,q) = \frac{1}{4\pi} \overline{\sum}_{X} \left\langle l \left| j_{\nu}^{(e)}(0) \right| X \right\rangle \left\langle X \left| j_{\nu}^{(e)}(0) \right| l \right\rangle (2\pi)^{4} \delta \left(q + l - l_{X} \right).$$
(4.21)

Здесь $|l\rangle$ — начальное состояние электрона, $|X\rangle$ — любое состояние, которое может родиться в фотон-электронных столкновениях, $\overline{\sum_X}$ — означает усреднение по поляризациям начального электрона и суммирование по дискретным и интегрирование по непрерывным переменным состояния X, $j_{\mu}^{(e)}(x)$ — электронный оператор электромагнитного тока. Учитывая сохранение тока, можно представить $W^{\mu\nu}$ в форме

$$W^{\mu\nu}(l,q) = -\left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2}\right) f_1(x,Q^2) + \frac{1}{(l \cdot q)} \left(l^{\mu} - \frac{(l \cdot q)}{q^2}q^{\mu}\right) \left(l^{\nu} - \frac{(l \cdot q)}{q^2}q^{\nu}\right) f_2(x,Q^2), \quad (4.22)$$

где $Q^2 = -q^2$, $x = Q^2 / (2(l \cdot q))$.

Выполнив свёртку тензоров и используя

$$\frac{d^3\vec{p}'}{2E'_p} = \frac{\pi}{4} \frac{Q^2 \, dQ^2 \, dx}{\sqrt{(p \cdot l)^2 - m^2 M^2}},\tag{4.23}$$

мы получим

$$\frac{d\sigma}{dQ^2 dx} = \frac{\pi \alpha^2}{2x^2 Q^2 \left((p \cdot l)^2 - m^2 M^2\right)} \left[\left(2Q^2 G_M^2 - 4M^2 G_E^2 \right) f_1 + \left(-G_M^2 \left(m^2 Q^2 + (l \cdot q)^2 \right) + \frac{4M^2 G_E^2 + Q^2 G_M^2}{4M^2 + Q^2} (P \cdot l)^2 \right) \frac{f_2}{(l \cdot q)} \right],$$
(4.24)

где

$$(P \cdot l) = 2ME - \frac{Q^2}{2x}.$$
 (4.25)

Область изменения x при фиксированном Q^2 определяется условием $M_X^2 \ge m^2$ и $(l \cdot q) \le Eq_0 + \sqrt{E^2 - m^2} \sqrt{q_0^2 + Q^2}$, где $q_0 = M - E'_p = -Q^2/(2M)$, т.е.

$$\frac{MQ^2}{\sqrt{E^2 - m^2}\sqrt{Q^2 \left(4M^2 + Q^2\right) - EQ^2}} \leqslant x \leqslant 1.$$
(4.26)

С использованием формулы (4.24) можно получить следующее общее выражение для радиационной поправки, связанной со взаимодействием электрона

с электромагнитным полем, к дифференциальному по передаче импульса сечению упругого *ер*-рассеяния:

$$\delta^{e}_{\rm SF} = \frac{\int dx \, \frac{d\sigma}{dQ^2 dx}}{\frac{d\sigma_B}{dQ^2}} = \frac{1}{r_B} \int \frac{dx}{x^3} \, r(x) \,, \qquad (4.27)$$

где

$$r(x) = G_E^2 \left[\frac{f_2 \left(x - \frac{Q^2}{4EM} \right)^2}{\left(1 - \frac{Q^2}{4EM} \right)^2} - x f_1 \frac{Q^2 (1 + \frac{Q^2}{4M^2})}{2E^2 (1 - \frac{Q^2}{4EM})^2} \right] + G_M^2 \frac{Q^2}{4M^2} \left[\frac{f_2 \left(x - \frac{Q^2}{4EM} \right)^2}{\left(1 - \frac{Q^2}{4EM} \right)^2} + \left(2x f_1 - \frac{f_2 \left(1 + \frac{4m^2 x^2}{Q^2} \right)}{2} \right) \frac{Q^2 (1 + \frac{Q^2}{4M^2})}{2E^2 (1 - \frac{Q^2}{4EM})^2} \right] ,$$

$$(4.28)$$

а r_B возникает в борновском сечении

$$r_B = r(x)|_{x=1, f_2=1, f_1=1/2} , (4.29)$$

и остаётся вычислить вклады в структурные функций электрона $f_{1,2}(x, Q^2)$ от виртуальных и реальных состояний, которые могут появляться в фотонэлектронных столкновениях, и проинтегрировать эти вклады по бьеркеновской переменной x. Формфакторы протона $G_{E,M}$ зависят только от квадрата передачи импульса Q^2 , структурные функции электрона — от x и Q^2 . Для краткости в формуле (4.28) мы опустили аргументы в структурных функциях электрона и формфакторах протона.

Вклад однопетлевой поправки к электронной вершине в структурные функции при $m^2 \ll Q^2$ факторизуется и с точки зрения формулы (4.27) пропорционален $\delta(1-x)$. Этот вклад уже выписан в формуле (4.4).

При вычислении вклада тормозного излучения условное разбиение на «мягкие» и «жёсткие» фотоны удобнее выполнить, поставив ограничение на скалярное произведение $(k \cdot l') \leq \kappa'_0$, где κ'_0 много меньше всех остальных инвариантов ($\kappa'_0 \ll m^2$), l' - 4-импульс конечного электрона, k - 4-импульс фотона. Фактически мы ставим ограничение на частоту фотона в системе покоя конечного электрона, при условии, что влиянием излучения на кинематику можно пренебречь. Заметим также, что скалярное произведение $(k \cdot l')$ выражается через переменную x и передачу импульса: $(k \cdot l') = \frac{Q^2(1-x)}{2x}$. Опуская детали вычислений, приведём выражения для вкладов «мягких» и «жёстких» фотонов в радиационную поправку с учетом условий (4.1):

$$\delta^{e}_{\text{SF, soft}} = \frac{\alpha}{\pi} \left[\left(\ln \frac{Q^2}{m^2} - 1 \right) \ln \frac{4\kappa'_0{}^2}{\lambda^2 Q^2} - \frac{\pi^2}{6} + 1 \right] . \tag{4.30}$$

Раскладывая формулу (4.27) с точностью до членов порядка $Q^2/\{M^2, E^2, ME\}$ (отметим, что с этой точностью в ответ не входят величины, связанные с разложением протонных формфакторов), получаем

$$\delta^{e}_{\text{SF, hard}} = \int_{x_{\min}}^{1 - \frac{2\kappa_{0}}{Q^{2}}} dx \left[\frac{f_{2}}{x} - \frac{f_{1}}{x^{2}} \frac{Q^{2}}{2E^{2}} - \frac{f_{2}}{x^{2}} \frac{Q^{2}}{2ME} \left(1 - x \left(1 + \frac{M}{2E} \right) \right) \right] , \quad (4.31)$$

где минимально возможное значение x:

$$x_{\min} = \frac{Q^2}{Q^2 + 2(k \cdot l')_{\max}} \sim \frac{Q}{2E}, \qquad (k \cdot l')_{\max} = \frac{EQ(\sqrt{4M^2 + Q^2} - Q)}{2M} - \frac{Q^2}{2}.$$
(4.32)

Нижний предел интегрирования по x стремится к 0, а верхний — к 1, поэтому при выводе результата (4.31) существенно, что при $x \to 0$ поведение $f_1 \propto \ln x$, $f_2 \propto x \ln x$, а при $x \to 1 - f_1 \sim f_2 \propto \frac{1}{1-x}$, а сами структурные функции могут быть записаны в виде

$$f_1(x,Q^2) = \frac{\alpha}{\pi} x \left(f(x,Q^2) + \frac{1}{4} \right) ,$$

$$f_2(x,Q^2) = \frac{2\alpha}{\pi} x^2 \left(f(x,Q^2) + \frac{3}{4} \right) ,$$
(4.33)

где

$$f(x,Q^2) = \frac{1}{4} \left(\frac{2x}{1-x} \left(\ln \frac{Q^2}{m^2 x (1-x+\frac{m^2}{Q^2})} - \frac{1}{x} - \frac{m^2}{Q^2} \frac{1}{(1-x+\frac{m^2}{Q^2})} \right) + \frac{1+x}{x} \ln \frac{Q^2}{m^2 x (1-x+\frac{m^2}{Q^2})} - \frac{2}{1-x+\frac{m^2}{Q^2}} + \frac{1-x}{2x((1-x)+\frac{m^2}{Q^2})^2} \right).$$
(4.34)

Окончательно получаем

$$\begin{split} \delta^{e}_{\text{SF, hard}} &= \frac{\alpha}{\pi} \left\{ \left(\ln \frac{Q^{2}}{m^{2}} - 1 \right) \ln \frac{Q^{4}}{4\kappa_{0}^{\prime 2}} - \frac{1}{2} \left(\ln \frac{Q^{2}}{m^{2}} + 1 \right) \ln \frac{Q^{2}}{m^{2}} + 1 \\ &- \frac{Q}{4E} \left[\ln \frac{4E^{2}Q^{2}}{m^{4}} + 1 \right] \\ &- \frac{Q^{2}}{8E^{2}} \left[\frac{1}{4} \ln \frac{4E^{2}Q^{2}}{m^{4}} + \ln \frac{Q^{2}}{4E^{2}} + 1 \\ &+ \frac{2E + M}{M} \left(\frac{1}{8} \left(\left(\ln \frac{4E^{2}Q^{2}}{m^{4}} + 1 \right)^{2} - 1 \right) - \frac{1}{2} \ln^{2} \frac{Q^{2}}{m^{2}} + \frac{\pi^{2}}{6} - \frac{3}{2} \right) \right] \right\} \end{split}$$
(4.35)

Суммируя все вклады, мы не только воспроизводим формулу (4.18), но получаем и следующую поправку $\sim \frac{Q^2}{E^2}$:

$$\delta_{\text{vertex}}^{e} + \delta_{\text{SF, soft}}^{e} + \delta_{\text{SF, hard}}^{e} = \frac{\alpha}{\pi} \left\{ -\frac{Q}{4E} \left[\ln \frac{4E^{2}Q^{2}}{m^{4}} + 1 \right] - \frac{Q^{2}}{8E^{2}} \left[\frac{1}{4} \ln \frac{4E^{2}Q^{2}}{m^{4}} + \ln \frac{Q^{2}}{4E^{2}} + 1 + \frac{Q^{2}}{4E^{2}} + 1 \right] + \frac{2E + M}{M} \left(\frac{1}{8} \left(\left(\ln \frac{4E^{2}Q^{2}}{m^{4}} + 1 \right)^{2} - 1 \right) - \frac{1}{2} \ln^{2} \frac{Q^{2}}{m^{2}} + \frac{\pi^{2}}{6} - \frac{3}{2} \right) \right] \right\} .$$

$$(4.36)$$

4.4 Поправки высших порядков

Продемонстрированное выше сокращение, не ограничивается однопетлевым приближением и имеет место также и в более высоких порядках теории возмущений, по крайней мере, с логарифмической точностью. Это можно показать в партонной картине, развитой для теоретического описания глубоконеупругого электрон-протонного рассеяния [82—85], но применённой к «глубоконеупругому протон-электронному рассеянию». При фиксированном Q^2 оно может быть написано с логарифмической точностью в терминах «партонных функций распределения» $f_e^e(x,Q^2)$ и $f_e^{\bar{e}}(x,Q^2)$.

Формула (4.24) не использует никаких приближений. В условиях предложенного эксперимента (4.1) с использованием соотношения Каллана-Гросса [86] $f_2 = 2xf_1$ мы получаем из (4.24)

$$\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2}{Q^4} F_1^2(Q^2) \int_{x_0}^1 \frac{dx}{x} f_2(x,Q^2), \qquad (4.37)$$

где $x_0 = \frac{Q}{2E} \ll 1.$

В партонной картине [82—85], которая может использоваться с логарифмической точностью, структурные функции выражаются через партонные распределения в начальном электроне. Заряженные партоны в этом случае — это электроны и позитроны, так что

$$f_2 = x \left(f_e^e + f_e^{\bar{e}} \right) , \qquad (4.38)$$

где f_e^e и $f_e^{\bar{e}}$ – распределения электронов и позитронов в начальном электроне.

Позитронное распределение $f_e^{\bar{e}}$ появляется только в двухпетлевом приближении, поэтому в однопетлевом приближении вклад дает только f_e^e . Более того, в этом приближении f_e^e совпадает с распределением валентных электронов, f_e^v , которое несингулярно при малых x, так что нижний предел интегрирования x_0 может быть принят равным 0. Поэтому сокращение логарифмических вкладов в радиационные поправки, обсуждаемое в предыдущем разделе, имеет простое объяснение на языке партонных распределений: оно имеет место, т. к.

$$\int_{0}^{1} dx f_{e}^{v}\left(x, Q^{2}\right) = 1 \tag{4.39}$$

независимо от значений Q^2 . Напомним, что (4.39) является следствием сохранения заряда.

Достаточно неожиданно, но это сокращение может быть объяснено и с помощью теоремы Киношиты-Ли-Найнберга. Конечно, эта теорема не применима напрямую к процессу электрон-протонного рассеяния. Но она может быть применена к полностью инклюзивному рождению электронов, позитронов и фотонов фотоном с виртуальностью Q^2 . Используя соотношение из [82—85; 87; 88], которое означает в нашем случае равенство партонной функции распределения $f_e^e(x,Q^2)$ и «партонной функции фрагментации» $\bar{f}_e^e(x,Q^2)$ для инклюзивного сечения рождения электрона фотоном с виртуальностью Q^2 , можно связать процессы в перекрёстных каналах и доказать сокращение.

Начиная с двухпетлевого приближения ситуация становится более сложной. Радиационные поправки сильно зависят от того, что реально измеряется в эксперименте, и, если измеряется полностью инклюзивное сечение (4.37), они становятся большими. Причина в том, что в этом приближении протон мишени может взаимодействовать не только с рассеянным электроном, но и с одной из компонент электрон-позитронной пары, рождаемой этим электроном. В этом случае полное сечение взаимодействия виртуального фотона излученного протоном мишени с налетающим электроном не падает с энергией, в противовес тому, как ведет себя однопетлевое приближение, и большие вклады идут от области малых $(l \cdot q)$, или малых x в формуле (4.37). На языке партонных распределений это означает, что f_e^e и $f_e^{\bar{e}}$ становятся сингулярными при x = 0 и нижний предел нельзя брать равным 0. Очевидно, такие экспериментальные условия не самые лучшие. Кажется, что более предпочтительны условия, в которых рождение электрон-позитронных пар запрещено. В этом случае в уравнении (4.38) только f_e^v дает вклад и благодаря свойству (4.39) основные вклады в радиационные поправки сокращаются и в более высоких порядках теории возмущений.

4.5 Результаты

Постановка эксперимента, предложенная А. А. Воробьевым [79], обладает интересным свойством — сокращение главных вкладов в радиационные поправки. Мы показали это различными методами и с различной точностью. Наиболее простой и физически прозрачный метод — метод квазиреальных электронов [80], который может использоваться в однопетлевом приближении, имея логарифмическую точность. Оказывается, однако, что в однопетлевом приближении сокращение виртуальных и реальных поправок не ограничивается логарифмическим порядком, но и имеет место сокращение членов, не содержащих коллинеарных расходимостей (константных членов). Последний результат получен двумя способами: с использованием спектра тормозного излучения и методом структурных функций. Остаточный электронный вклад в радиационные поправки в рассматриваемой постановке эксперимента подавлен первой степенью отношения Q/E (вычислена также следующая поправка). Для экспериментальных условий, в которых запрещено рождение электрон-позитронных пар, сокращение не ограничивается однопетлевым приближением и с логарифмической точностью имеет место также и в высших порядков теории возмущений. Это было продемонстрировано с помощью метода партонных распределений [82-85], развитого для глубоконеупругого электрон-протонного рассеяния.

Заключение

В рамках диссертационного исследования было решено три задачи, связанных с изучением радиационных поправок к сечению упругого рассеяния электронов (и позитронов) на протоне.

- Выполнено сравнение между собой расчётов радиационных поправок к сечению упругого электрон-протонного рассеяния, основанных на мягкофотонном приближении. Проанализированы точные и приближенные выражения для амплитуд двухфотонного обмена в модели точечного протона. Обнаружено, что явные недостатки существующих подходов, применённых к отдельным диаграммам, компенсируются в полных выражениях для вклада в виртуальные радиационные поправки, и сделан вывод о том, что нельзя отдать предпочтение тому или иному расчёту. В то же время, в вычислениях радиационных поправок, связанных с излучением реального фотона, установлена неточность традиционной процедуры, которая привела к расхождению между предшествующими и более современными результатами.
- 2. Для анализа данных эксперимента на накопителе ВЭПП-3 в Институте ядерной физики им. Г. И. Будкера СО РАН потребовалось решение второй задачи: вычисления возможного вклада в радиационные поправки от тормозного излучения с учётом возбуждения Δ(1232). Этот вклад проанализирован с использованием приближенных аналитических методов и численного интегрирования. Обнаружено, что он не может повлиять на величину отношения сечений рассеяния электронов и позитронов на протонах, наблюдаемую в эксперименте ИЯФ.
- 3. Исследовано важное свойство эксперимента по измерению зарядового радиуса протона при регистрации протона отдачи: сокращение главных вкладов в радиационные поправки к дифференциальному по передаче импульса протону сечению упругого рассеяния. Представлено теоретическое описание механизма этого сокращения с помощью различных методов и с различной степень точности. В однопетлевом приближении получено сокращение не только членов, усиленных коллинеарными логарифмами, но и следующих (константных) членов. Двумя способами (с использованием спектра тормозного излучения и методом структурных

функций) показано, что остаточный вклад в радиационные поправки от взаимодействия электрона с электромагнитным полем подавлен первой степенью отношения Q/E. Сделано заключение об экспериментальных условиях, при которых сокращение с логарифмической точностью имеет место и в более высоких порядках теории возмущения.

Я искренне благодарен своему научному руководителю Фадину Виктору Сергеевичу за многочисленные обсуждения, постоянную поддержку и помощь. Также хотел бы принести свои извинения за все те сложности и задержки, которыми сопровождалась моя работа. Кроме того, я выражаю благодарность руководителям и коллективам теоретического отдела и лаборатории №2 Института ядерной физики им. Г. И. Будкера СО РАН без содействия и заинтересованности которых выполнение этой работы было бы невозможно.
Список литературы

- Hofstadter, R. Electron scattering from the proton [Текст] / R. Hofstadter, R. W. McAllister // Phys. Rev. – 1955. – Т. 98. – С. 217–218.
- McAllister, R. W. Elastic scattering of 188-MeV electrons from the proton and the α-particle [Teκcτ] / R. W. McAllister, R. Hofstadter // Phys. Rev. – 1956. – T. 102. – C. 851–856.
- Hofstadter, R. Electron scattering and nuclear structure [Текст] / R. Hofstadter // Rev. Mod. Phys. – 1956. – Июль. – Т. 28. – С. 214–254.
- Hofstadter, R. Splitting of the proton form factors and diffraction in the proton [Текст] / R. Hofstadter, F. Bumiller, M. Croissiaux // Phys. Rev. Lett. – 1960. – T. 5. – C. 263–265.
- 5. Scattering of high-energy electrons by protons [Текст] / R. R. Wilson [и др.] // Nature. 1960. Т. 188, № 4745. С. 94—97.
- 6. Proton form factors from elastic electron-proton scattering [Текст] / Т. Janssens [и др.] // Phys. Rev. 1966. Т. 142. С. 922–931.
- Measurement of the ratio of the proton form-factors, G_E/G_M, at high momentum transfers and the question of scaling [Текст] / J. Litt [и др.] // Phys. Lett. B. 1970. Т. 31. С. 40–44.
- Electromagnetic form factors of the proton at squared four-momentum transfers between 10 and 50 fm⁻² [Текст] / C. Berger [и др.] // Phys. Lett. – 1971. – T. 35B. – C. 87–89.
- 9. Measurement of proton and neutron electromagnetic form factors at squared four momentum transfers up to 3 (GeV/c)² [Текст] / W. Bartel [и др.] // Nucl. Phys. B. 1973. Т. 58. С. 429–475.
- Backward-angle electron-proton elastic scattering and proton electromagnetic form factors [Текст] / L. E. Price [и др.] // Phys. Rev. D. – 1971. – Т. 4. – C. 45–53.
- 11. Measurements of the proton elastic form-factors for $1 \le Q^2 \le 3 (\text{GeV}/c)^2$ at SLAC [Tekct] / R. C. Walker [et al.] // Phys. Rev. D. 1994. June. Vol. 49, issue 11. P. 5671-5689.

- 12. Measurements of the electric and magnetic form-factors of the proton from $Q^2 = 1.75$ to 8.83 (GeV/c)² [Текст] / L. Andivahis [и др.] // Phys. Rev. D. 1994. Нояб. Т. 50, вып. 9. С. 5491–5517.
- 13. Measurements of electron proton elastic cross-sections for $0.4 < Q^2 < 5.5 \,(\text{GeV}/c)^2$ [Текст] / М. Е. Christy [и др.] // Phys. Rev. C. -2004. T. 70. C. 015206.
- Rosenbluth, M. N. High energy elastic scattering of electrons on protons [Текст] / М. N. Rosenbluth // Phys. Rev. – 1950. – Т. 79. – С. 615–619.
- 15. G_{E_p}/G_{M_p} ratio by polarization transfer in $\vec{e}p \rightarrow e\vec{p}$ [Текст] / М. К. Jones [и др.] // Phys. Rev. Lett. 2000. Т. 84. С. 1398–1402.
- 16. Measurements of the elastic electromagnetic form factor ratio µ_pG_{Ep}/G_{Mp} via polarization transfer [Текст] / О. Gayou [и др.] // Phys. Rev. C. 2001. Т. 64. С. 038202.
- 17. Measurement of G_{E_p}/G_{M_p} in $\vec{e}p \to e\vec{p}$ to $Q^2 = 5.6 \text{ GeV}^2$ [Текст] / О. Gayou [и др.] // Phys. Rev. Lett. -2002. T. 88. C. 092301.
- 18. Proton elastic form-factor ratios to $Q^2 = 3.5 \text{ GeV}^2$ by polarization transfer [Текст] / V. Punjabi [и др.] // Phys. Rev. C. -2005. T. 71. C. 055202.
- 19. Recoil polarization measurements of the proton electromagnetic form factor ratio to Q² = 8.5 GeV² [Текст] / А. J. R. Puckett [и др.] // Phys. Rev. Lett. 2010. Т. 104. С. 242301.
- Arrington, J. How well do we know the electromagnetic form-factors of the proton? [Текст] / J. Arrington // Phys. Rev. C. – 2003. – Т. 68. – С. 034325.
- 21. Measurement of the two-photon exchange contribution to the elastic e[±]p scattering cross sections at the VEPP-3 storage ring [Текст] / I. A. Rachek [и др.] // Phys. Rev. Lett. 2015. Т. 114, № 6. С. 062005.
- 22. Towards a resolution of the proton form factor problem: new electron and positron scattering data [Текст] / D. Adikaram [и др.] // Phys. Rev. Lett. 2015. Т. 114. С. 062003.
- 23. Hard two-photon contribution to elastic lepton-proton scattering: Determined by the OLYMPUS experiment [Текст] / В. S. Henderson [и др.]. 2016.
- 24. The size of the proton [Текст] / R. Pohl [и др.] // Nature. 2010. Т. 466. С. 213—216.

- 25. Proton structure from the measurement of 2S 2P transition frequencies of muonic hydrogen [Текст] / А. Antognini [и др.] // Science. 2013. Т. 339. С. 417–420.
- 26. *Mohr*, *P. J.* CODATA recommended values of the fundamental physical constants: 2006 [Текст] / P. J. Mohr, B. N. Taylor, D. B. Newell // Rev. Mod. Phys. 2008. Т. 80, вып. 2. С. 633–730.
- 27. Muonic hydrogen and the proton radius puzzle [Текст] / R. Pohl [и др.] // Ann. Rev. Nucl. Part. Sci. 2013. Т. 63. С. 175–204.
- 28. *Carlson*, *C. E.* The proton radius puzzle [Текст] / C. E. Carlson // Prog. Part. Nucl. Phys. 2015. Т. 82. С. 59–77.
- 29. High-precision determination of the electric and magnetic form factors of the proton [Текст] / J. C. Bernauer [и др.] // Phys. Rev. Lett. 2010. Т. 105. C. 242001.
- 30. High-Precision Measurement of the Proton Elastic Form Factor Ratio $\mu_p G_E/G_M$ at low Q^2 [Текст] / X. Zhan [и др.] // Phys. Lett. B. 2011. Т. 705. С. 59-64.
- 31. A small proton charge radius from an electron-proton scattering experiment [Текст] / W. Xiong [и др.] // Nature. 2019. Т. 575, № 7781. С. 147–150.
- 32. The Rydberg constant and proton size from atomic hydrogen [Текст] / A. Beyer [и др.] // Science. 2017. Т. 358, № 6359. С. 79—85.
- 33. New measurement of the 1S-3S transition frequency of hydrogen: contribution to the proton charge radius puzzle [Текст] / Н. Fleurbaey [и др.] // Phys. Rev. Lett. 2018. Т. 120, № 18. С. 183001.
- 34. A measurement of the atomic hydrogen Lamb shift and the proton charge radius [Текст] / N. Bezginov [и др.] // Science. 2019. Т. 365, № 6457. С. 1007–1012.
- 35. Vorobyev, A. Precision measurement of the proton charge radius in electron proton scattering [Teκct] / A. Vorobyev // Proceedings, 8th Workshop on Hadron Structure and QCD: From Low to High Energies (HSQCD 2018): Gatchina, Russia, August 6-10, 2018. T. 16. 2019. C. 524–529. arXiv: 1905.03181 [nucl-ex].

- Mo, L. W. Radiative corrections to elastic and inelastic ep and μp scattering [Teκct] / L. W. Mo, Y.-S. Tsai // Rev. Mod. Phys. – 1969. – T. 41. – C. 205–235.
- 37. Maximon, L. C. Radiative corrections to electron-proton scattering [Текст] / L. C. Maximon, J. A. Tjon // Phys. Rev. C. 2000. Т. 62. С. 054320.
- 38. Yennie, D. R. Electromagnetic structure of nucleons [Текст] / D. R. Yennie, M. M. Lévy, D. G. Ravenhall // Rev. Mod. Phys. 1957. Янв. Т. 29, вып. 1. С. 144–157.
- 39. Ernst, F. J. Electromagnetic form factors of the nucleon [Текст] / F. J. Ernst,
 R. G. Sachs, K. C. Wali // Phys. Rev. 1960. Т. 119. С. 1105–1114.
- 40. *Hand*, *L. N.* Electric and magnetic form factors of the nucleon [Текст] / L. N. Hand, D. G. Miller, R. Wilson // Rev. Mod. Phys. 1963. Т. 35. C. 335.
- 41. Dombey, N. Scattering of polarized leptons at high energy [Текст] / N. Dombey // Rev. Mod. Phys. 1969. Т. 41. С. 236–246.
- 42. Akhiezer, A. I. Polarization effects in the scattering of leptons by hadrons [Текст] / А. I. Akhiezer, M. P. Rekalo // Sov. J. Part. Nucl. 1974. Т. 4. С. 277.
- 43. Arnold, R. G. Polarization transfer in elastic electron scattering from nucleons and deuterons [Текст] / R. G. Arnold, C. E. Carlson, F. Gross // Phys. Rev. C. 1981. Т. 23. С. 363.
- 44. Precision Rosenbluth measurement of the proton elastic form-factors [Текст] / I. A. Qattan [и др.] // Phys. Rev. Lett. 2005. Т. 94. С. 142301.
- 45. Bernauer, J. C. Proton charge radius and precision tests of QED [Текст] / J. C. Bernauer // 34th International Symposium on Physics in Collision (PIC 2014), September 16–20, 2014, Bloomington, Indiana, United States. 2014.
- 46. Yennie, D. R. The infrared divergence phenomena and high-energy processes [Текст] / D. R. Yennie, S. C. Frautschi, H. Suura // Annals Phys. 1961. Т. 13. С. 379–452.
- 47. *Tsai*, *Y.-S.* Radiative corrections to electron-proton scattering [Текст] / Y.-S. Tsai // Phys. Rev. 1961. Т. 122. С. 1898–1907.

- 48. Meister, N. Radiative corrections to high-energy scattering processes [Текст] / N. Meister, D. R. Yennie // Phys. Rev. 1963. Т. 130. С. 1210–1229.
- 49. Arrington, J. Review of two-photon exchange in electron scattering [Текст] / J. Arrington, P. G. Blunden, W. Melnitchouk // Prog. Part. Nucl. Phys. 2011. Т. 66. С. 782–833.
- *Ициксон*, К. Квантовая теория поля: Пер. с англ. [Текст]. Т. 1 / К. Ициксон, Ж.-Б. Зюбер. — М.: Мир, 1984.
- Берестецкий, В. Б. Квантовая электродинамика [Текст]. Т. IV / В. Б. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский. 3-Е изд., испр. М.: Наука. Гл. ред. физ.-мат. лит., 1989. (Теоретическая физика: Учеб. пособие. В 10 т.)
- 52. Partonic calculation of the two photon exchange contribution to elastic electron proton scattering at large momentum transfer [Текст] / Y. C. Chen [и др.] // Phys. Rev. Lett. 2004. Т. 93. С. 122301. arXiv: hep-ph/0403058 [hep-ph].
- 53. *Tsai*, *Y.-S.* Radiative corrections to electron scatterings [Текст] / Y.-S. Tsai. 1971. URL: http://www-public.slac.stanford.edu/sciDoc/docMeta.aspx? slacPubNumber=SLAC-PUB-0848 ; SLAC report.
- 54. Schwinger, J. S. Quantum electrodynamics. III: The electromagnetic properties of the electron: Radiative corrections to scattering [Текст] / J. S. Schwinger // Phys. Rev. 1949. Т. 76. С. 790–817.
- 55. Guichon, P. A. M. How to reconcile the Rosenbluth and the polarization transfer method in the measurement of the proton form-factors [Текст] / P. A. M. Guichon, M. Vanderhaeghen // Phys. Rev. Lett. 2003. Т. 91. С. 142303. arXiv: hep-ph/0306007 [hep-ph].
- 56. Carlson, C. E. Two-photon physics in hadronic processes [Текст] / C. E. Carlson, M. Vanderhaeghen // Ann. Rev. Nucl. Part. Sci. 2007. T. 57. C. 171–204.
- 57. Two-photon exchange in elastic electron–proton scattering [Текст] / A. Afanasev [и др.] // Prog. Part. Nucl. Phys. 2017. Т. 95. С. 245–278.
- Blunden, P. G. Two photon exchange and elastic electron proton scattering [Текст] / Р. G. Blunden, W. Melnitchouk, J. A. Tjon // Phys. Rev. Lett. – 2003. – Т. 91. – С. 142304. – arXiv: nucl-th/0306076 [nucl-th].

- 59. Delta resonance contribution to two-photon exchange in electron-proton scattering [Текст] / S. Kondratyuk [и др.] // Phys. Rev. Lett. 2005. Т. 95. С. 172503. arXiv: nucl-th/0506026 [nucl-th].
- 60. Blunden, P. G. Two-photon exchange in elastic electron-nucleon scattering [Текст] / Р. G. Blunden, W. Melnitchouk, J. A. Tjon // Phys. Rev. 2005. Т. С72. С. 034612. arXiv: nucl-th/0506039 [nucl-th].
- 61. Kondratyuk, S. Contribution of spin 1/2 and 3/2 resonances to two-photon exchange effects in elastic electron-proton scattering [Текст] / S. Kondratyuk, P. G. Blunden // Phys. Rev. 2007. Т. С75. С. 038201. arXiv: nucl-th/0701003 [nucl-th].
- 62. Zhou, H.-Q. Δ(1232) resonance contribution to two-photon exchange in electron-proton scattering revisited [Teκcτ] / H.-Q. Zhou, S. N. Yang // Eur. Phys. J. 2015. T. A51, № 8. C. 105. arXiv: 1407.2711 [nucl-th].
- 63. Borisyuk, D. Two-photon exchange in dispersion approach [Текст] / D. Borisyuk, A. Kobushkin // Phys. Rev. 2008. Т. С78. С. 025208. arXiv: 0804.4128 [nucl-th].
- 64. Borisyuk, D. On Δ resonance contribution to two-photon exchange amplitude [Teκct] / D. Borisyuk, A. Kobushkin // Phys. Rev. 2012. T. C86. C. 055204. arXiv: 1206.0155 [hep-ph].
- 65. Borisyuk, D. Two-photon-exchange amplitude with πN intermediate states: P₃₃ channel [Teκcτ] / D. Borisyuk, A. Kobushkin // Phys. Rev. 2014. T. C89, № 2. C. 025204. arXiv: 1306.4951 [hep-ph].
- 66. Borisyuk, D. Two-photon exchange amplitude with πN intermediate states: Spin-1/2 and spin-3/2 channels [Teκct] / D. Borisyuk, A. Kobushkin // Phys. Rev. - 2015. - T. C92, № 3. - C. 035204. - arXiv: 1506.02682 [hep-ph].
- 67. The OLYMPUS Experiment [Текст] / R. Milner [и др.] // Nucl. Instrum. Meth. – 2014. – Т. А741. – С. 1–17. – arXiv: 1312.1730 [physics.ins-det].
- 68. *'t Hooft*, *G*. Scalar one-loop integrals [Текст] / G. 't Hooft, M. Veltman // Nucl. Phys. B. 1979. Т. 153. С. 365–401.
- 69. A new event generator for the elastic scattering of charged leptons on protons [Текст] / А. V. Gramolin [и др.] // J. Phys. 2014. Т. G41, № 11. С. 115001. arXiv: 1401.2959 [nucl-ex].

- 70. Jones, H. F. Multipole gamma N Delta form-factors and resonant photoproduction and electroproduction [Текст] / Н. F. Jones, M. D. Scadron // Annals Phys. – 1973. – Т. 81. – С. 1–14.
- 71. *Pascalutsa*, *V*. Electromagnetic excitation of the Delta(1232)-resonance [Текст] / V. Pascalutsa, M. Vanderhaeghen, S. N. Yang // Phys. Rept. 2007. Т. 437. C. 125–232. arXiv: hep-ph/0609004 [hep-ph].
- 72. Review of Particle Physics [Текст] / К. А. Olive [и др.] // Chin. Phys. 2014. T. C38. – C. 090001.
- Mertig, R. FEYN CALC: Computer algebraic calculation of Feynman amplitudes [Текст] / R. Mertig, M. Bohm, A. Denner // Comput. Phys. Commun. – 1991. – Т. 64. – С. 345–359.
- 74. Shtabovenko, V. New Developments in FeynCalc 9.0 [Текст] / V. Shtabovenko,
 R. Mertig, F. Orellana // Comput. Phys. Commun. 2016. Т. 207. С. 432-444. arXiv: 1601.01167 [hep-ph].
- 75. Wolfram Mathematica [Teкст].
- 76. Brun, R. ROOT: An object oriented data analysis framework [Текст] / R. Brun,
 F. Rademakers // Nucl. Instrum. Meth. 1997. Т. АЗ89. С. 81–86.
- 77. *Kinoshita*, *T*. Mass singularities of Feynman amplitudes [Текст] / Т. Kinoshita // J. Math. Phys. 1962. Т. 3. С. 650–677.
- *Lee*, *T. D.* Degenerate Systems and Mass Singularities [Текст] / Т. D. Lee,
 M. Nauenberg // Phys. Rev. 1964. Т. 133. B1549–B1562. [,25(1964)].
- 79. Vorobyev, A. A. Project for precision measurement of the proton charge radius in electron-proton scattering [Текст] / A. A. Vorobyev // Talk given at the International Conference "Hadron Structure and QCD: from Low to High Energies"(HSQCD2018), August 6-10, 2018, Gatchina, Russia. – 2018.
- Baier, V. N. Quasireal electron method in high-energy quantum electrodynamics [Текст] / V. N. Baier, V. S. Fadin, V. A. Khoze // Nucl. Phys. B. 1973. Т. 65. С. 381–396.
- Байер, В. Н. Излучение релятивистских электронов [Текст] / В. Н. Байер,
 В. С. Фадин, В. М. Катков. М.: Атомиздат, 1973.

- 82. Gribov, V. N. Deep inelastic ep scattering in perturbation theory [Текст] / V. N. Gribov, L. N. Lipatov // Sov. J. Nucl. Phys. 1972. Т. 15. С. 438-450.
- 83. Gribov, V. N. e⁺e⁻ pair annihilation and deep inelastic ep scattering in perturbation theory [Текст] / V. N. Gribov, L. N. Lipatov // Sov. J. Nucl. Phys. 1972. Т. 15. С. 675–684.
- 84. *Lipatov*, *L*. *N*. The parton model and perturbation theory [Текст] / L. N. Lipatov // Sov. J. Nucl. Phys. 1975. Т. 20. С. 94–102.
- 85. Altarelli, G. Asymptotic freedom in parton language [Текст] / G. Altarelli,
 G. Parisi // Nucl. Phys. B. 1977. Т. 126. С. 298–318.
- 86. Callan Jr., C. G. High-energy electroproduction and the constitution of the electric current [Текст] / С. G. Callan Jr., D. J. Gross // Phys. Rev. Lett. 1969. Т. 22. С. 156–159.
- 87. Bukhvostov, A. P. Parton distribution functions in perturbation theory [Текст] / A. P. Bukhvostov, L. N. Lipatov, N. P. Popov // Yad. Fiz. 1974. Т. 20. С. 532–548.
- 88. *Fishbane*, *P. M.* Inelastic e+ e- annihilation in perturbation theory [Текст] / P. M. Fishbane, J. D. Sullivan // Phys. Rev. D. 1972. Т. 6. С. 3568–3587.

Список рисунков

1	Диаграмма Фейнмана для рассеяния электрона на протоне в	
	приближении однофотонного обмена	12
2	Упругое <i>ер</i> -рассеяние в системе Брейта	16
3	Диаграммы Фейнмана для радиационных поправок к упругому	
	ep -рассеянию: поправки к электронной $\mathcal{M}^e_{ ext{vertex}}$ и протонной $\mathcal{M}^p_{ ext{vertex}}$	
	вершинам, и поправка \mathcal{M}_{vac} , связанная поляризация вакуума	20
4	Диаграммы Фейнмана для радиационных поправок к упругому	
	ep -рассеянию: амплитуды двухфотонного обмена \mathcal{M}_{box} и \mathcal{M}_{xbox}	21
5	Диаграммы Фейнмана для радиационных поправок к упругому	
	ep -рассеянию: тормозное излучение с электронной \mathcal{M}^e_{brem} и	
	протонной \mathcal{M}^p_{brem} линий	21
6	Разница (в единицах $lpha/\pi$ в зависимости от отношения Q^2/s) между	
	точными значениями вкладов диаграмм двухфотонного обмена δ_{box}	
	и δ_{xbox} в виртуальные радиационные поправки к сечению упругого	
	рассеяния электрона на точечном протоне и приближениями	
	Максимона-Тьена (сплошная линия — различие во вкладе	
	box-диаграммы, точечная — во вкладе xbox-диаграммы) и Мо-Тсая	
	(пунктирная линия — для box-диаграммы, штрихпунктирная — для	
	xbox-диаграммы)	37
7	Различие между точным значением вклада диаграмм двухфотонного	
	обмена $\delta_{2\gamma}$ в виртуальные радиационные поправки к сечению	
	рассеяния электрона на точечном протоне и приближениями	
	Максимона-Тьена (сплошная линяя) и Мо-Тсая (пунктирная линия) .	37
8	Разница (в единицах α/π в зависимости от параметра ε) между	
	точным значениям вклада диаграмм двухфотонного обмена в	
	виртуальные радиационные поправки к сечению рассеяния	
	электрона на точечном протоне и приближениями Максимона-Тьена	
	(сплошная линяя) и Мо-Тсая (пунктирная линия) при	
	$Q^2 = 1 \ (\Gamma \mathfrak{s} \mathbf{B}/c)^2$ и $Q^2 = 10 \ (\Gamma \mathfrak{s} \mathbf{B}/c)^2$	38

- 9 Разница (в единицах α/π) между результатами Максимона–Тьена и Мо–Тсая для реальных радиационных поправок в упругом ep-рассеянии при $Q^2 = 1$ (ГэВ/c)² и $Q^2 = 10$ (ГэВ/c)² в зависимости от параметра ε . Пунктирная линия на графике — вклад членов, не содержащих Z (излучение фотона электроном); штрихпунктирная — пропорциональных Z (интерференция), точечная — пропорциональных Z^2 (излучение фотона протоном), сплошная — общая разница между результатами двух групп авторов . 42

48

- 11 Вклад $\Delta(1232)$ в радиационные поправки, связанные с излучением реального фотона $\delta_{\Delta}^{(1)}$ для энергии $E_{\text{beam}} = 1.594 \text{ GeV}$ и передачи импульса $Q^2 = 1.51 (\text{GeV}/c)^2$, т.е. в условиях Run I, No. 1 эксперимента на накопителе ВЭПП-3 [21]. Серая сплошная линия представляет оценку (3.34); чёрная штрихпунктирная линия результат численного интегрирования формулы (3.31) с ограничением только W_{max}^2 ; чёрная сплошная линия — результат интегрирования с учётом ограничений на угол вылета протона $\Delta \theta_p = \Delta \varphi_p = 3^\circ$, соответствующих реальным ограничениям в экспериментальной точке Run I, No. 1 на накопителе ВЭПП-3 54

Список таблиц

Приложение А

Радиационные поправки в мягкофотонном приближении

А.1 Петлевые интегралы

Для вычисления интегралов с четырьмя знаменателями d_i ((2.19)–(2.23)) используется фейнмановская параметризация

$$\frac{1}{d_1 d_2 d_3 d_4} = \int dx_1 \dots dx_4 \,\,\delta\left(\sum x_i - 1\right) \,\,\Gamma(4) \,\,\frac{1}{(k_{\text{box}}^2 - \Delta_{\text{box}} + i0)^4},\tag{A.1}$$

где

$$k_{\text{box}} = k - (x_1 - x_3)\frac{q}{2} + x_2\frac{K}{2} - x_4\frac{P}{2},$$
 (A.2)

$$\Delta_{\text{box}} = (-t) x_1 x_3 + \lambda^2 (x_1 + x_3) + (-s) x_2 x_4 + M^2 x_4 (x_2 + x_4) + m^2 x_2 (x_2 + x_4).$$
(A.3)

Интегрирование по d^4k дает

$$D(s,t) = \frac{(4\pi)^2}{i} \int \frac{d^4k}{(2\pi)^4} \frac{1}{d_1 d_2 d_3 d_4} = \int dx_1 \dots dx_4 \delta\left(\sum x_i - 1\right) \frac{1}{\left(\Delta_{\text{box}} - i0\right)^2}.$$
(A.4)

Вводя новые переменные $x_1 = \sigma \alpha$, $x_3 = \sigma(1 - \alpha)$, $x_2 = (1 - \sigma)\beta$, $x_4 = (1 - \sigma)(1 - \beta)$, получаем

$$D(s,t) = \int_{0}^{1} d\alpha \int_{0}^{1} d\beta \int_{0}^{1} d\sigma$$
(A.5)
$$\frac{\sigma(1-\sigma)}{\left[\sigma^{2}(-t)\alpha(1-\alpha) + \lambda^{2}\sigma + (1-\sigma)^{2}\left((-s)\beta(1-\beta) + M^{2}(1-\beta) + m^{2}\beta\right) - i0\right]^{2}}.$$

Замечая, что λ^2 необходимо удерживать в знаменателе только при $\sigma \to 1$ можно заменить $\lambda^2 \sigma \to \lambda^2 \sigma^2$ и затем взять интеграл по σ :

$$D(s,t) = \frac{1}{2} \int_0^1 \frac{d\alpha}{(-t)\,\alpha(1-\alpha) + \lambda^2} \int_0^1 \frac{d\beta}{(-s)\,\beta(1-\beta) + M^2\,(1-\beta) + m^2\,\beta - i0}.$$
(A.6)

Вычисление оставшихся интегралов не представляет большого труда и дает

$$D(s,t) = \frac{2}{(-t)\sqrt{(M^2 + m^2 - s)^2 - 4m^2M^2}} \ln\left(\frac{-t}{\lambda^2}\right) \times$$
(A.7)

$$\times \ln\left(\frac{M^2 + m^2 - s + \sqrt{(M^2 + m^2 - s)^2 - 4m^2M^2}}{2Mm}\right).$$

Формулы (2.37) и (2.38) получаются из (2.35) и (2.36) с помощью этого результата. Для получения (2.38) надо сделать замену $p \leftrightarrow p'$, т. е. $s \leftrightarrow u$, а для получения (2.37) надо учесть, что в физической области *s*-канала нужно брать (А.7) на верхнем берегу разреза по *s* и удерживать только реальную часть.

При $|s - M^2| \gg m^2$ результат (А.6) упрощается:

$$D(s,t) = \frac{2}{t(s-M^2)} \ln\left(\frac{-t}{\lambda^2}\right) \ln\left(\frac{-s+M^2}{Mm}\right).$$
 (A.8)

Нам необходимы также некоторые интегралы, содержащие произведение трех d_i в знаменателе. Рассмотрим интеграл C_4 , содержащий в знаменателе произведение $d_1d_2d_3$. После фейнмановской параметризации

$$\frac{1}{d_1 d_2 d_3} = \int dx_1 \dots dx_3 \,\,\delta\left(\sum x_i - 1\right) \,\,\Gamma(3) \,\,\frac{1}{(k_{123}^2 - \Delta_{123})^3},\tag{A.9}$$

где

$$k_{123} = k - (x_1 - x_3)\frac{q}{2} + x_2\frac{K}{2},$$
 (A.10)

$$\Delta_{123} = (-t) x_1 x_3 + \lambda^2 (x_1 + x_3) + m^2 x_2^2.$$
(A.11)

Интегрирование по d^4k дает

$$C_4(t) = \frac{(4\pi)^2}{i} \int \frac{d^4k}{(2\pi)^4} \frac{1}{d_1 d_2 d_3} = -\int dx_1 \, dx_2 \, dx_3 \, \delta\left(\sum x_i - 1\right) \, \frac{1}{\Delta_{123}}.$$
 (A.12)

Интеграл не содержит расходимости при $\lambda \to 0$, поэтому массу фотона можно сразу положить равной нулю. Переходя к переменным $\sigma = x_1 + x_3$ и $\alpha = x_1/\sigma$ приходим к

$$C_4(t) = -\int_0^1 d\sigma \int_0^1 d\alpha \frac{\sigma}{\sigma^2(-t)\,\alpha(1-\alpha) + m^2(1-\sigma)^2}.$$
 (A.13)

Интегрируя по о, получаем

$$C_4(t) = -\frac{1}{2} \int_0^1 \frac{d\alpha}{(-t)\alpha(1-\alpha) + m^2} \left[\ln\left(\frac{(-t)\alpha(1-\alpha)}{m^2}\right) + \frac{\pi m}{\sqrt{(-t)\alpha(1-\alpha)}} \right].$$
(A.14)

Интегрирование по а дает

$$C_{4}(t) = -\frac{1}{\sqrt{t(t-4m^{2})}} \left[\frac{1}{2} \ln^{2} \left(\frac{\sqrt{1-\frac{4m^{2}}{t}}-1}{\sqrt{1-\frac{4m^{2}}{t}}+1} \right) + (A.15) + 2Li_{2} \left(\frac{\sqrt{1-\frac{4m^{2}}{t}}-1}{\sqrt{1-\frac{4m^{2}}{t}}+1} \right) + \frac{2\pi^{2}}{3} \right].$$

Здесь мы воспользовались следующими интегралами:

$$\frac{1}{2} \int_0^1 \frac{d\alpha}{\alpha(1-\alpha)+x} = \frac{1}{\sqrt{1+4x}} \ln\left(\frac{\sqrt{1+4x}+1}{\sqrt{1+4x}-1}\right),$$
 (A.16)

$$\frac{1}{2} \int_{0}^{1} d\alpha \, \frac{\ln \left(\alpha (1-\alpha)\right)}{\alpha (1-\alpha)+x} =$$

$$= \frac{1}{\sqrt{1+4x}} \left[Li_{2} \left(-\frac{\sqrt{1+4x}+1}{2x} \right) - Li_{2} \left(\frac{\sqrt{1+4x}-1}{2x} \right) \right],$$

$$\frac{1}{2} \int_{0}^{1} d\alpha \, \frac{1}{\sqrt{\alpha (1-\alpha)}} \frac{1}{(\alpha (1-\alpha)+x)} = \frac{\pi}{\sqrt{1+4x}\sqrt{x}}.$$
(A.17)
(A.17)
(A.18)

В пределе $m^2 \rightarrow 0$ имеем

$$C_4^{(0)}(t) = \frac{1}{t} \left(\frac{1}{2} \ln^2 \left(\frac{-t}{m^2} \right) + \frac{2\pi^2}{3} \right).$$
 (A.19)

Интеграл

$$C_2(t) = \frac{(4\pi)^2}{i} \int \frac{d^4k}{(2\pi)^4} \frac{1}{d_1 d_3 d_4}$$
(A.20)

получается из (А.15) заменой $m \to M$.

Для интеграла с $d_1 d_2 d_4$ в знаменателе,

$$C_3(s) = \frac{(4\pi)^2}{i} \int \frac{d^4k}{(2\pi)^4} \frac{1}{d_1 d_2 d_4} = -\int dx_1 \, dx_2 \, dx_4 \, \delta\left(\sum x_i - 1\right) \, \frac{1}{\Delta_{124}}, \quad (A.21)$$

где

$$\Delta_{124} = (-s) x_2 x_4 + m^2 x_2 (x_2 + x_4) + M^2 x_4 (x_2 + x_4) + \lambda^2 (1 - (x_2 + x_4)),$$
 (A.22)

вводя переменные $x_2 = \sigma \alpha$, $x_4 = \sigma (1 - \alpha)$, получим

$$C_{3}(s) = -\int_{0}^{1} d\alpha \int_{0}^{1} d\sigma \frac{\sigma}{\sigma^{2} \left((-s) \alpha (1-\alpha) + M^{2} (1-\alpha) + m^{2} \alpha\right) + \lambda^{2} (1-\sigma)}.$$
(A.23)

Замечая, что λ^2 необходимо учитывать только, если σ близко к нулю, проинтегрируем по переменной σ :

$$C_{3}(s) = -\frac{1}{2} \int_{0}^{1} \frac{d\alpha}{(-s) \alpha(1-\alpha) + M^{2}(1-\alpha) + m^{2} \alpha} \times \qquad (A.24)$$
$$\times \ln\left(\frac{(-s) \alpha(1-\alpha) + M^{2}(1-\alpha) + m^{2} \alpha}{\lambda^{2}}\right).$$

Интегрирование по α нетрудно выполнить в пределе $|s - M^2| \gg m^2$. В результате получаем:

$$C_{3}(s) = \frac{1}{s - M^{2}} \left(\ln \left(\frac{M m}{\lambda^{2}} \right) \ln \left(\frac{(-s) + M^{2}}{M m} \right) + \frac{1}{2} \ln \left(\frac{(-s) + M^{2}}{M^{2}} \right) \ln \left(\frac{(-s) + M^{2}}{m^{2}} \right) - Li_{2} \left(\frac{(-s)}{(-s) + M^{2}} \right) \right).$$
(A.25)

В физической области (при $s > M^2$) нужно брать значение этой функции на верхнем берегу разреза. При этом

$$Li_{2}\left(\frac{s}{s-M^{2}}\right) = -Li_{2}\left(\frac{s-M^{2}}{s}\right) + \frac{\pi^{2}}{3} - \frac{1}{2}\ln^{2}\left(\frac{s}{s-M^{2}}\right) - i\pi\ln\left(\frac{s}{s-M^{2}}\right).$$
(A.26)

Очевидно,

$$C_1(s) = \frac{(4\pi)^2}{i} \int \frac{d^4k}{(2\pi)^4} \frac{1}{d_2 d_3 d_4} = C_3(s).$$
 (A.27)

Для вычисления \mathcal{M}_{box} в случае рассеяния электрона на точечном протоне необходим также интеграл

$$J(s,t) = \int dx_1 \dots dx_4 \,\delta\left(\sum x_i - 1\right) \,\frac{1}{\Delta_{\text{box}}},\tag{A.28}$$

где Δ_{box} определено формулой (А.3). Этот интеграл не содержит инфракрасной расходимости, поэтому в Δ_{box} можно изначально положить $\lambda = 0$. Вычислим этот интеграл при $s - M^2 \gg m^2$. Так как он сходится при $m^2 \to 0$, то можно положить $\Delta_{\text{box}} = \Delta_{\text{box}}^0$,

$$\Delta_{\text{box}}^0 = (-t) x_1 x_3 + (-s) x_2 x_4 + M^2 x_4 (x_2 + x_4).$$
(A.29)

Интеграл удобно брать в области $(-s)+M^2 > 0$ и (-t) > 0, где он не имеет мнимой части; переход в физическую область дается аналитическим продолжением на верхний берег разреза по s.

Сначала положим $x_2 = 1 - x_1 - x_3 - x_4$ и проинтегрируем по x_1 :

$$J(s,t) = \int_{0}^{1} dx_{4} \int_{0}^{1-x_{4}} dx_{3} \int_{0}^{1-x_{3}-x_{4}} dx_{1} \times$$

$$\times \frac{1}{((-t) x_{3} - ((-s) + M^{2})x_{4}) x_{1} + ((-s) (1 - x_{3} - x_{4})x_{4} + M^{2} (1 - x_{3})x_{4})} =$$

$$= \int_{0}^{1} dx_{4} \int_{0}^{1-x_{4}} \frac{dx_{3}}{((-t) x_{3} - ((-s) + M^{2})x_{4})} \left[\ln ((-t) (1 - x_{3} - x_{4})x_{3} + M^{2} x_{4}^{2}) - \ln ((-s) (1 - x_{3} - x_{4})x_{4} + M^{2} (1 - x_{3})x_{4}) \right].$$
(A.30)

Далее введем новые переменные $x_3 = \sigma(1-\alpha)$, $x_4 = \sigma \alpha$ и проинтегрируем по σ :

$$J(s,t) = \int_{0}^{1} d\alpha \frac{1}{((-t)(1-\alpha) - ((-s) + M^{2})\alpha)} \times$$
(A.31)

$$\times \left[\frac{(-t)(1-\alpha)\ln\left(\frac{(1-\alpha)(-t)}{\alpha^{2}M^{2}}\right)}{((-t)(1-\alpha) - M^{2}\alpha^{2})} - \frac{((-s) + M^{2})\ln\left(\frac{(-s) + M^{2}}{M^{2}\alpha}\right)}{((-s) + M^{2} - M^{2}\alpha))} \right] =$$

$$= \frac{1}{((-s) + M^{2})^{2} + (-s)(-t)} \int_{0}^{1} d\alpha \left[\frac{M^{2}((-s) + M^{2})\ln\left(\frac{(-s) + M^{2}}{\alpha M^{2}}\right)}{(-s) + M^{2} - \alpha M^{2}} - \frac{M^{2}\left(\alpha\left((-s) + M^{2}\right) + (-t)\right)\ln\left(\frac{(1-\alpha)(-t)}{\alpha^{2}M^{2}}\right)}{(1-\alpha)(-t) - \alpha^{2}M^{2}} + \frac{\left((-s) + M^{2}\right)\left((-s) + M^{2} + (-t)\right)\ln\left(\frac{\alpha((-s) + M^{2})}{(1-\alpha)(-t)}\right)}{\alpha((-s) + M^{2}) - (1-\alpha)(-t)} \right].$$

В итоге получаем

$$J(s,t) = \frac{(-s) + M^2}{((-s) + M^2)^2 + (-s)(-t)} \left(\frac{1}{2} \ln^2 \left(\frac{(-s) + M^2}{(-t)}\right) - (A.32) - Li_2 \left(\frac{(-s)}{(-s) + M^2}\right) + \frac{2\pi^2}{3} - \frac{(-t)}{(-s) + M^2} \frac{M^2}{(-t)} f\left(\frac{M^2}{-t}\right) - \frac{M^2}{(-t)} g\left(\frac{M^2}{-t}\right)\right),$$

где

$$f(x) = \int_{0}^{1} d\rho \frac{\ln\left(\frac{1-\rho}{x\rho^{2}}\right)}{(1-\rho) - x\rho^{2}} =$$

$$= \frac{1}{\sqrt{1+4x}} \left[\frac{1}{2} \ln^{2} \left(\frac{\sqrt{1+4x} - 1}{\sqrt{1+4x} + 1} \right) + 2Li_{2} \left(\frac{\sqrt{1+4x} - 1}{\sqrt{1+4x} + 1} \right) + \frac{2\pi^{2}}{3} \right],$$
(A.33)

так что $f\left(\frac{M^2}{-t}\right) = t C_2(t)$ (см. (А.15), (А.20)),

$$g(x) = \int_0^1 d\rho \, \frac{\rho \, \ln\left(\frac{(1-\rho)}{x\rho^2}\right)}{(1-\rho) - x\rho^2} = \frac{1}{2x} \left(\frac{2\pi^2}{3} + \frac{1}{2}\ln^2 x - f(x)\right), \quad (A.34)$$

и мы воспользовались значениями интегралов

$$\int_0^1 \frac{dx}{a - bx} \ln\left(\frac{a}{bx}\right) = \frac{1}{b} \left[\frac{\pi^2}{6} - Li_2\left(\frac{a - b}{a}\right)\right],\tag{A.35}$$

$$\int_{0}^{1} \frac{dx}{ax - b(1 - x)} \ln\left(\frac{ax}{b(1 - x)}\right) = \frac{1}{a + b} \left[\frac{\pi^{2}}{2} + \frac{1}{2}\ln^{2}\left(\frac{a}{b}\right)\right].$$
 (A.36)

Рисунок 13 — Схематичное представление функции $K(p_i, p_j)$ в виде петлевой диаграммы.

В физической области канала рассеяния $s > M^2$

$$\begin{split} J(s,t) &= \frac{(-s) + M^2}{((-s) + M^2)^2 + (-s)(-t)} \left[\frac{1}{2} \ln^2 \left(\frac{s - M^2}{(-t)} \right) + \frac{1}{2} \ln^2 \left(\frac{s - M^2}{s} \right) (A.37) \\ &+ Li_2 \left(\frac{s - M^2}{s} \right) - \frac{\pi^2}{6} - \frac{(-t)}{(-s) + M^2} \frac{M^2}{(-t)} f\left(\frac{M^2}{-t} \right) - \frac{M^2}{(-t)} g\left(\frac{M^2}{-t} \right) - \\ &- i\pi \ln \left(\frac{s - M^2}{(-t)} \right) - i\pi \ln \left(\frac{s - M^2}{s} \right) \right], \end{split}$$

А.2 Функции $K(p_i, p_j)$

Функция $K(p_i, p_j)$ по сути является скалярным петлевым интегралом, соответствующим диаграмме на Рис. 13, в котором инфракрасные расходимости регуляризуются вводом массы фотона λ , а 4-импульсы p_i и p_j соответствуют реальным частицам (квадрат 4-импульса равен квадрату массы покоя). Действительно, используя фейнмановскую параметризацию, можно преобразовать петлевой интеграл

$$C((p_{i} - p_{j})^{2}) = \int \frac{\mathrm{d}^{4}k}{i\pi^{2}} \frac{1}{k^{2} + 2(p_{i}k)} \frac{1}{k^{2} + 2(p_{i}k)} \frac{1}{k^{2} - \lambda^{2}}$$

$$= \int \frac{\mathrm{d}^{4}k}{i\pi^{2}} \int_{0}^{1} \frac{\mathrm{d}x}{(k^{2} + 2(p_{x}k))^{2}} \frac{1}{k^{2} - \lambda^{2}}$$

$$= \int \frac{\mathrm{d}^{4}k}{i\pi^{2}} \int_{0}^{1} \mathrm{d}z \int_{0}^{1} \mathrm{d}x \frac{2z}{((k + zp_{x})^{2} - z^{2}p_{x}^{2} - (1 - z)\lambda^{2})^{3}} \quad (A.38)$$

$$= -\int_{0}^{1} \mathrm{d}x \int_{0}^{1} \mathrm{d}z \frac{z}{(z^{2}p_{x}^{2} + (1 - z)\lambda^{2})} = /\lambda^{2} \to 0/$$

$$= -\int_{0}^{1} \mathrm{d}x \int_{0}^{1} \mathrm{d}z \frac{z}{(z^{2}p_{x}^{2} + \lambda^{2})} = -\frac{1}{2} \int_{0}^{1} \frac{\mathrm{d}x}{p_{x}^{2}} \ln\left(\frac{p_{x}^{2}}{\lambda^{2}}\right),$$

и мы приходим к соотношению

$$K(p_i, p_j) = -2(p_i \cdot p_j) C((p_i - p_j)^2).$$
(A.39)

Для импульсов реальных частиц петлевые интегралы принимают вещественные значения. Заменой $p_j \rightarrow -p_j$ мы переходим к рассмотрению функции $K(p_i, -p_j)$ (предполагая, что p_i и p_j – по-прежнему импульсы реальных частиц). После такой замены у $K(p_i, -p_j)$ (и соответствующего петлевого интеграла) появляется мнимая часть, она связана с реальными промежуточными состояниями на диаграмме (Рис. 13).

При совпадающих аргументах определения (2.9) имеем

$$K(l,l) = K(l',l') = \ln\left(\frac{m^2}{\lambda^2}\right),\tag{A.40}$$

$$K(p,p) = K(p',p') = \ln\left(\frac{M^2}{\lambda^2}\right).$$
(A.41)

Функция K(l,l') входит в поправку к электронной вершине (см. (2.10)) и широко известна в литературе. Из книги Берестецкого, Лифшица и Питаевского [51] нетрудно получить представление

$$K(l,l') = \frac{\theta}{\tanh\theta} \ln \frac{m^2}{\lambda^2} + \frac{4}{\tanh\theta} \int_0^{\theta/2} d\varphi \,\,\varphi \tanh\varphi, \qquad (A.42)$$

в котором

$$\sinh^2\left(\frac{\theta}{2}\right) = \frac{-q^2}{4m^2}.$$
 (A.43)

Оставшийся интеграл выражается через дилогарифм:

$$K(l,l') = \frac{\xi^2 + 1}{\xi^2 - 1} \left[\ln \xi \ln \left(\frac{m^2}{\lambda^2} \right) + \frac{\pi^2}{6} - \frac{\ln^2 \xi}{2} + 2Li_2(-\xi) + 2\ln \xi \ln \left(1 + \xi \right) \right],$$
(A.44)

где

$$\xi = e^{\theta} = \frac{\sqrt{1 + \frac{4m^2}{-t} + 1}}{\sqrt{1 + \frac{4m^2}{-t} - 1}}.$$
(A.45)

В пределе $Q^2 \gg m^2$ получаем

$$K(l.l') = \ln\left(\frac{Q^2}{m^2}\right)\ln\left(\frac{m^2}{\lambda^2}\right) + \frac{1}{2}\ln^2\left(\frac{Q^2}{m^2}\right) - \frac{\pi^2}{6}.$$
 (A.46)

Выражение для K(p,p') получается заменой $m \to M$.

Рассмотрим теперь K(l, -p):

$$K(l, -p) = 2(l \cdot p) C_3(s),$$
 (A.47)

что с учетом (А.25) и (А.26) дает в физической области канала рассеяния

$$K(l, -p) = \ln\left(\frac{Mm}{\lambda^2}\right) \left(\ln\left(\frac{s-M^2}{Mm}\right) - i\pi\right) +$$

$$+\frac{1}{2} \left(\ln\left(\frac{s-M^2}{M^2}\right) - i\pi\right) \left(\ln\left(\frac{s-M^2}{m^2}\right) - i\pi\right) - Li_2\left(\frac{s}{s-M^2}\right).$$
(A.48)

В своей работе Тсай сделал замену $K(l, -p) \to K(l, p)$. Она эквивалентна замене $(-s) \to (s - 2M^2)$ в выражении (А.21), и в результате, пользуясь выражением для интеграла C_3 (А.25), получаем

$$K(l,p) = \ln\left(\frac{Mm}{\lambda^2}\right) \ln\left(\frac{s-M^2}{Mm}\right) +$$

$$+\frac{1}{2}\ln\left(\frac{s-M^2}{M^2}\right) \ln\left(\frac{s-M^2}{m^2}\right) - Li_2\left(\frac{s-2M^2}{s-M^2}\right).$$
(A.49)

Сравнивая (А.48) и (А.49), находим разницу

$$Re\left(K(l,-p)\right) - K(l,p) = -\frac{\pi^2}{2} - Re\left(Li_2\left(1 + \frac{M^2}{s - M^2}\right)\right) + Li_2\left(1 - \frac{M^2}{s - M^2}\right), \quad (A.50)$$

ИЛИ

$$Re\left(K(l,-p)\right) - K(l,p) = -\frac{\pi^2}{2} + \int_{1-\frac{M^2}{s-M^2}}^{1+\frac{M^2}{s-M^2}} \frac{dt}{t} \ln|1-t|.$$
 (A.51)

Перейдем к функции K(l,p'). Легко видеть, что

$$K(l,p') = -2(l \cdot p') C_3(u), \qquad (A.52)$$

так что из (А.25) получаем

$$K(l,p') = \ln\left(\frac{M\,m}{\lambda^2}\right) \ln\left(\frac{(-u) + M^2}{M\,m}\right) +$$

$$+ \frac{1}{2} \ln\left(\frac{(-u) + M^2}{M^2}\right) \ln\left(\frac{(-u) + M^2}{m^2}\right) - Li_2\left(\frac{(-u)}{(-u) + M^2}\right).$$
(A.53)

Функции $K(p_i, p_j)$ для импульсов на массовой поверхности зависят только от скалярного произведения $(p_i \cdot p_j)$, поэтому

$$K(l',p') = K(l,p), \quad K(l',-p') = K(l,-p),$$
 (A.54)

$$K(p,l') = K(l,p').$$
 (A.55)

А.3 Амплитуды двухфотонного обмена в процессе упругого рассеяния электрона на точечном протоне

Рассмотрим выражение для box-диаграммы (2.17) в случае рассеяния электрона на точечном протоне

$$i\mathcal{M}_{\text{box}} = Z^2 e^4 \int \frac{d^4k}{(2\pi)^4} \frac{1}{d_1 d_2 d_3 d_4} \times$$

$$\times \left(\bar{u}_{l'} \gamma^{\mu} \left(\hat{k} + \frac{\hat{K}}{2} + m \right) \gamma^{\nu} u_l \right) \left(\bar{U}_{p'} \gamma^{\mu} \left(-\hat{k} + \frac{\hat{P}}{2} + M \right) \gamma^{\nu} U_p \right).$$
(A.56)

Используя для краткости обозначение

$$\bar{u}_{l'}Au_l\,\bar{U}_{p'}BU_p = (A\otimes B)$$

и соотношения

$$\gamma^{\mu}\gamma^{\rho}\gamma^{\nu} = g^{\mu\rho}\gamma^{\nu} + g^{\rho\nu}\gamma^{\mu} - g^{\mu\nu}\gamma^{\rho} + i\varepsilon^{\mu\nu\rho\sigma}\gamma^{\sigma}\gamma^{5}, \quad \varepsilon^{0123} = 1, \ \gamma^{5} = -i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3},$$
(A.57)

$$\frac{\left(\gamma^{\mu}\hat{a}\gamma^{\nu}\otimes\gamma^{\mu}b\gamma^{\nu}\right)}{2} = (ab)\left[\left(\gamma^{\mu}\otimes\gamma^{\mu}\right) + \left(\gamma^{\mu}\gamma^{5}\otimes\gamma^{\mu}\gamma^{5}\right)\right] + \left(\hat{b}\otimes\hat{a}\right) - \left(\hat{b}\gamma^{5}\otimes\hat{a}\gamma^{5}\right),\tag{A.58}$$

$$2\left(\frac{P}{2}-k\right)\left(\frac{K}{2}+k\right) = s - d_2 - d_4 - m^2 - M^2,$$
 (A.59)

вводя фейнмановские параметры так же как в (А.1), переходя в числителе от k к k_{box} (А.2), используя уравнения Дирака и учитывая, что в интеграле по d^4k_{box} можно заменить $k_{\text{box}}^{\rho}k_{\text{box}}^{\sigma}$ на $-g^{\rho\sigma}\Delta_{\text{box}}/2$, а линейные по k_{box} и по q (т. е. по разности $x_1 - x_3$) члены зануляются (первое обстоятельство очевидно, а второе, являющееся следствием Т-инвариантности, видно из симметрии знаменателя и области интегрирования относительно замены $x_1 \leftrightarrow x_3$), получаем

$$i\mathcal{M}_{\text{box}} = \frac{Z^2 e^4}{(2\pi)^4} \int dx_1 \dots dx_4 \,\Gamma(4) \,\delta\left(\sum x_i - 1\right) \int \frac{d^4 k_{\text{box}}}{(k_{\text{box}}^2 - \Delta_{\text{box}} - i0)^4}$$
(A.60)

$$\left\{ \left(s - d_2 - d_4 - m^2 - M^2\right) \left(\left(\gamma^{\mu} \otimes \gamma^{\mu}\right) + \left(\gamma^{\mu}\gamma^5 \otimes \gamma^{\mu}\gamma^5\right) \right) \right. \\ \left. + \Delta_{\text{box}} \left(\left(\gamma^{\mu} \otimes \gamma^{\mu}\right) - \left(\gamma^{\mu}\gamma^5 \otimes \gamma^{\mu}\gamma^5\right) \right) - 2(x_1 - x_3)^2 \, mM \left(\gamma^5 \otimes \gamma^5\right) + \right. \\ \left. + \frac{1}{2}(1 - x_2)(1 - x_4) \left[\left(\hat{P} \otimes \hat{K}\right) - \left(\hat{P}\gamma^5 \otimes \hat{K}\gamma^5\right) \right] - Mx_4^2 \left(\hat{P} \otimes 1\right) - \right. \\ \left. - mx_2^2 \left(1 \otimes \hat{K}\right) - 2(2 - x_2 - x_4 - x_2x_4)mM \left(1 \otimes 1\right) + \right. \\ \left. + mM \left(\gamma^{\mu}\gamma^{\nu} \otimes \gamma^{\mu}\gamma^{\nu}\right) + \frac{i\varepsilon^{\mu\nu\rho\sigma}}{2} \left(M(x_4P + (1 - x_2)K)^{\sigma} \left(\gamma^{\rho}\gamma^5 \otimes \gamma^{\mu}\gamma^{\nu}\right) + \right. \\ \left. + m(x_2K + (1 - x_4)P)^{\sigma} \left(\gamma^{\mu}\gamma^{\nu} \otimes \gamma^{\rho}\gamma^5\right) \right) \right\}.$$

Как известно, общий вид *P*- и *T*-инвариантной амплитуды рассеяния фермиона на на фермионе содержит шесть независимых спиновых структур. Выбрав эти структуры в виде

$$\left(\boldsymbol{\gamma}^{\mu}\otimes\boldsymbol{\gamma}^{\mu}\right), \ \left(\boldsymbol{\gamma}^{\mu}\boldsymbol{\gamma}^{5}\otimes\boldsymbol{\gamma}^{\mu}\boldsymbol{\gamma}^{5}\right), \left(\frac{\hat{P}}{2M}\otimes\boldsymbol{1}\right), \ \left(\boldsymbol{1}\otimes\frac{\hat{K}}{2m}\right), \ \left(\boldsymbol{1}\otimes\boldsymbol{1}\right), \ \left(\boldsymbol{\gamma}^{5}\otimes\boldsymbol{\gamma}^{5}\right),$$
(A.61)

мы можем выразить (А.60) через них с помощью соотношений

$$\left(\hat{P}\otimes\hat{K}\right) = (s-u)\left(\gamma^{\mu}\otimes\gamma^{\mu}\right) + t\left(\gamma^{\mu}\gamma^{5}\otimes\gamma^{\mu}\gamma^{5}\right) + 4mM\left(\gamma^{5}\otimes\gamma^{5}\right), \quad (A.62)$$

$$\left(\hat{P}\gamma^{5}\otimes\hat{K}\gamma^{5}\right) = \frac{(t-4M^{2})(t-4m^{2})}{t}\left(\gamma^{\mu}\otimes\gamma^{\mu}\right) + (A.63) + (s-u)\left[\left(\gamma^{\mu}\gamma^{5}\otimes\gamma^{\mu}\gamma^{5}\right) + \frac{4mM}{t}\left(\left(1\otimes1\right) + \left(\gamma^{5}\otimes\gamma^{5}\right)\right)\right] + \frac{4(t-4m^{2})}{t}\left[M^{2}\left(\frac{\hat{P}}{2M}\otimes1\right) + m^{2}\left(1\otimes\frac{\hat{K}}{2m}\right)\right],$$

$$mM\left(\gamma^{\mu}\gamma^{\nu}\otimes\gamma^{\mu}\gamma^{\nu}\right) = \frac{8m^{2}M^{2}}{t}\left[\left(\frac{\hat{P}}{2M}\otimes1\right) + \left(1\otimes\frac{\hat{K}}{2m}\right) - (\gamma^{\mu}\otimes\gamma^{\mu})\right]A.64\right) + \frac{2mM}{t}\left[\left(2t - (s - u)\right)\left(1\otimes1\right) - (s - u)\left(\gamma^{5}\otimes\gamma^{5}\right)\right],$$

 $i\varepsilon^{\mu\nu\rho\sigma}P^{\sigma}\left(\gamma^{\rho}\gamma^{5}\otimes\gamma^{\mu}\gamma^{\nu}\right) = -4M\left(\gamma^{\mu}\gamma^{5}\otimes\gamma^{\mu}\gamma^{5}\right) - 4m\left(\gamma^{5}\otimes\gamma^{5}\right), \text{ (A.65)}$

$$i\varepsilon^{\mu\nu\rho\sigma}K^{\sigma}\left(\gamma^{\rho}\gamma^{5}\otimes\gamma^{\mu}\gamma^{\nu}\right) = -4M\frac{(t-4m^{2})}{t}\left[\left(\gamma^{\mu}\otimes\gamma^{\mu}\right) - \left(\frac{\hat{P}}{2M}\otimes1\right)\right]A.66)$$
$$-\frac{16m^{2}M}{t}\left(1\otimes\frac{\hat{K}}{2m}\right) + \frac{4m(s-u)}{t}\left[\left(1\otimes1\right) + \left(\gamma^{5}\otimes\gamma^{5}\right)\right],$$

и соотношений для $i\varepsilon^{\mu\nu\rho\sigma}K^{\sigma}(\gamma^{\mu}\gamma^{\nu}\otimes\gamma^{\rho}\gamma^{5})$ и $i\varepsilon^{\mu\nu\rho\sigma}P^{\sigma}(\gamma^{\mu}\gamma^{\nu}\otimes\gamma^{\rho}\gamma^{5})$, получающихся из двух последних уже выписанных с помощью замены $l \leftrightarrow p, l' \leftrightarrow p', m \leftrightarrow M$ и перестановки сомножителей в \otimes - произведении. Справедливость этих соотношений легко проверить в системе центра инерции аннигиляционного канала, переходя от биспиноров к двухкомпонентным спинорам. Используя их, получаем

$$i\mathcal{M}_{\text{box}} = \frac{Z^2 e^4}{(2\pi)^4} \int dx_1 \dots dx_4 \ \Gamma(4) \ \delta\left(\sum x_i - 1\right) \int \frac{d^4 k_{\text{box}}}{(k_{\text{box}}^2 - \Delta_{\text{box}} - i0)^4} \times$$
(A.67)

$$\times \left\{ \left(2(s - m^2 - M^2)(1 - x_2 - x_4) + \frac{2x_2 x_4(st - 4m^2 M^2)}{t} + 2\Delta_{\text{box}} \right) \times \right. \\ \left. \times (\gamma^{\mu} \otimes \gamma^{\mu}) + \left((s - m^2 - M^2)(x_2 + x_4 - x_2 x_4) - d_2 - d_4 - \Delta_{\text{box}} - \right. \\ \left. -2m^2 x_2 - 2M^2 x_4 \right) \left[(\gamma^{\mu} \otimes \gamma^{\mu}) + \left(\gamma^{\mu} \gamma^5 \otimes \gamma^{\mu} \gamma^5 \right) \right] + \right. \\ \left. + 2M^2 \left((1 - x_4) x_4 + \frac{x_2 x_4(4m^2 - t)}{t} \right) \left(\frac{\hat{P}}{2M} \otimes 1 \right) + \right. \\ \left. + 2m^2 \left((1 - x_2) x_2 + \frac{x_2 x_4(4M^2 - t)}{t} \right) \left(1 \otimes \frac{\hat{K}}{2m} \right) + \right. \\ \left. + 2mM \left(x_2 + x_4 - \frac{2x_2 x_4(s - m^2 - M^2)}{t} \right) (1 \otimes 1) + \right. \\ \left. + 2mM \left(1 - 2x_2 - 2x_4 - \frac{2x_2 x_4(s - m^2 - M^2)}{t} - (x_1 - x_3)^2 \right) (\gamma^5 \otimes \gamma^5) \right\}.$$

Заметим, что при интегрировании по d^4k_{box} можно сделать замену $(s - m^2 - M^2)(x_2 + x_4) \rightarrow 2\Delta_{\text{box}} + d_2 + d_4 + 2m^2x_2 + 2M^2x_4$, поскольку разница между этими выражениями линейна по k_{box} .

В пределе $m \rightarrow 0$ имеем

$$i\mathcal{M}_{\text{box}} = \frac{Z^2 e^4}{(2\pi)^4} \int dx_1 \dots dx_4 \ \Gamma(4) \ \delta\left(\sum x_i - 1\right) \int \frac{d^4 k_{\text{box}}}{(k_{\text{box}}^2 - \Delta_{\text{box}} - i0)^4} \times (A.68) \\ \times \left\{ \left(2(s - M^2) - 2d_2 - 2d_4 - 4M^2 x_4 + 2s \, x_2 x_4 - 2\Delta_{\text{box}} \right) (\gamma^{\mu} \otimes \gamma^{\mu}) + \left(-x_2 x_4 (s - M^2) + \Delta_{\text{box}} \right) \left[(\gamma^{\mu} \otimes \gamma^{\mu}) + (\gamma^{\mu} \gamma^5 \otimes \gamma^{\mu} \gamma^5) \right] + 2M^2 \left(x_4 - (x_2 + x_4) x_4 \right) \left[(\gamma^{\mu} \otimes \gamma^{\mu}) + \left(\gamma^{\mu} \otimes \frac{\sigma^{\mu\nu} q^{\nu}}{2M} \right) \right] \right\}.$$

В Приложении А.1 мы вычислили все интегралы необходимые для нахождения явного вида \mathcal{M}_{box} . Единственное, что нужно сделать — это преобразовать члены, содержащие только x_4 в первой степени. Для box-амплитуды из (А.2) получаем:

$$x_4 = -2\left((k_{\text{box}} - k)\frac{K^2 P - (KP) K}{K^2 P^2 - (KP)^2}\right).$$
(A.69)

Члены пропорциональные k_{box} обращаются в нуль при интегрировании по d^4k_{box} , поэтому получаем

$$x_4 = -\frac{2K^2}{K^2 P^2 - (KP)^2} (-kP) - \frac{2(KP)}{K^2 P^2 - (KP)^2} (kK).$$
 (A.70)

Члены, содержащие k мы перепишем через d_i :

$$x_{4} = -\frac{2K^{2}}{K^{2}P^{2} - (KP)^{2}} \left(d_{4} - \frac{d_{1} + d_{3} - q^{2}}{2} \right) -$$

$$-\frac{2(KP)}{K^{2}P^{2} - (KP)^{2}} \left(d_{2} - \frac{d_{1} + d_{3} - q^{2}}{2} \right).$$
(A.71)

Следует отметить, что вклад этого выражения в амплитуду конечен при $m \to 0$.

Наконец, выполняя в (А.68) интегрирование по k_{box} мы приходим к формуле (2.39).

А.4 Интегралы, возникающие при вычислении реальных радиационных поправок

В выражении (2.73) для реальных радиационных поправок возникают интегралы следующего вида (здесь мы придерживаемся обозначений из статьи Максимона и Тьена)

$$L_{ij} = \int \frac{d^3 \mathbf{k}}{\omega} \frac{1}{(p_i k)(p_j k)} \,\theta\left(\eta \Delta E - \frac{(k \cdot p_4)}{M}\right) = \int_{\lambda}^{\omega'_{max}} |\mathbf{k}'| \, d\omega' \int d\Omega'_{\gamma} \, \frac{1}{(p_i k)(p_j k)},$$
(A.72)

где штрихом обозначаются величины в специальной системе отсчёта; верхний предел интегрирования по энергии фотона $\omega'_{max} = \eta \Delta E$; интеграл по углу вылета фотона берется по всем возможным направлениям, индексы i,j в (А.72) пробегают значения от 1 до 4 (обозначения из основного текста диссертация согласуются следующим образом $p_1 = l$, $p_2 = p$, $p_3 = l'$, $p_4 = p'$). В рамках мягкофотонного приближения считаем, что

$$\varepsilon_1' = \varepsilon_3, \quad \varepsilon_3' = \varepsilon_1, \quad \varepsilon_2' = \varepsilon_1 + M - \varepsilon_3, \quad \varepsilon_4' = M$$
 (A.73)

Как уже было сказано выше, результат Мо и Тсая воспроизводится после замены $|\mathbf{k}'| \rightarrow \omega'$ в выражении (А.72), т. е. он получается из результата Максимона и Тьена заменой функций L_{ij} на \tilde{L}_{ij} , где

$$\tilde{L}_{ij} = \int_{\lambda}^{\omega'_{max}} \omega' \, d\omega' \int d\Omega'_{\gamma} \, \frac{1}{(p_i k)(p_j k)}.$$
(A.74)

Используя параметризацию

$$\frac{1}{(kp_i)(kp_j)} = \int_0^1 \frac{dx}{(kp_x)^2},$$
 (A.75)

где $p_x = xp_i + (1-x)p_j$, и проинтегрировав по углам и энергии фотона, получаем

$$L_{ij} = \int_0^1 dx \frac{2\pi}{p_x^2} \left[2 \ln\left(\frac{2\omega'_{max}}{\lambda}\right) + \frac{p_x^0}{|\mathbf{p}_x|} \ln\left(\frac{p_x^0 - |\mathbf{p}_x|}{p_x^0 + |\mathbf{p}_x|}\right) \right], \qquad (A.76)$$

$$\tilde{L}_{ij} = \int_0^1 dx \frac{2\pi}{p_x^2} \left[2 \ln\left(\frac{2\omega'_{max}}{\lambda}\right) + \ln\left(\frac{p_x^2}{4\left(p_x^0\right)^2}\right) \right].$$
(A.77)

При совпадающих индексах удобно напрямую пользоваться этими соотношениями, получая в пределе $m \ll \varepsilon_1, \varepsilon_3$

$$\frac{L_{11}}{4\pi} = \frac{1}{m^2} \left[\ln \left(\frac{2\eta \, \Delta E}{\lambda} \right) - \ln \left(\frac{2\varepsilon_3}{m} \right) \right] = \frac{\tilde{L}_{11}}{4\pi},\tag{A.78}$$

$$\frac{L_{33}}{4\pi} = \frac{1}{m^2} \left[\ln\left(\frac{2\eta\,\Delta E}{\lambda}\right) - \ln\left(\frac{2\varepsilon_1}{m}\right) \right] = \frac{\tilde{L}_{33}}{4\pi},\tag{A.79}$$

$$\frac{L_{22}}{4\pi} = \frac{1}{M^2} \left[\ln\left(\frac{2\eta\,\Delta E}{\lambda}\right) - \frac{\varepsilon_4}{|\mathbf{p}_4|} \ln\left(\frac{\varepsilon_4 + |\mathbf{p}_4|}{M}\right) \right],\tag{A.80}$$

$$\frac{\tilde{L}_{22}}{4\pi} = \frac{1}{M^2} \left[\ln\left(\frac{2\eta\,\Delta E}{\lambda}\right) - \ln\left(\frac{2\varepsilon_4}{M}\right) \right],\tag{A.81}$$

$$\frac{L_{44}}{4\pi} = \frac{1}{M^2} \left[\ln \left(\frac{2\eta \, \Delta E}{\lambda} \right) - 1 \right],\tag{A.82}$$

$$\frac{\tilde{L}_{44}}{4\pi} = \frac{1}{M^2} \left[\ln\left(\frac{2\eta\,\Delta E}{\lambda}\right) - \ln\left(\frac{2M}{M}\right) \right]. \tag{A.83}$$

При $i \neq j$ вычисление интегралов требует усилий. Удобный трюк был предложен в работе [68]. Очевидно, замена $p_i \to \alpha p_i$ изменяет значение интеграла в α^{-1} раз. В то же время, при выборе α таким, чтобы выполнялось условие $(\alpha p_i - p_j)^2 = 0$, интегралы (А.76) и (А.77) с заменой $p_i \to \alpha p_i$ значительно упрощаются, поскольку после нее p_x^2 становится линейным по x. Результат представляется следующим образом (в формулах, приведенных ниже, не требуется малость массы m):

$$L_{ij} = \frac{2\pi}{\sqrt{(p_i p_j)^2 - m_i^2 m_j^2}} \left(S_{ij}^{(1)} + S_{ij}^{(2)} \right),$$
(A.84)

где

$$S_{ij}^{(1)} = 2 \ln \left(\frac{(p_i p_j) + \sqrt{(p_i p_j)^2 - m_i^2 m_j^2}}{m_i m_j} \right) \ln \left(\frac{2\omega_{max}}{\lambda} \right),$$
(A.85)

$$S_{ij}^{(2)} = \ln^2 \left(\frac{\beta_i}{m_i M}\right) - \ln^2 \left(\frac{\beta_j}{m_j M}\right) + Li_2 \left(1 - \frac{\beta_i (lp')}{\gamma_{ij} M^2}\right) +$$
(A.86)

$$+Li_{2}\left(1-\frac{m_{\tilde{i}}(lp)}{\gamma_{ij}\beta_{i}}\right)-Li_{2}\left(1-\frac{\beta_{j}(lp)}{\alpha\gamma_{ij}M^{2}}\right)-Li_{2}\left(1-\frac{m_{j}(lp)}{\alpha\gamma_{ij}\beta_{j}}\right),$$

$$\alpha = \frac{(p_i p_j) + \sqrt{(p_i p_j)^2 - m_i^2 m_j^2}}{m_i^2}, \quad l = \alpha p_i - p_j, \tag{A.87}$$

$$\beta_k = (p_k t) + \sqrt{(p_k t)^2 - m_k^2 M^2}, \quad \gamma_{ij} = \sqrt{(p_i p_j)^2 - m_i^2 m_j^2}.$$
 (A.88)

Функции \tilde{L}_{ij} записываются в аналогичном виде:

$$\tilde{L}_{ij} = \frac{2\pi}{\sqrt{(p_i p_j)^2 - m_i^2 m_j^2}} \left(S_{ij}^{(1)} + \tilde{S}_{ij}^{(2)} \right), \tag{A.89}$$

где инфракрасно расходящаяся часть $S_{ij}^{(1)}$ выделена так же, как и в L_{ij} (A.84). Выпишем явные выражения для функций $S_{ij}^{(2)}$ и $\tilde{S}_{ij}^{(2)}$ в пределе малой мас-

сы электрона:

$$S_{13}^{(2)} = -\ln^2\left(\frac{2\varepsilon_1}{m}\right) - \ln^2\left(\frac{2\varepsilon_3}{m}\right) + \frac{1}{2}\ln^2\left(\sin^2\frac{\theta}{2}\right) - \frac{\pi^2}{6} + Li_2\left(\cos^2\frac{\theta}{2}\right) - \frac{\pi^2}{6},$$
(A.90)

$$\tilde{S}_{13}^{(2)} = -\ln^2\left(\frac{2\epsilon_1}{m}\right) - \ln^2\left(\frac{2\epsilon_3}{m}\right) + \frac{1}{2}\ln^2\left(\sin^2\frac{\theta}{2}\right) - \frac{\pi^2}{6}, \quad (A.91)$$

$$S_{14}^{(2)} = -\ln^2\left(\frac{2\varepsilon_3}{m}\right) - \frac{\pi^2}{6},$$
 (A.92)

$$\tilde{S}_{14}^{(2)} = -\ln^2\left(\frac{2\varepsilon_3}{m}\right) - \frac{\pi^2}{12},$$
 (A.93)

$$S_{34}^{(2)} = -\ln^2\left(\frac{2\varepsilon_1}{m}\right) - \frac{\pi^2}{6},$$
 (A.94)

$$\tilde{S}_{34}^{(2)} = -\ln^2\left(\frac{2\varepsilon_1}{m}\right) - \frac{\pi^2}{12},$$
(A.95)

$$S_{12}^{(2)} = -\ln^2\left(\frac{2\varepsilon_3}{m}\right) - \ln^2\xi + \frac{1}{2}\ln^2\left(\frac{\xi}{\eta}\right) - Li_2\left(1 - \frac{1}{\eta\,\xi}\right) + Li_2\left(1 - \frac{\eta}{\xi}\right) - \frac{\pi^2}{6},$$
(A.96)

$$\tilde{S}_{12}^{(2)} = -\ln^2\left(\frac{2\varepsilon_3}{m}\right) + \ln^2\eta + Li_2\left(1 - \eta \frac{2\varepsilon_4}{\xi}\right), \qquad (A.97)$$

$$S_{32}^{(2)} = -\ln^2\left(\frac{2\varepsilon_1}{m}\right) - \ln^2\xi + \frac{1}{2}\ln^2(\eta\,\xi) + Li_2\left(1 - \frac{1}{\eta\,\xi}\right) - Li_2\left(1 - \frac{\eta}{\xi}\right) - \frac{\pi^2}{6},$$
(A.98)

$$\tilde{S}_{32}^{(2)} = -\ln^2\left(\frac{2\varepsilon_1}{m}\right) - \ln^2\frac{1}{\eta} + Li_2\left(1 - \frac{2\varepsilon_4}{\eta\,\xi}\right),\tag{A.99}$$

$$S_{24}^{(2)} = -\ln^2 \xi - Li_2 \left(1 - \frac{1}{\xi^2}\right), \qquad (A.100)$$

$$\tilde{S}_{24}^{(2)} = -\ln^2 \xi - Li_2 \left(-\frac{1}{\xi^2}\right) - \frac{\pi^2}{12},\tag{A.101}$$

где $\xi = \frac{\varepsilon_4 + |\mathbf{p}_4|}{2M}.$

Приведённые выражения удобны для сравнения ответов двух групп авторов между собой и получения разницы $\delta_{real}^{MTj} - \delta_{real}^{MoT}$ (2.76).

Выражения для $S_{ij}^{(2)}$ можно найти в Приложении D статьи Максимона и Тьена [37], только следует отметить, что $S_{13}^{(2)}$ и $S_{24}^{(2)}$ там содержат опечатки (окончательный ответ для реальных радиационных поправок, тем не менее, правильный). В промежуточных результатах Тсая [47] фигурируют функции $I_{i,j}$, определение которых можно переписать следующим образом:

$$I_{i,j} = \frac{1}{2} K(p_i, p_j) - (p_i p_j) \frac{\tilde{L}_{ij}}{4\pi}.$$
 (A.102)

Выражения для функций $I_{i,j}$ есть в приложении статьи [47], но там также имеются неточности: ошибки в выражениях $I_{1,3}$ и $I_{2,4}$ (исправленные в более поздней работе Мо и Тсая [36]) и опечатка в знаке одного из слагаемых $I_{4,1}$ (исправленная в окончательном ответе для радиационных поправок в статье Тсая [47]).

Приложение Б

Вычисление вклада $\Delta(1232)$ в радиационные поправки

Б.1 Токовые тензоры и свертки

Переходный токовый тензор для процесса $ep \to e\Delta$

$$\begin{split} T_{p\to\Delta}^{\nu\rho}(p,\tilde{p}') &= \sum J_{p\to\Delta}^{\nu}(p,\tilde{p}')J_{p\to\Delta}^{\dagger\rho}(p,\tilde{p}') \\ &= \frac{1}{2}\operatorname{Tr}\left[(\hat{\tilde{p}}' + M_{\Delta})\mathcal{P}_{\alpha\beta}(\tilde{p}')\Gamma_{\gamma p\to\Delta}^{\nu\beta}(\tilde{p}',\tilde{q}) \left(\hat{p}_{2} + M \right)\Gamma_{\Delta\to\gamma p}^{\rho\alpha}(\tilde{p}',\tilde{q}) \right] \\ &= \frac{(M_{\Delta} + M)^{2}}{4M^{2}} \left((M_{\Delta} - M)^{2} - \tilde{q}^{2} \right) \\ &\times \left[\left(G_{M}^{*2}(\tilde{q}^{2}) + 3G_{E}^{*2}(\tilde{q}^{2}) \right) \left(-g^{\mu\nu} + \frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\tilde{q}^{2}} + \frac{\tilde{P}^{\mu}\tilde{P}^{\nu}}{\tilde{P}^{2}} \right) \right. \\ &+ \frac{-\tilde{q}^{2}}{M_{\Delta}^{2}} G_{C}^{*2}(\tilde{q}^{2}) \frac{\tilde{P}^{\mu}\tilde{P}^{\nu}}{\tilde{P}^{2}} \right], \end{split}$$
(5.1)

где $\tilde{q} = \tilde{p}' - p$,

$$\tilde{P}^{\mu} = P' - \frac{(P' \cdot \tilde{q})}{\tilde{q}^2} \tilde{q}^{\mu}, \quad P' = p + \tilde{p}',$$
(5.2)

и мы используем сумму по поляризационным состояниям Δ

$$\sum U_{\alpha}(t)\bar{U}_{\beta}(t) = (\hat{t} + M_{\Delta})\mathcal{P}_{\alpha\beta}(t), \qquad (\mathbf{5.3})$$

с $\mathcal{P}_{\alpha\beta}(t)$, который определен (3.27).

Для упругого процесса рассеяния в случае ультрарелятивистских электронов мы получим

$$L_{\nu\rho}(l,l') T_p^{\nu\rho}(p,p') = 4M^2 \left(4EE' \cos^2 \frac{\theta}{2} \right) \frac{\tau G_{\rm M}^2(q^2) + \varepsilon G_{\rm E}^2(q^2)}{\varepsilon(1+\tau)}$$
(5.4)

с τ и ε, определёнными в (1.13).

Аналогичным образом для процесса $ep \rightarrow e\Delta$:

$$L_{\nu\rho}(l,\tilde{l}') T_{p\to\Delta}^{\nu\rho}(p,\tilde{p}') = 4M^2 \left(4E\tilde{E}'\cos^2\frac{\theta}{2} \right) \frac{(M_{\Delta}+M)^2}{4M^2} \times \frac{\tilde{\tau} \left(G_{\rm M}^{*2}(\tilde{q}^2) + 3G_{\rm E}^{*2}(\tilde{q}^2) + \tilde{\epsilon}\frac{-\tilde{q}^2}{M_{\Delta}^2}G_{\rm C}^{*2}(\tilde{q}^2) \right)}{\tilde{\epsilon}(1+\tilde{\tau})},$$
(5.5)

с $\tilde{\tau}$ и $\tilde{\varepsilon}$, определёнными в (3.20).

Б.2 Приближенное выражение для $\left|\mathcal{M}_{\Delta}^{(1)}\right|^2$

Чтобы вычислить матричный элемент $\mathcal{M}_{\Delta}^{(1)}$ удобно рассмотреть его в специальной системе отсчета, в которой 4-вектор t не имеет пространственных компонент $t = l + p - l', t = \{W, 0\}$. В этой специальной системе отсчета мы получаем

$$q_e = \{q_e^0, \mathbf{q}_e\}, \qquad p = \{\mathscr{E}_2, -\mathbf{q}_e\}, \tag{E.6}$$

$$k = \{\boldsymbol{\omega}, \mathbf{k}\}, \qquad p' = \{\mathscr{E}_4, -\mathbf{k}\}, \tag{5.7}$$

где

$$q_e^0 = \frac{W^2 - M^2 + q_e^2}{2W}, \qquad \mathscr{E}_2 = \frac{W^2 + M^2 - q_e^2}{2W},$$
 (5.8)

$$\omega = \frac{W^2 - M^2}{2W}, \qquad \mathscr{E}_4 = \frac{W^2 + M^2}{2W},$$
 (5.9)

$$|\mathbf{q}_e| = \frac{\sqrt{(W-M)^2 - q_e^2}\sqrt{(W+M)^2 - q_e^2}}{2W}.$$
 (Б.10)

Мягкофотонное приближение означает

$$W \to M, \qquad \mathscr{E}_4 \to M.$$
 (5.11)

Нетрудно убедиться, что в специальной системе числитель пропагатора Δ (3.27) равен нулю для времениподобных индексов:

$$\mathcal{P}^{0\beta}(t) = \mathcal{P}^{\alpha 0}(t) = 0. \tag{E.12}$$

Для пространственноподобых индексов a,b = 1,2,3 мы имеем (здесь и далее мы используем латинские буквы для пространственных компонент 4-векоторов и тензоров):

$$(\hat{t} + M_{\Delta})\mathcal{P}^{ab}(t) \approx \frac{2M_{\Delta}}{3} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes (2\delta^{ab} - i\varepsilon^{abc}\boldsymbol{\sigma}^{c}),$$
 (5.13)

где мы отбросили члены пропорциональные $W - M_{\Delta}$. Здесь мы воспользовались стандартным представлением γ -матриц Дирака, σ — матриц Паули, и 3-мерного тензора Леви-Чивита ε^{abc} .

Рассмотрим вершину излучения реального фотона в специальной системе:

$$\Gamma^{0a}_{\Delta \to \gamma p}(t,k) \approx -\sqrt{\frac{2}{3}} \frac{W}{2M_{\Delta}^2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \begin{bmatrix} G_1(0) \, i \varepsilon^{acd} \mathbf{k}^c \boldsymbol{\sigma}^d - G_2(0) \, \mathbf{k}^a \end{bmatrix}, \quad (\mathbf{5}.14)$$

И

$$\Gamma_{\Delta \to \gamma p}^{ma}(t,k) \approx -\sqrt{\frac{2}{3}} \frac{W}{2M_{\Delta}^{2}} \Biggl\{ \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right) \otimes \left[G_{1}(0) \, i \varepsilon^{amc} \boldsymbol{\omega} \, \boldsymbol{\sigma}^{c} - G_{2}(0) \delta^{ma} \boldsymbol{\omega} \right] - \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \otimes \left[G_{1}(0) \left(\delta^{ma}(\boldsymbol{\sigma} \mathbf{k}) - \boldsymbol{\sigma}^{m} \mathbf{k}^{a} \right) \right] \Biggr\}, \qquad (5.15)$$

где мы отбросили слагаемое, содержащее $G_3(0)$, потому что оно пропорционально ω^2 .

Вершина поглощения виртуального фотона имеет следующий вид

$$\Gamma^{0b}_{\gamma p \to \Delta}(t, q_e) = -\sqrt{\frac{2}{3}} \frac{W}{2M_{\Delta}^2} \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \left[G_1(q_e^2) \, i \varepsilon^{bgf} \mathbf{q}_e^g \mathbf{\sigma}^f + G_2(q_e^2) \mathbf{q}_e^b \right] \\
- \frac{G_3(q_e^2)}{M_{\Delta}} \left[-\mathbf{q}_e^2 \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \mathbf{\sigma}^b + q_e^0 \mathbf{q}_e^b \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right] \right\} \quad (5.16)$$

И

$$\Gamma^{nb}_{\gamma p \to \Delta}(t, q_e) = -\sqrt{\frac{2}{3}} \frac{W}{2M_{\Delta}^2} \Biggl\{ \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right) \otimes \left[G_1(q_e^2) \, i \varepsilon^{bne} q_e^0 \, \boldsymbol{\sigma}^e + G_2(q_e^2) \delta^{nb} q_e^0 \right] \\ - \frac{G_3(q_e^2)}{M_{\Delta}} \left[\left(q_e^2 \delta^{nb} + \boldsymbol{q}_e^n \boldsymbol{q}_e^b \right) \left(\begin{array}{c} 0 & -1 \\ 1 & 0 \end{array} \right) - \boldsymbol{q}_e^n q_e^0 \left(\begin{array}{c} -1 & 0 \\ 0 & 1 \end{array} \right) \otimes \boldsymbol{\sigma}^b \right] \\ - \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \otimes \left[G_1(0) (\delta^{nb}(\boldsymbol{\sigma} \boldsymbol{q}_e) - \boldsymbol{\sigma}^n \boldsymbol{q}_e^b) \right] \Biggr\}.$$
(5.17)

В мягкофотонном пределе биспинор конечного протона содержит только верхнюю компоненту

$$U(p') \approx \left\{ \sqrt{\mathscr{E}_4 + M} \ \varphi_4, 0 \right\},\tag{E.18}$$

в то время как нижняя компонента пропорциональна $\sqrt{\mathcal{E}_4 - M} \approx \sqrt{\omega^2/2M}$.

Учитывая формулы (Б.12)-(Б.18) мы можем получить приближение

$$\Delta^{m0} \approx -\frac{G_1(0)}{9} \frac{W^2}{M_\Delta^3} \frac{\tilde{G}_{\mathsf{C}}(q_e^2)}{2} \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix} \otimes (2i\varepsilon^{mlp} \mathbf{k}^l - \mathbf{k}^p \boldsymbol{\sigma}^m + \delta^{mp}(\boldsymbol{\sigma} \mathbf{k})) \mathbf{q}_e^p \quad (5.19)$$

И

$$\Delta^{mn} \approx \frac{G_1(0)}{9} \frac{W^2}{M_{\Delta}^3} \Biggl\{ -\frac{\tilde{G}_{\mathbf{C}}(q_e^2)}{2} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes (2i\varepsilon^{mln}\mathbf{k}^l - \mathbf{k}^n \boldsymbol{\sigma}^m + \delta^{mn}(\boldsymbol{\sigma}\mathbf{k}))q_e^0 + \frac{G_3(q_e^2)}{M_{\Delta}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes (2i\varepsilon^{mlr}\mathbf{k}^l - \mathbf{k}^r \boldsymbol{\sigma}^m + \delta^{mr}(\boldsymbol{\sigma}\mathbf{k}))(\mathbf{q}_e^2 \delta^{nr} - \mathbf{q}_e^n \mathbf{q}_e^r) + G_1(q_e^2) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes \left[\varepsilon^{xml} \boldsymbol{\sigma}^l \varepsilon^{xar} \mathbf{k}^r (2\delta^{ab} - i\varepsilon^{abc} \boldsymbol{\sigma}^c) \varepsilon^{x'nl'} \boldsymbol{\sigma}^{l'} \varepsilon^{x'br'} \mathbf{q}_e^{r'} \right] \Biggr\}$$

где мы ввели

$$\frac{\tilde{G}_{\rm C}(q_e^2)}{2} = -\left(G_1(q_e^2) - G_2(q_e^2)\right) + G_3(q_e^2)\frac{q_e^0}{M_\Delta}.$$
(Б.21)

Строго говоря наше приближение (3.28) означает $W = M_p$, передача q_e равна q (передаче импульса в упругом процессе), отсутствие разницы между M_{Δ} и M. Но так как возможно идентифицировать представленные члены в полном матричном элементе и вычислении следов, мы не выполняем всех преобразований такого рода здесь и в следующем разделе.

Принимая во внимание, что интегрирование по углам вылета конечного фотона приводит к

$$\mathbf{k}^i \mathbf{k}^j \to \frac{\omega^2}{3} \delta^{ij},$$
 (Б.22)

мы введем усредненное значение $\bar{H}^{\nu\nu'} = \int H^{\nu\nu'} \mathrm{d}\Omega_{\gamma}/4\pi$:

$$\begin{split} \bar{H}^{00} &= \frac{G_{1}^{2}(0)}{9^{2}} \frac{W^{4} \omega^{2}}{M_{\Delta}^{6}} (\mathscr{E}_{4} + M) (\mathscr{E}_{2} - M) \tilde{G}_{C}^{2}(q_{e}^{2}) \mathbf{q}_{e}^{2}, \\ \bar{H}^{n0} &= \frac{G_{1}^{2}(0)}{9^{2}} \frac{W^{4} \omega^{2}}{M_{\Delta}^{6}} (\mathscr{E}_{4} + M) (\mathscr{E}_{2} - M) \tilde{G}_{C}^{2}(q_{e}^{2}) \mathbf{q}_{e}^{n} q_{e}^{0}, \\ \bar{H}^{nn'} &= \frac{G_{1}^{2}(0)}{9^{2}} \frac{W^{4} \omega^{2}}{M_{\Delta}^{6}} (\mathscr{E}_{4} + M) (\mathscr{E}_{2} - M) \Biggl\{ \tilde{G}_{C}^{2}(q_{e}^{2}) \frac{\mathbf{q}_{e}^{n} \mathbf{q}_{e}^{n'}}{\mathbf{q}_{e}^{2}} q_{0}^{2} \\ &+ M_{\Delta}^{2} \left(\tilde{G}_{M}^{2}(q_{e}^{2}) + 3 \tilde{G}_{E}(q_{e}^{2}) \right) \left(\delta^{nn'} - \frac{\mathbf{q}_{e}^{n} \mathbf{q}_{e}^{n'}}{\mathbf{q}_{e}^{2}} \right) \Biggr\}, \end{split}$$
(5.23)

где было удобно ввести $\tilde{G}_{{
m M},E}$ в дополнение к $\tilde{G}_{{
m C}}$ (Б.21):

$$\frac{\tilde{G}_{\rm M}(q_e^2) - \tilde{G}_{\rm E}(q_e^2)}{2} = \frac{\mathscr{E}_2 + M}{M_\Delta} G_1(q_e^2), \tag{5.24}$$

$$\tilde{G}_{\rm E}(q_e^2) = -\frac{q_e^0}{M_\Delta} \left(G_1(q_e^2) - G_2(q_e^2) \right) + G_3(q_e^2) \frac{q_e^2}{M_\Delta^2}.$$
(5.25)

эти величины сводятся к $G_{{
m M},E,C}$ для $W=M_{\Delta}$

$$\tilde{G}_{\mathbf{M},E,C}(q_e^2)\big|_{W=M_{\Delta}} = \frac{3(M_{\Delta}+M)}{M} G^*_{\mathbf{M},E,C}(q_e^2),$$
(5.26)

Тензор $\bar{H}^{\nu\nu'}$ в точке $W = M_{\Delta}$ можно переписать через переходный токовый тензор $T_{p\to\Delta}$ и парциальную ширину $\Gamma_{\Delta\to p\gamma}$:

$$\bar{H}^{\nu\nu'}\big|_{W=M_{\Delta}} \approx \frac{64\pi\,\Gamma_{\Delta\to\gamma p}}{Z^2 e^2} \frac{M_{\Delta}^5\,\omega^2}{(M_{\Delta}^2 - M^2)^3} \,T^{\nu\nu'}_{p\to\Delta}(p,t)\big|_{W=M_{\Delta}},\tag{B.27}$$

где

$$\Gamma_{\Delta \to \gamma p} = \frac{\bar{\Sigma} |\mathcal{M}_{\Delta \to \gamma p}|^2}{16\pi} \frac{M_{\Delta}^2 - M^2}{M_{\Delta}^3} = \frac{-T_{p \to \Delta}^{\gamma \nu} |_{W=M_{\Delta}, q^2=0}}{2} \frac{M_{\Delta}^2 - M^2}{16\pi M_{\Delta}^3} = \frac{Z^2 e^2 (M_{\Delta}^2 - M^2)^3}{64\pi M^2 M_{\Delta}^3} \left[G_{\mathrm{M}}^{*2}(0) + 3G_{\mathrm{E}}^{*2}(0) \right] \approx \frac{Z^2 e^2 (M_{\Delta}^2 - M^2)^3}{144\pi M_{\Delta}^3} G_1^2(0).$$
(5.28)

Наконец, мы получаем следующее выражение для дифференциального сечения (3.31):

$$\frac{\mathrm{d}\sigma_{\Delta}^{(1)}}{\mathrm{d}\Omega} \approx \frac{\mathrm{d}\sigma'}{\mathrm{d}\Omega} \frac{\Gamma_{\Delta \to \gamma p}}{\Gamma_{\Delta}} \times \frac{1}{\pi} \int_{0}^{2M\eta\Delta E} \left[\frac{\Gamma_{\Delta}M_{\Delta}}{(x+M^{2}-M_{\Delta}^{2})^{2}+\Gamma_{\Delta}^{2}M_{\Delta}^{2}} \right] \frac{x^{3}\,\mathrm{d}x}{(M_{\Delta}^{2}-M^{2})^{3}},$$
(B.29)

где мы воспользовались нашим приближением (3.28):

$$x = W^2 - M^2, \qquad dx \approx 2M_\Delta dW, \tag{E.30}$$

$$W dW = -M\eta \, dE', \qquad \omega \approx \frac{x}{2M_{\Delta}},$$
 (5.31)

И

$$\frac{\mathrm{d}\sigma'}{\mathrm{d}\Omega} = \frac{1}{(4\pi)^2} \frac{1}{4M^2 \eta} \left. \frac{E'}{\eta E'_{\mathrm{el}}} \frac{Z^2 e^2}{(q_e^2)^2} \left. L_{\nu\nu'}(l,l') T_{p\to\Delta}^{\nu\nu'}(p,t) \right|_{W=M_\Delta}.$$
(5.32)

Б.3 Приближенное вычисление интерференции $\mathcal{M}_e^{(s)\dagger}\mathcal{M}_{\Delta}^{(1)}$

Здесь мы рассмотрим тензор, который возникает при вычислении интерференции

$$G^{\mu\nu\nu'}(t;k,q_e) = \frac{1}{2} \operatorname{Tr} \left[(\hat{p}' + M) \,\Delta^{\mu\nu}(t;k,q_e) \,(\hat{p}_2 + M) \,\Gamma^{\dagger\nu'}(q_p) \right]. \tag{B.33}$$

Для реальных фотонов можно сделать замену

$$\Gamma^{\dagger\nu'}(q_p) = 2M(G_{\rm E}(q_p^2) - G_{\rm M}(q_p^2))\frac{P^{\nu}}{P^2} + G_{\rm M}(q_p^2)\gamma^{\nu}, \tag{B.34}$$

где P = p + p'. Поэтому мы можем разложить тензор G:

$$G^{\mu\nu\nu'}(t;k,q_e) = \frac{2MG_{\rm E}(q_p^2)}{P^2} P^{\nu'}G_1^{\mu\nu} + G_{\rm M}(q_p^2) G_2^{\mu\nu\nu'}.$$
 (5.35)

Прямое вычисление с приближенным значением $\Delta^{m\nu}$ из (Б.19) и (Б.20) приводит к следующим значениям в специальной системе отсчета:

$$G_1^{m0} = 0,$$
 (5.36)

$$G_1^{mn} = \frac{G_1(0)}{9} \frac{W^2}{M_{\Delta}^3} \left(\mathscr{E}_4 + M \right) \left((\mathbf{k} \mathbf{q}_e) \delta^{mn} - \mathbf{q}_e^m \mathbf{k}^n \right) M_{\Delta} \tilde{G}_{\mathsf{M}}(q_e^2).$$
(5.37)

Следует отметить, что эти тензоры появляются в свертке с симметричным тензором $L_{\nu\nu'}$. Симметризованные значения для второго тензора ($\tilde{G}_2^{m\nu\nu'} = (G_2^{m\nu\nu'} + G_2^{m\nu'\nu})/2$):

$$\tilde{G}_2^{m00} = 0,$$
 (5.38)

$$\tilde{G}_{2}^{m0n} = \frac{G_{1}(0)}{9} \frac{W^{2}}{M_{\Delta}^{3}} \left(\mathscr{E}_{4} + M\right) \frac{\left((\mathbf{k}\mathbf{q}_{e})\delta^{mn} - \mathbf{q}_{e}^{m}\mathbf{k}^{n}\right)}{2}$$
(5.39)

$$\times \left[\frac{(\mathscr{E}_{2} - M)}{2} \tilde{G}_{C}(q_{e}^{2}) + \left(1 - \frac{2M(\mathscr{E}_{2} + \mathscr{E}_{4})}{P^{2}} \right) M_{\Delta} \tilde{G}_{M}(q_{e}^{2}) \right],$$

$$\tilde{G}_{2}^{mnn'} = \frac{G_{1}(0)}{9} \frac{W^{2}}{M_{\Delta}^{3}} (\mathscr{E}_{4} + M)$$
(5.40)

$$\times \left(\mathbf{k}^{n'} \mathbf{q}_{e}^{m} \mathbf{q}_{e}^{n} - \mathbf{q}_{e}^{n} (\mathbf{k} \mathbf{q}_{e}) \delta^{mn'} + \mathbf{k}^{n} \mathbf{q}_{e}^{m} \mathbf{q}_{e}^{n'} - \mathbf{q}_{e}^{n'} (\mathbf{k} \mathbf{q}_{e}) \delta^{mn} \right) \\ \times \left[G_{1}(q_{e}^{2}) - G_{3}(q_{e}^{2}) \frac{(\mathscr{E}_{2} - M)}{2M_{\Delta}} - \frac{MM_{\Delta}}{P^{2}} \tilde{G}_{M}(q_{e}^{2}) \right],$$

где мы использовали $\mathbf{P} \approx -\mathbf{q}_e$ в мягкофотонном пределе.

В итоге, используя приближение (3.28) мы приходим к следующему результату

$$G^{\mu\nu\nu\nu'}(t;k,q_e) \approx \frac{2G_1(0)}{3} \frac{(M_{\Delta}+M)}{M_{\Delta}^3} \frac{2M}{P^2} \\
 \times \left(M_{\Delta}G_{\rm E}(q_p^2)G_{\rm M}^*(q_e^2) + \frac{-q_e^2}{4M}G_{\rm M}(q_p^2)G_{\rm C}^*(q_e^2) \right) \\
 \times P^{\nu'}(-g_{\lambda\lambda'})\varepsilon^{\lambda\tau\rho\mu}t_{\tau}k_{\rho}\,\varepsilon^{\lambda'\tau'\sigma\nu}t_{\tau'}(q_e)_{\sigma} .$$
(5.41)