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ABSTRACT

We present theoretical and numerical results accord-

ing to which the distribution on energy levels of

highly excited Hydrogen atoms produced by a mono-

chromatic field should be exponentially localized in the

number of absorbed photons. These results allow for a

new interpretation of underthreshold ionization and
also for an estimate of the ionization rate.
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The behaviour of highly excited Hydrogen atoms in monochroma-
tic microwave field is currently the object of intense theoretical and

experimental investigations [1 —6]. The observed strong underthres-
hold ionization has been related to the onset of chaotic motion in
the classical atom and, indeed, a good agreement has been found
between experimental data and numerical results of computer simu-
lations of classical dynamics [4]. At the same time, however, it is
known that quantum interference effects may place strong limita-
tions on chaotic motion. This was numerically demonstrated and
theoretically justified on simple models [7, 8, 11, 12] for which, in
contrast to the unlimited diffusion taking place in classical action
space, the quantum distribution over unperturbed levels stays locali-
zed, with a localization length [ that under semiclassical conditions
is roughly equal to the classical diffusion coefficient. If the latter is
constant, then the time-averaged steady-state distribution is approxi-
mately f.oc exp(—2ln—nol/l), no being the initially excited level.
This phenomenon of «quantum limitation of classical chaos» was
then numerically detected even in the 1-dimensional Hydrogen atom
in a monochromatic electric field, that provides a model for the
study of excitation and ionization of atoms initially prepared in ex-

tended states along the field [9, 10]. The important difference from

previous models being that the classical diffusion coefficient increa-
ses with n. Due to this peculiarity, under appropriate conditions, al-
so delocalization and unlimited diffusion close to the classical one
may occur, which explains the observed agreement between experi-
ments and classical computations. Anyway, the nonconstancy of the
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localization length in n did not allow for a theoretical prédictiun of
the distribution on levels in the localized case. As a matter of fact,
this distribution displays, on high n-values, a characteristical peak

structure, produced by multiphoton transitions, the explanation of

which seemed out of the reach of localization theory, which seemed
therefore unable to achieve a complete description of the excitation
process, nor a determination of the ionization rate.

[n this paper we show that localization theory can actually be
modified, so as to indicate these eventual details of the excitation
process. The basic result will be that an approximately exponential
distribution is again obtained, by just the plotting the quasi statio-
nary localized distribution against the number of absorbed photons
(and not, as previously, against the state number n). We shall de-
monstrate this on numerical simulations of the quantum Hydrogen
atom and by two independent theoretical arguments.

The first of these is of a general nature, and in principle it may
be applied to widely different quantum systems. Let us consider a
quantum system with a density of unperturbed levels p which is
acted upon by an external monochromatic perturbation. Then the
system initially concentrated on some unperturbed level will start
diffusing in energy. This may happen due to an irregular distribu-
tion of levels”, or also when the perturbation is strong enough to
give rise to a chaotic diffusion in the classical limit. However,
quantum effects will lead this diffusion to a halt after a time ¢,
that can be estimated as 4n*/(wAv). Here Av is the average spacing
of quasi-energy eigenvalues significantly contributing in the evoluti-
on (k=1 here and in the following, 0<v<C2n). In estimating Av
we shall distinguish between two opposite situations, according to
whether all unperturbed levels take part in the diffusion process, or
not (a quantitative condition discriminating these two cases will be
given below). In the former case, Av~2x/An [8, 12, 13] where An
is the spread over unperturbed levels at time ¢,: An=pAE~

~p(Ditp) ', with D= ((AE)%)/At the diffusion coefficient in .-

energy. From %ﬂﬁp{Dtﬂ)”gn«fﬂ we then get #, and the localization

length in energy, /= An/p~2napD/v. According to numerical expe-
riments, the numerical factor e can be given the value 1 [12, 15].
The localization length in the number of absorbed photons is then
ly =2npD/w®. Now, the change in energy due to one-photon transi-

" Such case when the frequency @>>p~"' has been considered in Ref. (14).
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tion is ®; so that D=2w*W, where W is the one-photon transition

rate. According to Fermi’'s golden rule, W:%Iuﬂgﬂlgazp where

U gy, 1S the relevant dipole matrix element, and e is field strength.
Thus we finally get [16]
lp =~ 2n’u’e%p?. : (1)

The assumption that all levels are involved in the diffusion pro-
cess is satisfied for pe_=w. Indeed, ue is an estimate for the critical
detuning from the resonmant Rabi frequency [14]. In the opposite
case, pe<< w, only levels close to resonance will be excited. Then the
above argument is not valid, and we instead proceed as follows.
First we estimate the number of excited levels at time f by
An~N,An, where N, is the number of absorbed photons and An, is
the number of excited levels in each resonant zone. N, grows diffu-
sively in time, and from the above written transition rate we get
Ny ~(npn’e’pt) /%, while Any,~p’e®p® Since all excited levels lie in
zones of width ~p’e®o around resonant levels, then the quasi-energy
eigenvalues can also be assumed to lie in an interval ~2mp’e’p/w
in (0,2n). Therefore ‘their spacing is Av~2nu’e’p/(wAn). Upon sub-
stituting the above estimates for [y~N,, An, in f,~4x’/(wAv)
we finally get the previous estimate (1). However, the structure of
the steady state distribution will now exhibit a chain of peaks, with
gaps between them. If [, is but weakly dependent on energy, the
probability within these peaks will decay exponentially
~exp (2| Ny | /ls).

We shall now apply these considerations to the particular case
of a 1-dimesional atom in a microwave field. The classical Hamilto-
nian for this system in action-angle variables (n,A) and in atomic
units is [5, 13, 17]: '

By T 3 gy ) ]
H=— = +en cnamt[2 2) > cossh|, (2)

where J, are Bessel functions. Using asymptotic expansions for the-
se- functions with s~ wn®, s—>o00 we get the semiclassical expansion

for dipole matrix elements [18]:

Lo
o

0.411 | (3)
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On the other hand, p=n®. Then (1) sho.ws that the localization is
homogeneous in the number of absorbed photons, with a length

given by

lp =~ 3.33——— Im (4)

On multiplying this value by wn® i. e., the number of unperturbed
levels in a one-photon interval of energy, we obtain the previously
derived [10, 13] value of the localization length. The slight differen-
ce in the numerical factor is due to the particular choice of the nu-
merical factor in the classical diffusion coefficient in Rei. [10], as
explained in Ref. [13]. We wish to emphasize, however, that the
previous theory was only able to justify the form of the steady state
distribution in a restricted neighbourhood of the initially excited le-
vel. Instead, we have now an approximate description for the over-
all distribution, including its peak structure. If the photonic locali-
zation length is large enough, then this peak structure will produce
a plateau in the distribution [10, 13]. If, moreover, [, is comparable
with the number of photons required for ionization N,=1/(2nfw)
then strong ionization will occur. This is the delocalization pheno-
menon described in Refs [10, 13], which leads to diffusive ionizati-
on like in the classical atom. As a matter of fact, the condition
I, ~N, yields the same expression for the delocalization border as in
[10, 13]. We also remark that for typical experimental conditions
[1—4] ©~0.5, &y~0.04, no~66 the equation (4) yields
I, ~230>> N, ~66, indicating that experiments took place in the delo-
calization regime and explaining the agreement with classical data.
The above theoretical prediction was checked bv us on numerical
data from extensive numerical simulations of the quantum Hydro-
gen atom that are fully reported elsewhere [13]. In Fig. | a time-
averaged distribution is plotted versus the number of photons

No=N,—

dent. We determined the value of [, by dividing the explored range
of values of N, (to the right of 0) in one-photon intervals, and by
taking the maximum of the distribution f, in each interval. A
least-squares fit of the plot of these values in semi-logarithmic scale
with a straight line yielded the localization length. The ratio of the
[, thus obtained to the theoretical value (4) was here 1.6.

The results of several such determinations of /, for diiferent pa-
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rameter values (I<wo<<3; 0.02<er<<0.16; no=30, 45, 66, 100)
are shown in Fig. 2. Here Inf, is plotted versus the number of pho-
tons X=2N, /[, with this rescaling, pure exponential localization in
all cases would yield the solid line. In all the considered cases but
3, the theoretical value of [,> 1, and ey was larger than the classi-
cal chaotic border, e.= (50w¢’?) ~'. The dependence of [, on & pre-
dicted by (4) can be checked on Fig. 3. The theoretical formula cor-
rectly works in a range of 5 orders of magnitude of . Fig. 4 gives
an overall comparison of theoretical to numerical values of [, in all
the considered cases. The spreading of points may be due to large
fluctuations in the steady state distribution (ci. Fig. 1).

We can give another independent theoretical justification for
photonic exponential localization. First we reduce the classical dyna-
mics described by (2) to a mapping. To this end, we integrate the
Hamiltonian equations of motion over an orbital period of the elec-
tron, substituting unperturbed motion in the field-dependent terms
and keeping just the resonant term s~wn®. We find that the vari-
ables N (energy divided by w) and f;b—mt-wsk during an orbital
period change to

-

N=N+k sin®,
b= 4 2nw(— 20 N) %2, (5)

where k=0.822ne/w®?. The equations (5) give a «Kepler map» that
approximately describes the motion of the classical electron. It is
defined for all bound states (N<<0) but carries some of them into
the positive energy region, where it is not defined. The real trajec-
tory then goes to infinity, and its energy is determained by the last
«kick» (term ksin® in (5)). It is important remark that (5) can be
locally approximated by a standard map [19] with parameters &,
T~6nw’n and stochasticity parameter K=k?‘=z—", as follows
from linearization. Thus (5) shows again that global dlffusmn is to
be expected for K>1, i. e. gg>e..

- Now we quantize the map (5). Since this map describes an un-
bounded motion in @ under a periodic perturbation, a new integral
of motion will appear («quasi-impulse»), besides quasi-energy. For
a given unperturbed level ng, it will be just the fractional part of
No= —no/2w0o= — N;. Then putting N, = N—N,, we can represent

N, by the Opgratur ﬁﬂp:—i%, and the quantized version of (5)

N
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will be:
{Eze—ih'u ﬁe—ik cﬂs.#’lp, {ﬁ]

where the operator Ho=2n[— 2w (No+ N,)] ~'/% and P is the pro-
jection operator on bounded states (N, << N,). By iterating (6) we
get the distribution on the number of photons that follows from a
given initial condition N,. The classical diffusion coefficient (in
number of iterations) for (5) is constant, and for K>1 is given by
D=~ Fk?/2. According to existing estimates [12, 15] the localization
length for the steady state distribution is, under semiclassical condi-
tions, Iy~ D, i. e., the same obtained above (4). From the numeri-
cal data of Ref. [12] it follows, that the steady-state distribution
can be satisfactory described by the formula

L Equ(1_|_2|N¢.|) Exp(_mg-pt)_ @)

The results of a numerical simulation of (6) are reported in
Fig. 1, where the numerically obtained populations of N, eigensta-
tes (points) gotten from (6) are compared with the probabilities in
one-photon intervals of energy gotten from the numerical simulation
of the Schrédinger equation (crosses). The two sets of data are not
very close, but there is an average agreement, espesially in a neigh-
bourhood of the initial peak.

The map (6) also allows for the determination of the ionization
rate. This is particularly simple for one-photon ionization with
k< 1: then the ionization rate in number of iterations is y, =(k/2).
In real physical time, the rate is I'y=7v,/(2nn3) which is the stan-
dard result [6, 13]. In general, in the localized regime the ioniza-
tion rate should be

H —
Yo~ i: fu~k Iy,
M=N‘r"—k

when N> [,> k> 1. In ph}rsicél time, this gives

o’ 0.3w™/®
g exp (,_ e ) ; (8)

E Ry

Lo~k fy, (ko) ~

Also, if as in the classical case, the destfibutinn in the continuous

part of the spectrum is essentially determined by the effect of a
single kick on states close to the ionization border, then from (6)

8

we get that for £>1 this distribution should be ocjiqh(k), in agree-
ment with results obtained in Ref. [20].

The autors express their deep gratitude to B.V. Chirikov for at-
tention to this work and valuable comments.
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Fig. I. The distribution, averaged from 80 to 120 periods of the external field, versus the num-
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Fig. 2. The dependence of In fy on Xz-}:,_’ where [, is the experimental value, obta-

ined by least-squares fits on 41 distributions, as described in Fig.' 1, for different va-
lues of eo, we, ng. The constant parts in In f, have been subtracted, so that perfect

exponential localization would correspond to Infy= —X which is also drawn in

figure (full line).
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Fig. 3. Plot of the logarithm of the rescaled experimental localization length
log (L0 /3.33) versus log ¢*. The solid line is the theoretical dependence from

formula (4). Experimental data from 38
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different distributions with L,> 1.
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(4) versus logl;, from the same 38 cases used in Fig. 3. The avera

Fig. 4. The ratio R=10 /L,

formula

{RY=1.174+0.07.
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