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ABSTRACT

We calculate the instanton-induced contributions to
correlation functions in the QCD vacuum using nume-
rical data on the ensemble of pseudoparticles (PPs)
obtained previously. We show how quarks, <hopping»
from one PP io another, do form the pseudoscalar
mesons, with parameters close to the experimental
ones. The hierarhy of the m, K, n, n° masses are ex-
plained, as well as the sign and (approximately) the
magnitude of the n—n" mixing. All octet members
have about the same coupling constants, while that for
n’ seems to be larger by about 50%. Our results for
the /=1 scalar channel is consistent with the meson
mass around 1 GeV and the coupling close to that of
the pion.
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1. INTRODUCTION

In the first paper of this series [l] (below referred as CI) we
have obtained the numerical data for properties of the ensemble of
interacting instantons in the QCD vacuum (for brevity, the «instan-
ton liquid»). By this paper we start applications of this theory to
hadronic phenomenology, making the measurements of correspon-
ding correlation functions. |

As the most reasonable starting point we have chosen the corre-
lators of various pseudoscalar and scalar quark-antiquark opera-
tors. The reason for it is that the corresponding lowest excitation of
the QCD vacuum, the pseudoscalar and scalar mesons, are in many
respects rather exceptional members of the family of hadrons.
Through the whole history of hadronic physics, from the «naive»
quark models to such modern approaches as numerical lattice cal-
culations, the puzzles related to these particles have remained in the
center of attention and, in spite of multiple efforts made, we still do
not have their satisfactory explanation.

The most striking observation is, of course, the fact that the
pion is extraordinary light, m,=138 MeV, but this fact was actu-
ally understood when it was realized that the SU(3); chiral
symmetry is spontaneously broken in QCD, and the pion is nothing
else but the nearly massless Goldstone mode. It is so light because
mf is proportional to the sum of gquark masses (m,—-+my), which is
only of the order of 10 MeV (see details and references e. g. in
[2] ). However, then another observation becomes puzzling: the pion
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appears to be extraordinary heavy, because these 10 MeV is multip-
lied by some large [acior of the order of 1700 MeV (we discuss this
point in the next section in details). We lormulate this question as
our problem number one: (i) why masses of the pseudoscalar octet
mesons are so sensitive to small quark masses?

The second prcblem is the «U(1) problem», first noticed by
S. Weinberg [3]: {i{} why mw' is extraordinary heavy,
m,, =958 MeV? Il was in principle solved when it was realized that
’[he U(1) chiral symmetry is explicitly broken by the axial anomaly
[4]. However, the quantitative description ol the 1’ mass is stiil
missing.

The third problem we address in this work is also not new: (iii)
why the strange sector in the pseudoscalar multiplet is not separa-
ted [rom the nonstrange one, as in other multiplets, but, on the con-
trary, is sirongly mixed with them? This lact was «in principle»
understood when G.’t Hoolt has discovered specific flavor-mixing
mechanism induced by instantons [5], but, again, no quantitative
theory of such mixing phenomena was so far developed.

Not going into detailed account for all efforts of the theorists
also addressing these problems, let us only mention the most impor-
tant observations related with the latest development. Not speaking
about various model-dependent approaches, we comment on two the
most powerful and most fundamental approaches toward the hadro-
nic physics: the so-called QCD sum rules [6] and numerical simu-
lations on the lattice (see e. g. reviews [7]).

It was found in [8] that the ordinary operator product expan-
sion (OPE), which works so well for the vector and the axial cur-
rents, give wrong results for the correlators of the pseudoscalar
currents. We discuss this point in Section 4 and show that, formally
speaking, that is due to nonsingular at small distances (x—-0)
effects, missing in that form of this theory. From physical point of
view the way out was suggested in our work [9], (referred below
as AIV. as it was the fourth paper in the series) in the framework
of the «instanton liquid» model. (In fact, in the present work we
actually repeat the same calculations as in [9], but on the new
level: instead of the model-dependent estimates and the single-ins-
tanton approximation we now have a detailed theory of the instan-
ton-induced phenomena.)

Lattice numerical experiments have demonstrated chiral
symmetry breaking, but they still have not produced convincing
quantitative data capable to shed light on three problems mentioned
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above. However, indirectly, they have produced some hints showing
that there is strong sensitivity of the problem to small quark mas-
ses, even below 100 MeV: for example, even the order of chiral
symmetry restoration phase transition was shown quite sensitive to
quark masses. Unlfortunately, studies of light quarks needs very
large and still unaccessible lattices. Let us also mention that
instantons were demonstrated to be there, in the ensemble of lattice
fields. Unfortunately, it is difficult to see them, for they are
strongly masked by quantum fluctuations. The corresponding
methods are not yet very well developed and, respectively, the data
are still very uncertain. What was found is more or less consistent
with our approach, see BI [10].

Comparing our approach to the lattice-based calculations, one
should say that, although both share a lot of common. technical
points, they have quite different status and potential applications. In
lattice studies one in principle integrates over all possible gauge
field configurations, while we concentrate on only a subclass of
them (and therefore may miss a lot). However, our strategy have
paid back by the tremendous simplification: the number of variables
needed for the description of gauge fields per unite space-time vo-
lume is decreased by about 4 orders of magnitude! Therefore, with
very modest computer power used, we are able to discuss a lot of
quantities still unaccessible on the lattice.

Concluding our comments on current literature, we have to men-
tion also studies of the instanton-induced interaction between quarks
made by its introduction as ad hoc, as some effective multifermion
interaction. Such studies were actually initiated by the classical
Nambu paper, which has first emphasized connections between the
chiral symmetry breaking and superconductivity. They are reviewed
recently, in particular, in the paper [14] many questions overlap-
ping with this paper are considered, to which we refer below. The
principle problems with such approach is that such effective interac-
tion is, unfortunately, of the unrenormalizable type, so it is hopeless
to make a consistent theory out of it. Our approach deals with the
same physics, but without these difficulties.

Let us now describe in «general physics» terms the essence of
the effects studied in our work. We developed a detailed theory ol
how light quarks, «hopping» from one pseudoparticle to another,
may travel to large distances.

As it was repeatedly emphasized in the previous works, the
physics of the quark condensate is analogous to that of conducting
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electrons in metals: it is based on exislence of many potential wells
with riearly degenerate «energy levels». In metals degencracy of the
atomic energy levels is caused by identical physical conditions for
various atoms in the ordered lattice. (A disordered matter may be a
conductor too, e. g. liquid metals, but in this case random displace-
mets of atomic levels should not be too strong.) In our case the
ensemble of pseudoparticles is disordered, but rather dilute. Appro-
ximate degeneracy of the eigenvalues of the Dirac operator is cau-
sed by the topological reasons, due to the Atyah-Singer theorem.
With proper account for «hopping» of quarks, the rather narrow
zone of collectivized quark states [11] with eigenvalues near zero is
formed. The width of this zone is proportional to relatively small
«hopping» amplitude.

In this paper we study excitations of the vacuum, and show that
at least the pseudoscalar octet of mesons is made entirely out of
such collectivized quark states. Small width of the zone explains
why the vacuum parameters are so sensitive even to small quark
masses (thus explaining the problem (i)), see Section 3.

Another part of the story is «short distance» manifestation of
instantons, based mainly on strong flavor-mixing effects induced by
them. These efiects are also studied in details below, and we have
succeded to reproduced the points (ii), (iii) below, see Secti-
ons 6, 7.

Complecting the introduction let us add few words about sca-
lars. for which the situation is very unclear, even from the pheno-
menological side. The lowest isovector and isoscalar particles with
such quantum numbers are (nearly degenerate) S$°(975) and
§(980), but they are unusual in some respects and were susspect to
be a four-body (two quark—two antiquark) mesons. Other isosing-
let candidates are &(1300) and also the low mass broad enhance-
ment seen in the mm scattering, a «sigma meson». No bright isovec-

tor candidates other then § particle are on the market. Thus, phenome-
nology does not actually suggest how the corresponding correlation

function should look like, and therefore their measurements cannot
really test a new theory. But, as the measurements of a scalar cur-
rents are made in paralell with the pseudoscalar ones, we also pre-
sent these data, see Section 8.

Discussion of the results obtained in this paper is made in the
concluding Section 9.

2. CORRELATORS AND HADRONIC PHENOMENOLOGY

The correlation functions we are going to measure are the
time-ordered current product avaraged over the QCD vacuum

Map(x) = (01 T{ja(x) j5(0)} 10) . (1)

The current subscripts indicate the names of the lowest mesonic
state excited by them, e. g.

It =dliys) 4, jpo= "%2: (@ysu— dysd) ;
~ |

i % (uysu+dysd —25yss),  jx+ =i(Sysu); (2)
y

o = —— (st + dysd + §yss) .
V3

The correlators are calculated in the Euclidean space-time, so the
distance x between the points is space-like. The Fourier transform
of a correlator obeys standard dispersion relation

(g% =i { &”M(x) d'x,

11(¢*) = — {dsImI1(s) /(s +¢*) (3)

I
T
which can be rewritten back in space-time representation as

: l o B AR
Mx)=— \ImIl"(s) D(~s,x)d
(x) - E m 11" (s) D(~/s ,x ) ds,

D(m, x) = —=— K\(mx) (4)

dn’x

(where K, is Bessel function of imaginary argument). The [unction
D(m, x) here is just the propagator of a mass m particle to dis-
tance x, so relation (4) is selfexplanatory. The logical structure ol
the present work (as well as of the lattice studies or of the QCD
sum rules) is as follows: one calculates the L.h.s. of (4) from the
theory and compare it with the r.h.s., derived from the experiment.
However, there are some diflerences between all three approaches in
details, on which we have to comment.

On the lattice people usually measure the correlator not of the
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local currents, but rather by corresponding «charges», or currents
integrated over the space. Thereiore the correlators depend on the
Euclidean time only, and the propagator D in (4) is substituted by
its one-dimensional version, the simple exponential.

More precisely, due to periodic boundary conditions expression
like exp (—mx)+exp(—m(L—x)) is used, where L is the box
size. We also work with the piece of the QCD vacuum on the torus,
so we also have to account for existence of nontrivial paths on this
manifold. We have done it as follows. Dispersion relation (3) holds
for any momenta g, and if one takes them to be discretized,
gn=2nn/L, with integer n, and then perform the discrete Fourier
transform he gets relation like (4), but with the modified Dy(m, x),
with the propagator on the torus:

[Ty(x) = —fc- { Im 11 (s) Dy (s, x) ds,

oo 2

D)=~ Y mexp(f%n,-x;);[mu(%i) n'-*]. (5)

4
L yHoflafy= —

Let x be along one of the axis (e. g. the temporal one), then one
corresponding sum can be calculated

1 ot cosh ( ¥ %) m
Dy(x) = B Z 2w sinh {m.‘;ﬁ} :

flflafly=— — o0

m2=m2+(%ﬁ) (n? +nf +nl). (6)

Evaluating, the remaining sum numerically we get results shown in
Fig. 1, as the ratio of D;/D. For mL close to unity corrections are
strong enough, and at m—0 they are even infinite due to «zero
mode» for n;=0. However, for mL> 1 the only deviation of D;/D
from unity is at x=L/2, where it approaches 2 because there are
two paths of the same length here. Our lightest particle, the «pion»
(see Section 5) is such that m...L~3, our D;/D ratio is actually
different from unitity only at x around L/2.

(Few words about the theoretical status of our trick. We do not
pretend that the use of the propagators on the torus give us the
exact correlator on the torus by the eq. (5). In fact, if one puts
QCD on the torus, in principle the physical spectral density is to be
modified as well. Again, we hope that our mL =3 is large enough,
and one may neglect such «spectrum rearrangement». On the lattice
people do the same, even in worse conditions.)
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Another difference between our approach and the lattice one is
worth mentioning: we do not restrict our discussion to only lowest
excitations, but measure the correlators in the whole x interval.
First, it helps to understand the mechanism of the asymplotic [ree-
dom breaking. Second, comparing our results to experiment we
include not only the lowest resonances but also fhe nonresonant
«continuums, on which we get some predictions. For this we use the
following parametrization of the physical spectral density (it is
standard in the QCD sum rule approach):

Im I17(s) = nA28(s — m2) + Im I17°7Y(s) B(s — Ej ) (7)
assuming that above certain threshold E, the perturbative predic-
tions hold. We remind that such expression was suggested on the
basis of the experimental behaviour of the cross section of eTe™
annihilation into hadrons. It should approximately holds for any
correlator, as it is some interpolation possessing correct asymptotics
both at small and large x.

The last point in this section is some information on the reso-
nance contribution. We remind that the nonzero pion.mass is due to
nonzero light quark masses and that it can be written as

My =(m,+ ma) K (8)
where K. is nonzero in the chiral limit m,m,—0. Its relation to the
quark condensate and the pion decay constant f,=131 MeV is well

known

Ka=2| Cau) | /f3 (9)
With the «standard» values of the quark masses [6] ms=~7 MeV,
m,~4 MeV, one get surprisingly large value of K;~1700 MeV.
(That point, first emphasized AIV [9], was already mentioned in
the Introduction as our problem (i).) Accuracy of these «standard»
numbers depend on whether extrapolation of chiral perturbation
theory to strange quark mass m;~150 MeV is good or not (see
below), roughly speaking the value of the condensate (and quark
masses) are probably uncertain inside the factor of 1.5 or so. Let us
also remind the reader, that in any calculations from first principles
the quark masses are some external input parameters. Thus, one
actually calculates not, say, the pion mass but rather the value of
the parameter K, This may be done using any values for quark
masses, provided they are small enough.
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The coupling constants of the mesons to the pseudoscalar cur-
rents also can be expressed in terms of known parameters. For

example, starting with the definition of the pion decay constant

(Ol aypysd|n) =ifap, (10)
one may take divergence of the axial current and obtain the expres-
sion we need

(Mt ma) (Ol (iys) dimy =fom?

Mo Z 0 iliys) dIn) =f.K.~(476 MeV)2 (11)
The same trick works for other octet members, K and n, but not for
n’, because in this case the divergence of the axial current is not
related directly to the needed coupling because of the axial anomaly

= - it ,_ 3o* =
Ou@pyvst + dvyvsd+ Svuvss) = msSs + =2z (Giy Gi) (12)

Therefore, the n’ coupling to the pseudoscalar current remains
unknown.

3. FERMIONIC ZERO MODES AND THEIR ACCOUNT

«Collectivization» ol zero modes [11, 10, 1] can be studied simi-
larly to atomic physics. First of all, it is necessary to consider only
a subspace ol slates formed by «zero modes» of all PPs. Inside this
subspace the Dirac operator is a Npp-Npp matrix, with only non-
diagonal matrix elements of the kind :

@)y =]2 Tl

=l (13)
describing amplitudes of the quark <hopping» [rom one PP to
another. We have dealed with such matrix in CI for evaluation of
the fermionic determinant. Now we use such matrix for deriving
quark propagator, which, roughly speaking, is just an inverse to it.

Let us introduce a set of states ;(x) as the linear combinations
of PP zero modes o which diagonalize the (zero mode part) of the
operator (D
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I
(szh‘i Uik polx —2¢) ,
(iD) @ix) =epx) . (14)

In their terms the corresponding part of the propagator looks as
follows

S(zer_u mcrr!es;

o4 W) (15)
gjim

where we have also introduced a nonzero quark mass, acting as a
regulator in case of too small eigenvalues e;.

We have expicitly found @;(x) for each configuration of our PP
ensemble, and, while measuring VEV of some operators or their
correlation [unction, express them in the ¢-representation. This is
done in three subsequent steps. For example, consider measure-
ments of the expectation value of the scalar operator {{ at some
point x. At the first step, one writes down this operator in the «zero
mode basis», substituting the zero modes of the two PPs /1 and /2

(P)r1 2 =Tr| Yo (X —271) Polx— 212) ] (16)

(by chirality properties, this particular quantity is nonzero either if
both /1, /2 are instantons, or both are anti-instantons).

The second step is rotation of this matrix (yy), ,; to the eigens-
tates of the operator (iD), or to the g-representation:

(Pg)ij= %an (V)02 Ups - (17)

Finally, the third one is the summation over all states, including the
propagators

LD =

i

Performing this sum we get the value of the scalar current at the
point x, to be used for evaluation of VEVs, correlators etc.

In particular, just averaging over x the quantity ¢y we may
obtain the value ol the quark condensate. Such averaging can also
be done analytically, because the zero modes yy(x) and their (nor-
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malized) combinations ¢;(x) obey the normalization condition
{ o' (0) Bo () dix=6" (19)
which leads to the well known expression

| 1
(01 ppl0) = 7~ Z o (20)

i

used in €I (and elsewhere). We have used this relation as a test of
the efficiency of numerical averaging over points, and it has shown
that random seleclion ol points on the torus is «too expensive», the
number converges to the value (20) too slowly. Of course, it hap-
pens because the scalar current has rather complicated distribution,
thus it is desirable to select points more eifectively.

Solution to this problem is rather standard. We have generated
ensemble ol points distributed with the weight function W(x)

Y F’H 91
Wix) Z | (x—24) )2 4-pia)° &)

which mimics behaviour of the scalar current in the dilute instanton
cgas, and then make measurements by the expression

Jyy =) dx=(§ W(x) dx (J/W)y;
<JIF,-"I|IW>W:' i%ig (j/ W) W-"dxfg Wdx (22)

In this case convergence to the true result was much better, and
usually few thousands of points give the average with about 209
accuracy.

a b

Fig. 2. Two diagrams for the correlators, see text.
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Another test is provided by measurements of the pseudoscalar
current (iys)p. Of course, its average value is zero. In our model
this happens because instantons and anti-instantons give now con-
tributions of the opposite sign. Again, random selection of points x
leads to inefficient calculation, but the method described above
gives more satisfactory results, with (p(iys)y)>/{pp) typically of
the order of only few percent for few thousands of points.

Before we proceed to the correlation functions let us add few
technical remarks. In the local limit x—0 the correlators are just
the currents squared, and in order to measure these quantities the
most natural (and the most economic) calculation is made if the
ensemble of points is taken with another weight function

; |
e Pra =i 23
4 ; [(x—2)*+pra]° e

which mimic the behaviour of the currents squared. We have used it
in the calculation of the correlators

(ix) (0) ) = dyjlx+y) jly)= [jx+y)ily)/Wy)] Wy) dy=
\ (Wdy) (J(x+y) {9)/ Wy)dw. (24)
Our second comment is that if two quarks are of the same fla-
vor there exist two diagrams (shown in Fig. 2a,b), contributing

with the opposite sign (due to fermionic nature of anticommuting
quark operators):

(ix) j(0) ) =; (jedx) jie(0) — juelx) jul0)) /(ex4-im) (1+-im) . (29)

In the @ representation one may say that (25) just obeys the Pauli
principle: one cannot put two quarks into the same fermionic state.
That is why the correlators like ( (#u)(dd)) are different from
{ () (uu)y: for them only one diagramm is possible.

Our results for the pseudoscalar and the scalar correlators, in
various flavor combinations, are shown in Figs 3, 4, respectively.
Throughout this work we use the data for the 16 pseudnpartmles in
the box described in CI for the PP dEI‘Ib]t‘v’ npp =1Ap,. In fact, the
sensitivity to the density is rather weak, because we actu_ally make
relative measurements, of the correlators divided by (p)>.
such analysis we also essentially reduce fluctuations from one conn-
guration fo another, as well as those due to particular choice of the
coordinate points.)
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Fig. 4. The same as in Fig. 3, but for the scalar currents.

Looking at the data points at both Figs 3, 4 one may note, that
the flavor-changing combinations ( (au) (dd)) and ( (@) (5s)) are
al small distances even larger than the f{lavor-diagonal ones: this
the trace of the structure of 't Hooft vertex of the individual instan-
tons. However, we see that in our «instanton liquid» the two-instan-
ton contributions is not really very small compared to it (especially
for scalars) which is a consequences of strong «collectivization» of
[ermionic states in our liquid.

The value of such correlators at zero distance is just the mean
value ol the .corresponding current squared. Such quantities are
oiten estimated by means of the «vacuum dominance» hypothesis
suggested in [6]. For {((iu)(dd)), for example, this means that
one should sandwich the vacuum state in between, estimating it as
{au) {ddy. In this particular case one can see that our data sug-
gest this quantity to be about twice larger, and e. g. for (uuuu)
such estimates are nearly exact. However, for. pseudoscalars some
deviations are much larger. For example, ( (diysd) (diysu)) can be
sandwiched by the vacuum only alter Fiertz transformation, and the
resulting estimate is then (1/12) (au)*. However, as seen from our
data shown in Fig. 3, we predict its value to be at least 20 times
larger! (So large deviations from the «vacuum dominance» happen
only in cases where 't Hoolt vertex is at work directly.)

Considering large-distance behaviour of such zero-mode part of
the correlator one may first note in Fig. 4 that most of the scalar
correlators tend to constants (with the only exception of @ddu and
ussu combinations, to which we return in Section 8). The pseudo-
scalars tend to zero, and at this figure it is difficult to see how
exactly they behave in this region. We return to this question in
Sections 5 —7, where we construct particular flavor combinations
out of them, corresponding to particular mesons.

4. VIOLATION OF THE ASYMPTOTIC FREEDOM
AND ACCOUNT FOR THE NONZERO MODES

This section consists of two parts. In the first introductory one
we discuss the asymptotic freedom violation by nonperturbative phe-
nomena, suggested by the formulae based on the operator product
expansion (OPE) in its form used in the QCD sum rules [6]. Then
we turn back to our «instanton liquids, and consider the contribu-
tion of the nonzero modes.
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The OPE version suggested in [6] is based on the expansion in
powers of 1/¢° (g is the momentum transier iflowing trough t_he
current). Returning lo space-time representation one gets (e. g. for
the pion correlator)

3 (0l(gGi )10y |, ¢0lA]0) | ( 1)3 AR
g 145 I} — Bl b
) it 1287 % i T X e
def s ¢ o — a,,\2 7 a2 ML = 5., 40 -
A E =2 [(dopt'u)® + (dowt*d)?] 4 =@yl u-dyyt'd) X (26)

X( ; c?ﬂg“f”q) — no{ U0, ) (douwi'd) .

Note, that the first term O(1/x%) is nothing else but the free
quark propagator squared, so it really describes iree propagation of
two quarks in agreement with the «asymptotic freedom». Note also,
that only terms possessing a singularity at x—0 are obtained, while
the finite ones and those proportional to posilive powers of x* are
absent. (In this respect, the original OPE suggested by Wilson was
different: it has included expansion in powers oi x). The question
we are going to address is as follows: which corrections, the singu-
lar or the nonsingular ones, do in fact dominate, describing devia-
tions from the asymptotic freedom. (We return to it in Secti-
ons o, 6.)

The next G{l/xg} term also is of interest to us, because it is
related to the so called «duality-based» estimates [6] for the thre-
shold parameter E, of our parametrization of the spectral density
(7). Consider the correlation function written as an integral over
the physical spectral density (7) at x—0. The particle propagator is

(1/x%), therefore our resonance give such a singular Lontrihutmn
However, the nonresonant continuum also produce such O(1/x?)
term, which is most easily seen if one writes it as

oo wt oo : . Ea ; ;

5 Im 17 (s) D['\XS,X} ds = S I Y Dds — S Im 17" D ds =

Eq 0 0
9 (27)
= :_E.1.I[;, g { ;"JC }

where the second negative term can be considered as the contribu-
tion of the «missing states» with £<CEp Assuming that O(1/5%)
contributions are equal at both sides, one gets a relation
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L0 o e = 3 _
o A AL gt ;
198" e et (28)

With the «standard» numbers for ((G), )Y, k. it suggests
E=1.3 GeV . Note however, that the (gG)?) term in (27) is ac-
tually small and unimportant, and, without it, such relations were
suggested earlier. The idea was that the resonance contribution is
«dual» fo the gap «eaten up» from the non-resonant continuunm, if
their integral contributions are considered.

The next OPE terms contain certain four-fermion operators, and,
by dimensional reason, the corresponding singularity is only loga-
rithmic. In the preceeding section we have discussed the contribu-
tion of the zero modes, which obviously give [inite contributions, at
x—0 tending to VEVs ol some four-fermion operators. As log (x)
(more precizely, it is log (xu) where p is the normalization point
scale) is not actually large in practice, all depends on relative mag-
nitude of the corresponding VEVs. Those which are connected with
zero modes are so much enhanced, that they are much larger than
the OPE ones, which we disregard in what follows.

Let us now turn to the contribution of the nonzero modes. We
remind that for the one-instanton background field the contribution
of the nonzero modes to quark propagator was explicitly found in
Rel. [ 12]:

LEF0 e I ! 5 : M — A
Stx, g) = ™", )+ Do, y) (252) A D(SE)  (20)

where A is the scalar propagator in the same background field

I 14 p%am, )} )ity
dn¥(x—y)* [(14p7/5") (140 /y?)] '

Alx, )= (30)
where x and y are counting from the |11aianmn center and the
4-dimensional Pauli matrices are

T, =(T, Fi).
[t can be used for the evaluation of the correlators, as a (color
and spin) trace of the propagator (29) squared. Ailter somewhat
combersome calculations we get the result

: 3 A(A, o, cos (), p)
L{x, y) = - — :
1 y) x—y)t B(A, o,c086,p)
A=(a"+p*) '+ A7 (0° + p?)%6"sin?0 + 2p° — 2p%0*| +
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77, o ]+ A% (0?4 o0%sin?0/2) + A?/256 ;
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i
(% +0") c0s™| 4 T (0 +p* — 20%c0s"6) + A%/256. &}
where
x4y

0= 24
9 + 21

A=x—y; cosB=(guA,)/0A.

Our first comment to it is that O(A?) corrections are present
here, but absent in the OPE expansion (26). This is because only in
the vacuum we have to use only the scalar operators, while in some
external field we should also include operators like Gy, n,, of dimen-
sion 2. (In average, such effects should disappear.)

Our second comment: as (31) is the rational function, no loga-
rithms of x are present and therefore no OPE terms bul the
( (gG)2)/A? one is actually present (this is a consequence of the
known Dubovikov— Smilga theorem). On the contrary, the finite
and power terms in A? are present, unlike in the 1/Q OPE expansi-
on.

We do not have similar formula for the propagator in the com-
plicated multi-instanton background, but, as we are going to consi-
der only small-distance effects in this section, we use some simple
approximation based on this expression. We just take the product of
correction factors (31) over our instantons

3 Al A ora)
HJ{-"—HJ‘J Big, 4.0 )
1,4

M{x,y) = (32)

It was shown that for most of them it is just unity, and only «the
most important» one gives the main correction. Obviously, we have
averaged (32) over the random point pairs and over our data for
the PP configurations.

The last question we address in this section is the interference
term of zero and non-zero modes, arising when we square the pro-
pagator in order to get the correlation function.

Our first observation is that in this case chirality of both quark
and antiquark zero modes are identical, thus both ol them cannot
be provided by the same pseudoparticle and we need both an
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instanton and an anti-instanton. This fact alone shows that the
effect cannot be very strong, for instanton and anti-instanton are
typically separated in space-time, and the product of their zero
modes is never large.

The second observation is that the relative orientation matrix
enters the interference term linearly. Thus, if it is more or less ran-
dom, this term should be small in average.

The third point is that for the pion correlator the interference
term cannot be very important because the x dependence ol zero
and non-zero mode contribution is quite different. As a result, either
the former or the latter strongly dominate, with small «window» in
between where they are comparable: only here one may see notice-
able interference term.

Due to all these reasons the interference term can be disregar-
ded. An exception may be the n, n’ channels (see section 6), becau-
se in this case the zero mode contribution decays nearly as strongly
as that of the nonzero ones and our third remark does not hold..As
it contains the contribution of the strange quark, one may also
avoid the first point: in the term proportional to m; there is no chi-
rality problem, the zero modes have opposite chiralities. Moreover, if
they belong to the same pseudoparticle, 1he relative orientation mat-
rix is just unite one, and the «random angles» argument drops too.

For this case we present the formulae for such effect

3

n'(x—y)

g i n*(x—y)° < () |
M(x, y) = 6[1+ . m5|<su}5m}>5] (33)
which can be estimated from above by the substitution of constant
(§s). The resulting correction to the free correlator looks as fol-

lows

[, y)=—43;—ﬁ[1+().23(xf:1”)4] | (34)

at{x—y)

which is too small at distances we consider to be relevant.

5. CORRELATORS FOR THE PSEUDOSCALAR OCTET

Now we are in the position to compare our results with the
experiment, which we do it in this section it in two steps. First we
plot the data emphasizing large distance limit and the light meson
contributions, and then we turn to «intermediate x» at which the
asymptotic freedom is violated.
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The correlation functions rapidly decay with distance, and in
order to see whether the measured points indeed follow the expected

behaviour at large x it is convenient to divide the correlator by

some standard function possessing similar behaviour. In Fig. 5 we
show pionic correlator divided by the massless propagator, or
41°x*[1.(x). (As in Section 3, Il(x) is a dimensionless combination
(ja(x)ja(0) > /Cauy® which makes data much less sensitive to
uncertanties.) The points show the contribution of the zero modes,
the dotted line gives that of the nonzero modes and the shaded
region is their sum,

The dashed line corresponds to the «expected behaviours, which
we have to comment on. Taking the ratio of the correlator to
(auy® we have made it dimensionless, but the distance x in abso-
lute unites, in fermis, should now be put in our standard length
unites Ay, . For definiteness, we have used the best measurements
of deep inelastic (muon) scattering [13]

230440 (stat)+80 (syst) MeV (BFP Coll.
Ae ={ ; ' ISy f‘ ) (35)

220420 (stat)4-60 (syst) MeV (BCDMS Coll.)’

This quantity Ay practically coincide with our A,,. We use
Apy =220 MeV, thus our standard length unite is A;;' =0.9 fm.

Normalization of the correlator to (au)® may appear not very
reasonable from the experimental side, because experimental value
of this quantity is not accurately known. However, as we are now
mainly interested in the pion contribution, we note that just for such
normalization the uncertain quark condensate value drops in the
«expected pion» line because the coupling constant A, is also pro-
portional to the condensate and

M/ auy=4/f2 (36)

so that only the (accurately known) pion decay constant remains.
Our last comment on the «expected» curves in Fig. 5 is that,
using the first order chiral perturbation theory, we have actually
shilted the experimental pion mass to that, corresponding to the
quark masses really used. (Larger masses are needed because, as
discussed in CI [1], due to the finite-volume effects the eigenvalue
. spectrum is distorted at their small values and it is dangerous to
work with too small quark masses.) Thus, both the «theoretical»
shaded region and the «expected» dashed curve in Fig. 5 in fact
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Fig. 5. The correlation function of the pionic currents versus distalnce, The q_l.!ianh@y

plotted is actually 4a°x*11,/{au)” and the distance x is measuretd either in J_-\H,- ~orin

fermis (lower and upper scales, respectively). The dotted line is the contr_lbutmn ?f

the nonzero modes, while the points stand for that of zero modes. Their sum is

shown by the shaded area. The dashed line is the expected pion s_ignal, with experi-
mental [, and with E;=1600 MeV (as suggested by Fig. 7).
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correspond to the nonstrange quark masses m,=my=
=0.1Apy =~22 MeV. The «expected» pion mass is then
M« =~ 276 Mel.

Comparing «theoreticals and «expected» curves in Fig. 5 one
finds very good agreement in their shapes. Note the striking fact:
two components of the theory are in nearly one-to-one correspon-
dence to two components of the physical spectral density. Roughly
speaking, zero modes make a pion, while the nonzero ones are res-
ponsiblé for the nonresonance «continuums.

The absolute magnitude of the pion contribution suggested by
the theory is slightly smaller than our «expected» curve. This can
be either prescribed to smaller coupling, leading to our «prediction»
of slightly more «compact» pion

fr=0.7Apy ~ 160 MeV  (exp.: 131 MeV) (37)

or to somewhat heavier pion, due to larger value of the constant

I :
e e BT (38)

This latter possibility is probably inside the existing uncertainties of
the value ol K. Unfortunately, we cannot resolve this dilemma with
our data because the «window» in which the pion sygnal is domi-
nant is not wide and is affected by the flinite size effects, so that we
are unable to measure the pion mass and its coupling separately.

[n Fig. 6 we show similar data for the kaon correlator. Again
agreement between our data and the «expected» curve is good
enough in shape. Comparing this figure with Fig. 5 one may note
that the «strangeness suppression» of zero mode contribution leads
to smaller signal at larger x, which means heavier particle. Again,
deviations from «expected» curve may be looked at differently: eit-
her our prediction for the coupling constant %, is smaller

A= 0.7h, (39)

or we predict slightly heavier kaon, m; ~600 MeV. Similar data
were obtained for eta meson, which we do not show because they
are very similar to kaonic ones. |

Now we turn to Fig. 7, which again shows the pion correlator,
but plotted in different way. The correlator is now divided by the
free propagation one, being its small-x asymptotics. Again very
good agreement is found in shape with the «expectations», shown by
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Fig. 6. The same as in Fig. 5, but for the kaon. Note that the zero mode cbntributinhn
has dropped significantly compared to the pion case, which shows that the kaon is
much heavier.
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om at smaller x. The dotted line is
d parameter E; given in the figure.

({(gG)*y) corection, which is too small to be

important.

it shows the same data as in fig. 5

3

N,
Ty

the contribution of the nonzero modes, while the dashed region is the sum of all contributions.

Three dashed lines stand for various values of the threshol

Fig. 7. The pion correlator divided by the free one [1./T17e,
‘The dash-dotted line corresponds to the OPE O

but with emphasis on deviations from the asymptotic freed

gl

.

the dashed lines for various values of the «continuum thresholds E,.
The best one seems to be '

Eg=~ 1.8 (e

which is somewhat larger than that produced by «duality esti-
matesy, Ey=1.3 GeV.

The dash-dotted line in this figure is the O({(G*)) correction.
Note that even at small distances it does not describe neither the
«expected» curve nor our data. Thus, we once more see that the
OPE analysis fails in this case [8].

Completing this section we may conclude, that the «instanton
liquid» picture of the QCD vacuum is able to reproduce the expec-
ted behaviour of the correlation function of two probes with the
octet quantum numbers.

6. THE n* CORRELATOR

As we have already emphasized in Section 3 (and earlier in
AIV, in the single-instanton approximation), the strongest effect
associated with zero modes is very large amplitude of the fla-
vor-changing transitions, say from the &u pair into the dd or the §s
ones. As we have seen in the previous section, such effects increase
the pseudoscalar octet correlators, making the corresponding
mesons lighter. Considering the SU (3); singlet correlator

“smgfei e <jﬂrl[x} .lfﬂ;{{]} >,

; i
we observe that the zero mode contribution to it is negative at
small x leading to more rapid decay of the correlator, or to heavier
physical states. The correlation function decays so rapidly, that it is
rather meaningless to plot the correlator itself, and in Fig. 8 we
show its ratio to the free correlator, (as in Fig. 7 ).

The non-trivial behaviour of shaded region (which is our predic-
tion) is due to sign-changing contribution of zero modes. At small x
it is negative due to the flavor-changing amplitude, while at larger
x it changes sign because the flavor-diagonal ones become domi-
nant. (In order to emphasize the importantance of such behaviour
let us remind the reader, that in the single-instanton approximation
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Fig. 8 The same as in Fig.7, but for the flavor-singlet (or n') current. Note that

now the zero mode contribution is changing sign, so that the shaded region is first

below the contribution of the nonzero ones (the dotted line) and then it I];apir_llj,-' rizes.

Two shaded lines correspond to Ey=2400 MeV both, but with A /A =1 and 2
respectively.
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considered in AIV only the negative flavor-changing contribution
was present. Therefore, at large enough distances the total correla-
tor became negative too, which is not possible. That was a sign that
something important was missing, and now it is seen that such mis-
sing ingredient is the flavor-diagonal terms generated by the whole
multi-instanton «liquids.)

With such negative zero mode correction, deviations from the
asymptotically free behaviour are significant even at rather small x.
In terms of the physical spectral density it means a very large
«gap» up to the threshold Ey, our fit gives it in this case as high as

Fo~12Apy~24 GeV (42)

to be compared with the octet value 1.6 GeV. It may be that rather
large mass scale of asymptotic freedom violation expected in gluo-
nic channels [8] show up in this correlator as well.

It is not easy to get data on the n’ mass, although certainly it is
not lighter than, say, 1 GeV. Even on its coupling we got only bad
data, because 1’ signal dominates only at distances where it is al-
ready very weak. We present some information on it because, -as we
have already discussed in Section 2, there is no «expected» value of
the v coupling to the pseudoscalar current. Our points have large
arrors at largest x (see Fig. 8), but they prefer the value

Aoyt =~ 1.4 (43)

We hope the conclusion (43) is true also because there are two
other arguments in its favor. First, duality arguments usually rea-
sonably relate the resonant coupling to the thereshold Eo, and from
(43) one gets '

ESt) ~ 96 Gev. (44)

The second argument is based on our data on the nn’ mixing, which
we now are going to consider.

7. THE nm" MIXING

We remind the reader that «mixing» of the SU(3) singlet and
octet states is the well known consequence of the strange quark
mass, and traditionally -it is considered by means of the diagonali-
zation of the Hamiltonian written as a 2X2 matrix in the subspace
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made by the pair of «mixing» mesons. The following numbers for
the mixing angles for various hadronic multiplets

5 0

0~ ~ —20° [15]

1+ +39° (45)
2- 1 28°

3 +29°

show that the pseudoscalar case is indeed exceptional. (All other
angles are close to the «ideal mixing» value 6=35.3°, which just
means that strange states are decoupled from the nonsirange ones.)

In order to investigate this phenomenon we consider the
singlet-octet correlation function

[y (x) = ( Tjn(x) jir(0) ) (46)

which is sensitive to the mixing angle and to the difference of physi-
cal spectral densities in both channels. For not too small x it can
just be written as

1, (x) =cos 0-sin O [ A2 D(m,, x) — A D(my, x)] . (47)

Our data are shown in Fig. 9, and it has the typical behaviour
with the varying sign. At large distances n should dominate over n’
because it is lighter: looking at our data we see that they definitely
imply that the angle is negative, as it is in experiment.

Further, the shape of the curve is sensitive to the ratio A [
the fit gives quite narrow window for it

A [Aq o 1.440.2 . (48)

As eta coupling A, was expected (and actually obtained, within sta-
tistical uncertainties) to be close to pionic and kaonic ones, this
implies that }fia is about twice larger than A.. Such statement is con-
sistent with the conclusion reached in the preceeding section.

Unfortunately, due to large enough errors in absolute values of
hx, We cannot say what is our result for the theta value with good
accuracy. If A,=2x, then it magnitude is 8 ~ —25° (this corresponds
to the line in Fig. 9), but the uncertainty in factor 2 is obviously
there. Note by the way, that in some simplified model mentioned in
the Intoroduction [14], all features of the mesons were fitted and
then 6 was found to be around —30°,
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Fig, 9. The singlet-octet nondiagonal correlator. The gnints are zero mode cc-!ltribg-
tion measured, the dashed lines are for difierent l,f—fh, ratios, with numbers given in
the figure.
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8. THE SCALAR CORRELATORS

We have already mentioned in the Introduction that the experi-
mental situation with the scalar channels is very unclear. Unfortu-
nately, due to different reasons for most of them it is also difficult
to say something definite from the theoretical side as well.

Indeed, we have already discussed our data on the zero mode
contributions into the scalar correlators in Section 3 and have seen
how the scalar correlators like ( (Zu) (@u)) approach at large dis-
tances their asymptotics (uu)® Of course, physical excitations lead
to decaying signals, and they in principle can be seen after this con-
stant be subtracted, but in practice it is very difficult to measure
small deviations from the mean value of the strongly fluctuating
signal. As seen in Fig. 4, we have seen such deviations e. g. for
( (uu) (dd) ) correlator, but only at x being too small to be related
to the mass of some lowest mesonic state.

The only channels for which there is no such problem are the
correlators like ((4d) (du)) and ((us) (5u)). We have plotted
the corresponding results in Fig. 10. Adding the zero-mode contibu-
tion (points) with that of the nonzero modes (the dashed lines) we
get a correlator which decays rapidly, indicating rather heavy states
with mass of the order of 1 GeV or so. (Various lattice calculations
lead to correlators which have roughly the same slope as our one.)

In order to get some impression on the resonance masses we
also plotted for comparison the set of (dotted) curves, correspon-
ding to the «standard» physical spectral density with
Lo=1600 MeV, the coupling constant of a resonance the same as
for the pion, but with variable masses. Such a fit exists, leading to
masses of scalar ud meson

mg+ ~0.9Apy ~1 GeV. (49)

Strictly speaking, we have not measured the signal at suifici-
ently large distances needed for clear separation of the lightest sta-
te from the «continuums. Therefore we may only claim that no lig-
hter mesons (with comparable coupling) exist in these channels.

However, as these fits are compartable with our data, we consi-

der it quite plausible that the §(980) meson is indeed the particle

seen in this correlator. If so, we find no unusual properties associa-
ted to it: both its coupling and thereshold parameter E; are roughly
the same as for the pseudoscalar octet.
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Fig. 10. The scalar correlation function (solid line) is compared with the. zexpected»
behaviour with different meson masses (the dashed curves). The q@ttgd line and the
points stand, as above, for nonzero and zero mode contributions.
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9. DISCUSSION OF THE RESULTS

In C/ we have developed the detailed theory of the topological
phenomena in the QCD vacuum. Let us emphasize its «microscopic»
character: the theory starts with the QCD partition function and,
making integration over most variables semiclassically and over
some of them numerically, it leads to distributions of the (nonper-
turbative) gluonic and quark fields in space-time. On general gro-
unds it is clear that this theory of the vacuum is not complete: we
have integrated only over some specific field configurations and
have not reproduced all features of the vacuum: its famous confine-
ment property is not yet explained.

However, in CI we gave strong arguments that one important
aspect, the chiral symmetry breaking leading to the quark conden-
sate, can be understood and quantitatively described by means of
«collectivization» of some quark states. 1t is clear on general gro-
unds that any theory of the quark condensate is authomatically the
theory of the pions because the long-wave-length pion is nothing
else but the mixture of the true vacuum with its «twins», posessing
different quark phases but physically being quite identical to it.
Therefore, the long-distance behaviour of the correlators with the
pion quantum numbers should be reproduced correctly: the famous
Goldstone theorem garantees the presence of (nearly) massless pion
pole. If so, had we good reasons to study pions in the present work,
aren’t its result just a repetition of the same physics as in C/ in dil-
ferent terms?

Of course, some general facts was not necessary to check (may-
be, only for test of the calculatons), but there exist also other pro-
perties of the pion such as: (i) its decay constant [;; (ii) parameter
K.(8), relating its mass to quark masses; (iii) the pion formiactor,
(which was not studied in this work but may be a subject for fu-
ture works). There is no general relations between them and the
quark condensate, and it is important to calculate it from our the-
ory and to check its consistency with experiment. as we have more
or less succeeded in it, we are now more convinced that this theory
of the vacuum structure is reasonable.

Another general problem addressed above is the role of the
strange quark mass in the QCD vacuum. The question of ‘whether it
can or cannot be treated as small parameter is very controversial.
As our theory of quarks in the instanton liquid suggests the presence
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of a narrow peak in the spectrum of eigenvalues of the Dirac opera-
tor around zero, with the width of the order of 100 MeV, our
answer is that, generally speaking, m.=150 MeV is not actually a
small parameter and many applications of chiral first-order pertur-
bation theory to strange hadrons need to be reconsidered.

Such important statement should of course be carefully checked.
Our data of C/ have shown that (ss)/{uu) ratio significantly
deviates from unity, but empirical information here is not yet accu-
rate enough to be convincing. Our studies in AIV of the correlators
connected with strange quarks have used the «sirangeness suppres-
sion [actors» evaluated from the model and being of the order of

/2. Now, with much more accurate approach to the instanton |
physics, we have found similar suppression of the zero-mode effects.

The non-zero modes, on the contrary, can beé shown to bhe rather
insensitive to ms. Summarising both contributions and comparing
their sum with the expected behaviour for K and nm correlators we
have found good agreement. Withouf such «strangeness suppressi-
on» of the zero modes we would not get any agreement with their
masses. (In other terms, we claim that without narrow «eigenvalue
zone» around zero we would not reproduce high value of the para-
meter K (8))

Finally, our answer to the SU(3) breaking problem is as fol-
lows. The lightest octet mesons are mostly made out of collectivized
zero modes, which are very sensitive to m, Respectively, masses of
these particles are far from being close, etc. However, the non-reso-
nant continuum in all these channels is related to non-zero modes
which are insensitive to ms: that is why the threshold parameter Eo
is about the same in all cases. Moreover, duality-type arguments
demand then similar couplings A, and this is indeed found in our
data.

Two other general problems addressed in this work deal not
with the «long distance physics», but rather with the «small distan-
ce» one. These are the mechanisms of the asymptotic [reedom brea-
hing and the flavor mixing mechanism. They were related in AlV
[9], where it was claimed that both mechanisms can be quantitative
explained by the same interaction, namely 't Hooit instanton-indu-
ced multifermion interaction of small-size instantons.

Our present data clearly show that this interpretation was cor-
rect. The flavor-changing correlator is indeed the strongest one at
small distances, leading e. g. to ¢ (uiysd) - (diysu) ) value by the

factor 20 larger than that suggested by the «vacuum dominance»:
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hypothesis [6]. That is why such effect dominates over, say
((gG)*) effect in Fig. 7 (in spite of the fact that the latter has sin-
gular O(1/x*) behaviour). Thus, the failure of the OPE-based sum
rules for the pseudoscalar currents (noticed in [8]) is explained.

One manifestation of strong flavor-mixing amplitude is the un-
usual singlet-octet mixing of the pseudoscalars, which is reproduced
by our data in sign and (roughly) by magnitude. Even more inte-
resting is our conclusion of the nesessary existence of unusually
large gap in the spectral density of the v’ correlator. Let us remind
in this connection, that existence of such a new large scale was
suggested in [8] for the gluonic channels, in particular for the pse-
udoscalar operator GG. As is believed to be somehow mixed with
gluonium, appearence of such effect in this correlator is probably
related to this fact.

Thus, concluding this work we may say that we are mostly
satisfied by its results, in the sence that most of the suggestions of
our model-dependent treatment in AIV are reproduced by the pre-
sent «microscopic theory». We are now much more convinced that
the lightest pseudoscalar mesons are mainly «made out of zero
modes», while the nonresonant continuum just represent the nonzero
modes. Such relation between the eigenvalue spectrum of a Dirac
operator in the one-instanton background field and the mesonic
spectrum in QCD is, of course, very intriguing. Is it true for other
light hadrons, say for vector mesons or the baryons, are they also
made out of the collectivized zero modes? Such questions we hope
to answer in our subsequent publications.
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