На правах рукописи

РАЧЕК Игорь Анатольевич

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ ФОТОДЕЗИНТЕГРАЦИИ ТЕНЗОРНО-ПОЛЯРИЗОВАННОГО ДЕЙТРОНА

01.04.16 - физика атомного ядра и элементарных частиц

А В Т О Р Е Ф Е Р А Т диссертации на соискание ученой степени кандидата физико-математических наук

НОВОСИБИРСК — 2008

Работа выполнена в Институте ядерной физики им. Г.И.Будкера Сибирского отделения Российской академии наук

НАУЧНЫЙ РУКОВОДИТЕЛЬ: Николенко Дмитрий Митрофанович	– кандидат физмат. наук, Институт ядерной физики им. Г.И.Будкера, СО РАН, г.Новосибирск.
ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ Недорезов Владимир Георгиевич	I: – доктор физмат. наук, профессор, Институт ядерных исследований РАН, г.Москва.
Дружинин Владимир Прокопьевич	– доктор физмат. наук, Институт ядерной физики им. Г.И. Будкера, СО РАН, г.Новосибирск.
Ведущая организация:	– Научно-исследовательский институт ядерной физики Томского политехнического университета, г.Томск.

Защита диссертации состоится «____» 2008 года в «_____» часов на заседании диссертационного совета Д.003.016.02 Института ядерной физики им. Г.И.Будкера СО РАН.

Адрес: 630090, г.Новосибирск, проспект академика Лаврентьева, 11.

С диссертацией можно ознакомиться в библиотеке ИЯ
 Φ им. Г.И.Будкера СО РАН.

Автореферат разослан «____» ____ 2008 г.

Ученый секретарь диссертационного совета, доктор физ.-мат. наук, профессор

 $B.C.\Phi$ адин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Дейтрон, как единственная связанная система из двух нуклонов, играет особую роль в ядерной физике, являясь естественной природной лабораторией для изучения ядерных сил. Двух-частичная фотодезинтеграция дейтрона – это один из наиболее интенсивно изучаемых процессов на дейтроне, служащий важным источником экспериментальных данных для проверки моделей ядра и малонуклонных систем. Особенно важно изучать поляризационные наблюдаемые, так как в отличие от дифференциального сечения, которое есть сумма квадратов абсолютных значений элементов **Т**-матрицы рассеяния, поляризационные наблюдаемые содержат интерференционные члены различных амплитуд реакции в различных комбинациях, и поэтому, могут быть более чувствительны к малым амплитудам и к интересным эффектам с малым вкладом в дифференциальное сечение, таким, как суб-нуклонные степени свободы, возбуждение нуклонных и (возможных) дибарионных резонансов, релятивистские эффекты.

Хотя поляризационные эксперименты на дейтроне проводят с 1960 года, *тензорные* анализирующие способности реакции стали экспериментально доступны лишь благодаря использованию внутренней газовой тензорно-поляризованной мишени в электронном накопителе – методике, которая была предложена и успешно развивается в ИЯФ СО РАН им. Г.И. Будкера.

Спиновая структура реакции фотодезинтеграции дейтрона требует 12 комплексных амплитуд для полного описания процесса γd→pn. Наблюдаемые величины являются квадратичными формами, в которые входят те или иные комбинации из действительных и мнимых частей амплитуд процесса. Для получения исчерпывающей информации о процессе γd→pn должны быть измерены не менее чем 23 различные наблюдаемые, как функции от энергии фотона и угла вылета протона. В любой такой "комплект–23" обязательно входят несколько величин, связанных с тензорной поляризацией мишени. Поэтому экспериментальное изучение фотодезинтеграции тензорно-поляризованного дейтрона является необходимым вкладом в базу данных по этому важнейшему для фотоядерной физики процессу.

Цель работы состояла в следующем:

• Измерить компоненты T₂₀, T₂₁, T₂₂ тензорной анализирующей способности реакции фотодезинтеграции дейтрона, как функции энергии фотона в диапазоне $E_{\gamma} = 25 \div 500 \text{ M}$ эB.

- Измерить компоненты T_{20} , T_{21} , T_{22} тензорной анализирующей способности реакции фотодезинтеграции дейтрона, как функции угла вылета протона в диапазоне $\theta_p = 25^\circ \div 45^\circ$ и $75^\circ \div 105^\circ$.
- Для выполнения этих измерений создать систему регистрации частиц и разработать программное обеспечение для набора данных, калибровки детекторов, контроля аппаратуры и обработки результатов.
- Изучить процессы деполяризации атомов в накопительной ячейке при ее использовании в качестве внутренней мишени в ВЭПП-3.

Научная новизна работы

- 1. Впервые наблюдалась асимметрия в фотодезинтеграции тензорнополяризованного дейтрона - 1985 г.
- Впервые измерена энергетическая зависимость компонент T₂₀, T₂₁, T₂₂ тензорной анализирующей способности фотодезинтеграции дейтрона в диапазоне энергии гамма-кванта 25 ÷ 500 МэВ.
- 3. Впервые измерена угловая зависимость компонент T₂₀, T₂₁, T₂₂ тензорной анализирующей способности фотодезинтеграции дейтрона в диапазоне углов вылета протона 25° ÷ 45° и 75° ÷ 105° в С.Ц.М.
- Впервые в физическом эксперименте на электронном накопителе была применена накопительная ячейка для увеличения толщины газовой поляризованной мишени и изучены процессы деполяризации атомов в ячейке - 1988 г.

Научная и практическая ценность работы

Полученные результаты по измерению энергетических и угловых зависимостей компонент тензорной анализирующей способности фотодезинтеграции дейтрона позволяют проверять теоретические модели, описывающие электро- и фото-ядерные процессы на малонуклонных системах. Это важно как для выбора модели, которая наиболее адекватно описывает процесс, так и для изучения вкладов отдельных ингредиентов модели.

Продемонстрировано, что измеренные данные в области $E_{\gamma} = 150 \div 500 \text{ МэВ}$ значительно лучше описываются в модели, где учитывается релятивистское запаздывание пиона и где взаимодействие в виртуальной πNN -системе учитывается непертурбативно.

Показано, что наблюдается качественное согласие эксперимента и теории, однако в деталях есть еще немало различий и требуется совершенствование теории.

Дальнейшее развитие получила методика проведения экспериментов с внутренней мишенью в накопителе заряженных частиц.

Результаты работы могут быть также использованы при разработке поляриметра, измеряющего степень тензорной поляризации дейтериевой мишени.

Вклад автора

Изложенные в работе результаты получены автором лично или в соавторстве при его участии.

Структура работы

Диссертация состоит из введения, шести глав, заключения, списка использовавшейся литературы и приложения. Работа изложена на 175 страницах машинописного текста, содержит 70 рисунков и 31 таблицу. Список литературы содержит 136 наименований.

Апробация работы

Основные результаты, содержащиеся в диссертации, опубликованы в 17 статьях, препринтах ИЯФ и в сборниках докладов конференций, докладывались на экспериментальных семинарах в Институте Ядерной физики (Новосибирск) и Jefferson Lab (США), а также на ряде Российских и международных конференциях: "Internal Targets-90", Новосибирск, 1990г.; "Perspectives in Nuclear Physics", Триест, Италия, 1993г.; "Electromagnetic studies of the deuteron", Амстердам, Голландия, 1996г.; "STORI-99 : Physics at Storage Rings", Блумингтон, США, 1999г.; "Совещание Отделения Ядерной Физики РАН", Москва, 2004г.;

Часть материалов, изложенных в диссертации, неоднократно докладывалась соавторами на международных конференциях.

СОДЕРЖАНИЕ РАБОТЫ

Во введении дан краткий обзор по истории и современному состоянию экспериментального изучения поляризационных наблюдаемых в реакции двух-частичной фотодезинтеграции дейтрона. Обосновывается актуальность измерения наблюдаемых, связанных с тензорной поляризацией дейтериевой мишени и показывается, что в настоящее время единственным методом, позволяющим проводить такие измерения, является метод внутренней мишени, который был предложен и успешно развивается в ИЯФ им. Г.И. Будкера СО РАН.

В первой главе приводятся основные положения теории электрои фотодезинтеграции дейтрона: кинематические соотношения и выражения для сечения процесса и поляризационных наблюдаемых, дан краткий обзор теоретических моделей процесса и и приводятся некоторые теоретические предсказания для тензорных анализирующих способностей реакции.

В данной работе рассматриваются эксперименты в которых используются поляризованная дейтериевая мишень и неполяризованные фотоны. сечение фотодезинтеграции в этом случае определяется, помимо неполяризованной части (σ_0), четырьмя анализирующими способностями peakции: векторной T_{11} и тремя компонентами тензорной T_{20} , T_{21} , T_{22} :

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} \left\{ 1 - \sqrt{\frac{3}{4}} P_z \sin\theta_H \sin\phi_H \mathbf{T}_{11} + \sqrt{\frac{1}{2}} P_{zz} \left[\frac{3\cos^2\theta_H - 1}{2} \mathbf{T_{20}} - \sqrt{\frac{3}{8}} \sin 2\theta_H \cos\phi_H \mathbf{T_{21}} + \sqrt{\frac{3}{8}} \sin^2\theta_H \cos 2\phi_H \mathbf{T_{22}} \right] \right\},$$
(1)

где углы θ_H , ϕ_H задают направление оси ориентации поляризации; P_z , P_{zz} – степень векторной и тензорной поляризации мишени. Все наблюдаемые величины являются функциями двух кинематических параметров, обычно выбираются $(E_{\gamma}, \theta_p^{CM})$ – энергия γ -кванта в Л.С.О. и угол вылета протона в С.Ц.М.

Современные теоретические модели можно условно разделить на группы по диапазону энергии γ -кванта, для которой эти модели наиболее адекватны. В данной работе компоненты тензорной анализирующей способности реакции фоторасщепления дейтрона измерялись в диапазоне $E_{\gamma} = 25 \div 500$ МэВ. В этой области применимы нуклон-мезонные теории с реалистическими NN-потенциалами, основанные на диаграммном подходе или на методе связанных каналов. Существенное значение имеют взаимодействие в конечном состоянии, возбуждение изобары и других резонансов в промежуточном состоянии, релятивистские эффекты.

Вторая Глава посвящена методическим особенностям данного эксперимента – описывается внутренняя газовая поляризованная дейтериевая мишень с накопительной ячейкой и рассматривается работа электронного накопителя ВЭПП-3 в качестве установки для ядерно-физических экспериментов с внутренней мишенью.

Важнейшим узлом описываемых экспериментов является внутренняя газовая мишень из поляризованных атомов дейтерия. Источник струи поляризованных атомов (ИПА) был построен по "классической" схеме, основанной на магнитной сепарации атомов с разными спиновыми состояниями и применении блоков, индуцирующих высокочастотные переходы между сверхтонкими уровнями дейтерия. Схема ИПА, использовавшегося в основном эксперименте на ВЭПП-3, показана на рис. 1.

Рис. 1: Слева: схема источника поляризованных атомов. S1–S5 – сверхпроводящие шестиполюсные магниты; MFT,SFT – блоки ВЧ-переходов. Справа: схема накопительной ячейки, охлаждаемой жидким азотом.

Струя поляризованных атомов использовалась в качестве внутренней мишени в первых экспериментах на ВЭПП-2. В дальнейшем для увеличения толщины мишени была применена накопительная ячейка, представляющая собой Т-образную трубку малого поперечного сечения – рис. 1. В основном эксперименте на ВЭПП-3 использовалась ячейка эллиптического сечения 24мм×13мм и длиной 40 см, охлаждаемая жидким азотом. Расчетный коэффициент увеличения толщины мишени, по сравнению со струей – 65. Однако, применение накопительной ячейки вносит дополнительные сложности:

- деполяризация атомов в ячейке при соударениях со стенками;
- деполяризация атомов из-за воздействия импульсного магнитного поля электронного сгустка;
- недопустимо малая апертура, препятствующая нормальной работе ускорителя в режимах накопления электронов и подъема энергии.

В тексте диссертации проводится анализ процессов деполяризации и определяются методы их подавления:

- Основной метод борьбы с деполяризацией при ударах атомов о стенки состоит в применении специальных покрытий. Мы использовали алюминиевую ячейку, покрытую стеклообразным веществом "драйфилм".
- Для подавления деполяризации полем пучка электронов нужно на область взаимодействия пучка и мишени наложить магнитное поле, сильное по сравнению с критическим полем дейтерия $H_c = 117$ Гс, избегая при этом резонансных значений поля.
- В сильном магнитном поле подавлены также ряд процессов, приводящих к деполяризации при ударах атомов о стенки ячейки.

Для решения проблемы нормального функционирования ускорителя при

использовании накопительной ячейки с малой апертурой в магнитную систему ВЭПП-3 были установлены две дополнительные квадрупольные линзы и изменен режим работы существующих линз, что позволило вдвое уменьшить размеры пучка в районе внутренней мишени без заметного искажения бета-функций в других местах ускорителя.

В наших экспериментах не используется источник фотонного пучка – электроны рассеиваются непосредственно на дейтериевой мишени. Но отбираются те события, в которых электрон рассеивается на очень малый угол. В этом случае виртуальный фотон находится практически на массовой поверхности, поэтому такая постановка эквивалентна изучению ϕ omo-дезинтеграции. Используя концепцию потока виртуальных фотонов приведена оценка скорости счета событий процесса для условий основного эксперимента на ВЭПП-3.

В последнем разделе главы обсуждается методика экспериментального разделения компонент T_{2M} анализирующей способности реакции. При постановке экспериментов с использованием ИПА, наиболее эффективным, с точки зрения минимизации систематических погрешностей, является измерение асимметрии, связанной с переключением знака степени поляризации P_{zz} . Тензорную асимметрию следует определить так: $a^T = \sqrt{2} (\sigma^+ - \sigma^-) / (P_{zz}^+ \sigma^- - P_{zz}^- \sigma^+)$, здесь σ^+ и σ^+ – сечение реакции для мишени со степенью поляризации P_{zz}^+ и P_{zz}^- соответственно. Тогда, согласно формуле 1, асимметрия a^T есть линейная комбинация T_{2M} с коэффициентами, зависящими от ориентации оси квантования поляризации, т.е. направления ведущего магнитного поля. В основном эксперименте на В'ЭПП-3 асимметрия измерялась для **трех** режимов ориентации магнитного поля: $\theta_H = 180^\circ$, 54.7° и 125.3°, а $\phi_H = 180^\circ$ всегда. При этом $a_0^T \sim c_0 T_{20}, a_1^T \sim (+c_1 T_{21} + c_2 T_{22}), a_2^T \sim (-c_1 T_{21} + c_2 T_{22})$, и все три компоненты T_{2M} однозначно извлекаются.

В третьей главе описываются первые измерения тензорных поляризационных наблюдаемых в фотодезинтеграции дейтрона, проведенные на накопителях ВЭПП-2 и ВЭПП-3.

Эксперимент по фотодезинтеграции дейтрона на ВЭПП–2 проводился при энергии пучка электронов 180 МэВ. В процессе набора данных регулярно переключались знак тензорной поляризации мишени P_{zz} и направление магнитного поля, определяющего ось поляризации: $\theta_H = 44^{\circ}$ и 132°. Толщина струйной мишени $\approx 10^{11}$ ат/см², эффективная поляризация $P_{zz}^{эф\phi} = +0.63$ и -0.57. Использовались две одинаковые системы регистрации, расположенные симметрично относительно пучка электронов. Захват по углу вылета протона $\theta_p^{cm} = 44^{\circ} \div 60^{\circ}$. Из измеренной асиммет-

рии извлекалась компонента T₂₁ тензорной анализирующей способности реакции. Это было первое в мире измерение тензорной асимметрии в фотодезинтеграции дейтрона.

Первый эксперимент по фотодезинтеграции дейтрона на ВЭПП-3 был проведен в 1988-89 гг. одновременно с изучением упругого (ed)-рассеяния. Энергия электронов в пучке 2 ГэВ, накопленный интеграл тока 400 ККулон. Для внутренней мишени впервые использовалась накопительная ячейка. Апертура ячейки 46мм×24мм, длина 94см. Эффективная толщина мишени $3 \cdot 10^{11}$ ат/см², средняя поляризация $P_{zz}^{\pm} = \pm 0.49$. Направление магнитного поля переключалось между $\phi_H = 45^\circ$ и 135°, при этом $\theta_H = 90^\circ$ всегда. Использовалось две пары плеч регистрации протона и нейтрона, угловой захват $\theta_p^{cm} = 88^\circ \pm 5^\circ$. Из экспериментальной асимметрии извлекались компоненты T_{20} и T_{22} тензорной анализирующей способности реакции.

Рис. 2: Результаты первых экспериментов на ВЭПП-2 и ВЭПП-3 и некоторые теоретические расчеты.

Результаты первых экспериментов продемонстрировали качественное совпадение эксперимента и теории, однако точность данных недостаточна для дискриминации моделей.

Четвертая глава посвящена описанию детекторов частиц и системы сбора данных, использовавшихся в основном эксперименте на ВЭПП-3.

Детектирующая система состоит из двух пар плеч регистрации протона и нейтрона. Каждое протонное плечо – это система дрейфовых координатных камер и сцинтилляционный годоскоп из трех сцинтилляторов толщиной 2+12+12 см. Каждое нейтронное плечо – это слой толстых сцинтилляторов (толщиной 20см или 24см), перед которым расположен вето-счетчик заряженных частиц толщиной 2см. Использование двух пар плеч позволяет одновременно набирать данные для двух диапазонов по углу вылета протона – в пересчете в систему центра масс протона и нейтрона это $\theta_p^{cm} = 25^{\circ} \div 45^{\circ}$ и $75^{\circ} \div 105^{\circ}$.

Триггер экспериментальной установки имеет трех-уровневую организацию. Первые два уровня реализованы аппаратно, а третий – программно. Для опроса КАМАК-модулей ADC, TDC и регистров были применены интеллектуальные крейт-контроллеры СС-Т800, основанные на транспьютерах серии INMOS T805. В качестве хост-компьютеров использовались персональные компьютеры с операционной системой Linux. В системе считывания используется около 80 КАМАК-блоков, размещенных в 6 крейтах, установленных непосредственно вблизи экспериментального промежутка в зале ВЭПП-3.

Аппаратура эксперимента по фотодезинтеграции дейтрона была установлена на ВЭПП-3, собрана и запущена в августе-сентябре 2002 г. Набор экспериментальных данных вёлся с октября-2002 по январь-2003. Общий интеграл тока пучка составил 200 ККулон, распределенный примерно поровну между тремя режимами ориентации ведущего магнитного поля.

В пятой главе излагается методика анализа экспериментальных данных. Процедура обработки состояла из ряда последовательных этапов:

- *Первичный отбор* из исходных лент событий-кандидатов процесса *γd*→*pn* − всего отобрано **37.5 млн.** событий.
- Коррекция параметров, дрейфовавших в течении эксперимента, или менявшихся вследствие замены вышедших из строя ФЭУ/ кабелей/ оцифровщиков и *m.d.*
- Вычисление в каж дом событии физических параметров энергий частиц, углов вылета, координаты точки вылета из экспериментально измеренных амплитудных и временных параметров.
- Идентификация типа зарегистрированной частицы.
- Отбор событий процесса фотодезинтеграции дейтрона производился проверкой кинематических корреляций, присущих процессу двухчастичного фоторазвала дейтрона. Всего отобрано **540** тыс. событий.
- Оценка доли неотделимого фона от процесса $\gamma d \to pn\pi^0$. Полученный результат: доля фона от 2% до 7% в зависимости от энергии фотона.
- Определение средней степени поляризации мишени. Используется поляриметр, основанный на измерении асимметрии процесса упругого рассеяния электрона на дейтроне при малом переданном импульсе Q² ≈ 0.1 (ГэВ/с)² ("LQ-поляриметр"). Для расчета анализирующей способности выбраны 5 современных моделей, правильно предсказывающие асимптотическое поведение при Q² → 0. В результате анализа получено: P⁺_{zz} = 0.341 ± 0.025 ± 0.012. Здесь первая ошибка связана с погрешностью определения экспериментальной асимметрии, а вторая

– с модельной неопределенностью. Отношение величин поляризации для двух поляризационных состояний: $r = P_{zz}^{-}/P_{zz}^{+}$ определялось с использованием данных как с поляризованной, так и с неполяризованной дейтериевой мишенью. Получено $r = -1.70 \pm 0.15$.

- Вычисление экспериментальной асимметрии. Выражение для экспериментальной тензорной асимметрии процесса фотодезинтеграции дейтрона записывается, как $a^T = (\sqrt{2}/P_{zz}^+) \cdot (N^+ N^-)/(N^- r \cdot N^+)$, где P_{zz}^+ и r параметры поляризации мишени, найденные с помощью LQ-поляриметра; N^+ и N^- числа отсчета событий изучаемого процесса для двух знаков тензорной поляризации мишени, после нормировки на интеграл светимости, набранный для каждого знака поляризации, и учета неотделимого фона.
- Вычисление компонент тензорной анализирующей способности. Измерение тензорной асимметрии для трех режимов работы, различающихся ориентацией вектора магнитного поля, определяющего ось поляризации, позволило извлечь каждую из трех компонент анализирующей способности реакции.
- Оценка систематических погрешностей измерения компонент анализирующей способности реакции.

– Основным источником систематической погрешности служит неопределенность в степени поляризации мишени P_{zz} , измеренной LQ– поляриметром: $(\delta T_{2M}/T_{2M})_{P_{zz}} = 8.5 \times 10^{-2}$.

– Вклад в систематическую погрешность вносит неопределенность в ориентации оси поляризации, т.е. в углах Θ_H и Φ_H , определяющих угловые коэффициенты при $\mathbf{T}_{2\mathbf{M}}$.

– Другие систематические погрешности связаны с неточностью реконструкции энергии фотона E_{γ} и угла вылета протона ϑ_p^{cm} . При расчете погрешностей рассматривалось как возможный систематический сдвиг, так и влияние "размытия" из-за конечного энергетического и углового разрешения детекторов.

- Рассмотрены также вклады в систематическую ошибку:
- * ложной асимметрии, которая может быть вызвана неодинаковостью экспериментальных условий для разных поляризационных режимов;
- к погрешности, связанной с вкладами в сечение продольных компонент лептонного тока в используемой нами экспериментальной методике – выделении событий вблизи "фотонной точки" из более общего процесса электродезинтеграции;

и показано, что в условиях эксперимента на ВЭПП-3 эти ошибки пренебрежимо малы.

Величины отдельных вкладов в систематическую ошибку для каждой

экспериментальной точки приведены в Приложении.

В шестой главе рассмотрены варианты разбиения статистики на интервалы, приведены результаты измерения компонент анализирующей способности реакции, проводится сравнение с современными теоретическими расчетами и обсуждение полученных результатов.

Было выбрано три варианта разбиения экспериментальных данных на экспериментальные точки:

- 1. Для сравнения с предыдущим экспериментом на ВЭПП-3 из новых данных была отобрана часть, где кинематические аксептансы двух экспериментов совпадают ($\langle \theta_p^{cm} \rangle \approx 88^\circ, E_\gamma = 34 \div 464 \text{ МэВ}$); эта статистика была разбита на 8 интервалов по E_γ для **T**₂₀ и **T**₂₂, так же, как было сделано в первом эксперименте на ВЭПП-3 рис. 3.
- 2. Для анализа зависимости компонент тензорной анализирующей способности реакции от энергии фотона с высокой статистической точностью данные были разбиты на два интервала по ϑ_p^{cm} , соответствующие двум детекторным плечам: $\vartheta_p^{cm} = 24^\circ \div 48^\circ$ и $70^\circ \div 102^\circ$, и каждый ϑ -интервал был разбит на 9 интервалов по E_γ – таким образом, в этом варианте разбиения было получено **18** экспериментальных точек для каждой компоненты **Т**_{2М} – рис. 4.
- 3. Для анализа угловой зависимости компонент тензорной анализирующей способности реакции данные были разбиты на 8 диапазонов по энергии фотона и в каждом диапазоне статистика была разбита на 10−12 интервалов по ϑ^{cm}_p с шириной каждого интервала 4° в итоге, в этом варианте было получено **91** экспериментальная точка для каждой компоненты **Т**_{2M} рис. 5.

Численные результаты для всех экспериментальных точек представлены в таблицах в Приложении.

Для сравнения экспериментальных результатов с теоретическими расчетами теоретические кривые усреднялись по диапазону энергии фотона и углу вылета протона, захватываемым каждой экспериментальной точкой. Были выбраны три современные модели:

- расчет в диаграммном подходе [1] точечная линия на рис. 3-5;
- расчет по модели [2], использующей теорему Зигерта и Боннский *N-N* потенциал сплошная линия на рис. 3-5;
- расчет в подходе связанных каналов с учетом релятивистского запаздывания пиона [3] – пунктирная линия на рис. 3-5.

В конце главы приведены ряд выводов из сравнения экспериментальных результатов и теоретических расчетов:

• Старые и новые экспериментальные данные по компонентам $\mathbf{T_{20}}$ и $\mathbf{T_{22}}$

Рис. 3: Сравнение новых данных (черные кружки) с результатом первого эксперимента на ВЭПП-3 (пустые кружки).

Рис. 4: Зависимость компонент тензорной анализирующей способности реакции фотодезинтеграции дейтрона от энергии фотона.

хорошо согласуются.

- Точность новых данных по **Т**_{2M} до энергии E_γ ≤ 400 МэВ достаточна для дискриминации теоретических моделей.
- Несмотря на некоторые различия в деталях, видно, что имеет место хорошее качественное описание поляризационных данных, что действительно является трудным тестом для теории.
- Степень согласия теоретических расчетов с нашими данными для $\mathbf{T_{2M}}$ аналогична тому, что наблюдается для других поляризационных величин таких, как фотонная асимметрия Σ и поляризация протона p_y а именно:
 - при малых E_{γ} теория и эксперимент хорошо согласуются;
 - качество описания ухудшается с ростом энергии фотона;
 - более детальный расчет с учетом релятивистского запаздывания пиона [3] существенно улучшает согласие между экспериментом и теорией.
- Экспериментальные угловые зависимости компонент T_{2M} хорошо описываются теориями, и здесь тоже наблюдается лучшее согласие с но-

Рис. 5: Зависимость компонент тензорной анализирующей способности реакции фотодезинтеграции дейтрона от угла вылета протона (показано часть данных).

вейшей моделью [3].

В Заключении суммируются основные результаты работы:

- Выполнено **первое наблюдение** тензорной асимметрии в фоторасщеплении поляризованного дейтрона.
- Впервые измерена энергетическая зависимость компонент T_{20} , T_{21} и T_{22} тензорной анализирующей способности реакции двухчастичной фотодезинтеграции дейтрона в диапазоне энергий гаммакванта $E_{\gamma} = 25 \div 500$ МэВ.
- Впервые измерена угловая зависимость компонент T₂₀, T₂₁ и T₂₂ тензорной анализирующей способности реакции двух-частичной фотодезинтеграции дейтрона в диапазоне углов вылета протона $\vartheta_p^{cm} = 25^\circ \div 45^\circ$ и 75° $\div 105^\circ$.
- Создана система регистрации для экспериментов с внутренней тензорно-поляризованной мишенью на электронном накопителе ВЭПП-3.
- Разработано **программное обеспечение** для набора данных, проверки детекторов, контроля за состоянием аппаратуры мишени и детекторов, обработки экспериментальных данных.
- Изучены **процессы деполяризации** в накопительной ячейке при её использовании для внутренней мишени в электронном накопителе.

В приложении 1 приведена таблица со списком поляризационных экспериментов, изучавших процесс фотодезинтеграции дейтрона.

В приложении 2 приведены таблицы численных результатов основного эксперимента на ВЭПП-3 с данными по каждой экспериментальной точке, а так же таблицы с величинами вкладов в систематическую ошибку измерений для каждой экспериментальной точки.

Основные результаты диссертации опубликованы в следующих работах:

- Д.К. Весновский, Б.Б. Войцеховский, ..., И.А. Рачек *и др.*, "Измерение асимметрии в упругом и неупругом рассеянии электронов на тензорно-поляризованной дейтериевой мишени при энергиях 180 и 400 МэВ", Препринт ИЯФ СО РАН 86–75, Новосибирск, 1986.
- Б.Б. Войцеховский, Д.М. Николенко, ..., И.А. Рачек *и др.*, "Асимметрия в реакции d(e,e'd) при переданном импульсе 1 1,5 Ф⁻¹" Письма в ЖЭТФ, т.43 (1986) 567.
- 3. M.V. Mostovoy, D.M. Nikolenko, ..., I.A. Rachek *et al*, "The measurement of the asymmetry of tensor-polarized deuteron electrodisintegration at 180 MeV electron energy", Phys. Lett. **B189** (1987) 181.
- 4. S.I. Mishnev, D.M. Nikolenko, S.G. Popov, I.A. Rachek *et al*, "Polarized Deuteron Target in an Electron Storage Ring: Measurements and Perspectives" Proc. of the 8th International Symposium on High-Energy Spin Physics, Mineapolis, 1988, AIP Conf. Proc. **187** (1989) 1286.
- Б.Б. Войцеховский, С.И. Мишнев, ..., И.А. Рачек и др., "Измерение компонент тензорной анализирующей способности T₂₀ и T₂₂ в фотодезинтеграции дейтрона" Препринт 92-19 ИЯФ СО РАН, Новосибирск, 1992.
- L.G. Isaeva, B.A. Lazarenko, ..., I.A. Rachek *et al*, "Detector system for e-d scattering experiments on the VEPP-3 storage ring" Nucl. Instrum. Methods A325 (1993) 16.
- R. Gilman, R.J. Holt, ..., I.A. Rachek *et al*, "A polarized gas internal target using a storage cell in an electron storage ring" Nucl. Instrum. Methods A327 (1993) 277.
- 8. S.I. Mishnev, D.M. Nikolenko, S.G. Popov, I.A. Rachek *et al*, "Measurements of the analyzing power components in photodisintegration of the polarized deuteron", Phys. Lett. **B302** (1993) 23.
- 9. K.P. Coulter, R. Gilman, ..., I.A. Rachek *et al*, "An active storage cell for a polarized gas internal target" Nucl. Instrum. Methods **A350** (1994) 423.
- 10. I.A. Rachek, "The Novosibirsk T_{20} experiment: electron scattering from the tensor-polarized deuteron", Proc. of the 9th Amsterdam Mini-

Conference "Electromagnetic studies of the deuteron", Amsterdam, 1996, p.61.

- 11. I.A. Rachek, H. Arenhövel, L.M. Barkov *et al*, "Recent results from the internal target experiment at the electron storage ring VEPP-3" AIP Conf. Proc., **512** (2000) 362.
- D.M. Nikolenko, L.M. Barkov, ..., I.A. Rachek *et al*, "Measurement of polarization observables in elastic and inelastic electron-deuteron scattering at the VEPP-3 storage ring" Nucl. Phys. A684 (2001) 525c.
- M.V. Dyug, L.G. Isaeva, B.A. Lazarenko, ..., I.A. Rachek *et al*, "Internal polarized deuterium target with cryogenic atomic beam source" Nucl. Instrum. Methods A495 (2002) 8.
- D.M. Nikolenko, H. Arenhövel, ..., I.A. Rachek *et al*, Proc. of X Advanced Research Workshop on High Energy Spin Physics (DUBNA-SPIN-03), Dubna 2004, p.365.
- 15. M.V. Dyug B.A. Lazarenko, ..., I.A. Rachek *et al*, "Deuterium target polarimeter at the VEPP-3 storage ring" Nucl. Instrum. Methods **A536** (2005) 344.
- 16. С.А. Зеваков, Л.М. Барков, ..., И.А. Рачек *и др.*, "Упругое и неупругое рассеяние электрона на тензорно-поляризованном дейтроне" Препринт ИЯФ СО РАН, 2006-024, Новосибирск, 2006.
- I.A. Rachek, L.M. Barkov, S.L. Belostotsky *et al*, "Measurement of tensor analyzing powers in deuteron photodisintegration", Phys. Rev. Lett. 98 (2007) 182303.

Список литературы

- M.I. Levchuk, "Deuteron photodisintegration in the diagrammatic approach", Few Body Syst. 19 (1995) 77.
- [2] K.-M. Schmitt and H. Arenhövel, "Deuteron photodisintegration with the Bonn OBE potentials", Few Body Syst. 7 (1989) 95.
- [3] M. Schwamb, Habilitation thesis, Johannes Gutenberg-Universität at Mainz, 2006.