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Abstract

The stability of plasma in the axisymmetric mirror device with respect
to purely electrostatic flute perturbations is considered. It is shown that
a population of hot particles with fast azimuthal drift may contribute in a
favorable way to the stability of the system as a whole. The reason 18 that the
fast drifting particles affect not a potential energy of the MHD perturbations
but rather their kinetic energy, and in the case, when the effective kinetic

energy is found to be negative, the stabilization takes place.
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I Introduct_ion

Axial symmetry is a very desirable property of the mirror devices both for fu-
sion and neutron source applications. The main obstacle to be circumvented
in the development of such systems, is the flute instability of axisymmetric
mirrors. In recent years there appeared a number of proposals, devoted to
the stabilization of the flute perturbations in the framework of axisymmetric
magnetic configurations; most of them are based on the combining of the
MHD unstable central cell with various types of end-cell stabilizers (see, e.g.,
the surveys [1]—[3]). In the present paper we concentrate ourselves just on
this scheme, that includes a long solenoidal cell, conjugated with the end sta-
bilizing anchor, intended to provide MHD stability of the system as a whole.
The attractive feature of such a configuration is that it allows to exploit finite
larmor radius (FLR) effects [4] for the stabilization of the flute perturbations.
As is well known [4], FLR eﬁeds, being strong, stabilize all flute modes, ex-

cept the one with azimuthal number m = 1, corresponding to the “rigid”




displacement of the plasma column (the “global”. mode). Consequently, in

the conditions when FLR effects dominate, the anchor has to stabilize the
“global” mode only. Bearing in mind a favorable influence of FLR effects
we, however, don’t restrict our paper by discussien of only “global” mode
stability and consider a general case of an arbitrary azimuthal mode.

The conventional approach to the stability analysis contains an assump-
tion that the curvature-induced particle drift is slow with respect to the

time-scale of the flute perturbation growth,

04 & i‘, (1)

where T' denotes a characteristic growth-rate of the flute perturbation (or a
characteristic frequency in the stable case), and Qg is a characteristic drift
frequency in the stabilizing anchor. Inequality (1) means that plasma parti-
cles in the anchor move together with the flux tube that they were initially
occupying. Therefore their perturbed position can be defined by a 2-D hydro-
dynamic displa.c.:ement vector £, being the same for all particles, occupying
in the initial state some flux tube, irrespective to their velocity and pitch
angle. So, one can analyze the stability of the system in the framework of
the familiar Kruskal-Oberman energy principle [5]. Just this approach is in
the basis of the proposals mentioned in the surveys [1]—[3].

On the other hand, the presence of a long central cell, possessing large
inertia, can result in the violation of (1). Indeed, flute growth-rate in the

central cell itself (without the anchor) scales as [6]

'~ UT:’/\/-L-: Lir, (2)

where L., L;r are lengths of solenoidal and transition regions respectively, and

vpi is the ion thermal velocity in the central cell. It looks hardly prabable

to achieve a stabilizing contribution of the anchor more than 1.5 — 2 times
exceeding the unstable contribution of the centfal cell. Hence, if one switches
on the anchor, the characteristic frequency of the flute oscillations keeps its
former value (2), just the sign of I'* changes. Drift frequency around the

magnetic axis in the anchor region is estimated as follows:

: cT,

Qg ~ <B.L?’ (3)

B, being the magnetic field in the stabilizer middle plane, T; being plasma
temperature in the stabilizer (to avoid unnecessary notation overloading in
estimates, we suppose electron and ion temperatures in the anchor to be
equal to each other). As it follows from (2),(3), the growth-rate I' becomes
really small as compared with the drift frequency when L. is large enough.
For the latter reason, it is of interest to study the situation when the
drift frequency in the stabilizing anchor exceeds substantially the frequency

of MHD perturbations, i.e. when inequality inverse to (1) is satisfied:
Qg >T. (4)

To analyze the stability of such a sy;stem one cannot use Kruskal-Oberman
energy principle and has to rely on its modified version that takes into account
the condition (4).

" The generalized energy principle accounting for the contribution of non-

hydrodynamic (in the sense of (4)) plasma species has been formulated in

[7], where single-particle adiabatic invariant technique has been used to cal-

- culate the perturbation of the particle energy. The enérgy variation, derived

in [7], consists of the contributions of both perturbed plasma and magnetic

energies. However, if one inserts into the expression for W, presented in [7],




the displacement vector £ of the flute perturbation

T (5)
with n constant along the field line, then one comes to a somewhat paradox-
ical result. Namely, it turns out that W, as given in [7], becomes identically
zero [8]. The reason is that the authors of paper [7] retained in W only terms
proportional to £2 while, as it has been shown in [8, 9], the contribution of
non-MHD particles to the energy of the perturbations has a different struc-
ture, being proportional to 52. Henceforth in this paper we consider just the
case of purely flute perturbations (5).

The contents of the present paper is as follows. In the next Section we
reproduce the derivation of the generalized energy pfincip]e [9] for the axisym-
metric case. The gﬂﬁeralization of the energy principle [9] to the intermediate
frequency interval, I'/m <€ Q4 < T, for modes with high azimuthal numbers
is the subject of Section III. In Section IV we invoke the cited energy prin-
ciple to illustrate the possibility of the stabilization of the flute instability
due to the “negative inertia” effect. The study of the conditions, required for
the “negative inertia” stabilization in the magnetic mirror, is performed in
Sections V.1, V.2. Section VI is devoted to the application of the generalized

energy principle to stability analysis of the neutron source device, proposed

in [10]. Section VII contains conclusions.

II Generalized energy principle for axisymmet-

ric plasma configurations

Suppose that in the anchor region there exists a population of the hot par-

ticles with drift frequencies satisfying inequality (4), while the plasma in the

central cell is cold enough to admit conventional MHD treatment. Througout
the paper we use the # — 0 approximation. We examine the stability of such
a system with respect to the purely electrostatic perturbations that are char-
acterized by the electrostatic potential ¢, constant along the field line. The
latter assumption, identical to the one made in [7], implies the presence of a
cold plasma component which justifies the constancy of the potential along
the field line and acts to provide quasineutrality condition.

In this paper we use the following coordinate frame: we mark every field
line with the polar coordinates r, of its intersection with some plane, per-
pendicular to the uniform magnetic field B, in the solenoidal region of the
central cell. Instead of r one can use the magnetic flux @ inside the cylin-

drical surface of the radius r : ® = #r?B.. A drift surface can then be

‘described by the equation ® = ®(¢). In these coordinates potential ¢ of the

perturbations, corresponding to the mode with azimuthal number m, is given
by
p = @(P) cos mp. (6)
Note that
¢(0) =0, (7)
since there is no singularity of the electric field on the magnetic axis.
At a given configuration of magnetic and electrostatic fields, the drift sur-

face for a particle with a total energy £ and magnetic moment x is determined

by the constancy of the longitudinal action
J(&, 1, ®,¥) = (QM)”E _/ (&= ol E‘J"”)”zdfﬂ (8)

with the integration carried out between the turning points. If the condition

(4) is satisfied, then, with the electrostatic potential varying, the drift surface




adjusts itself so as to keep constant the magnetic flux inside the surface [11].
~ This occurs via variation of the particle energy.

To find the change W of the kinetic energy of the particles (just this quan-
tity enters the energy principle for the perturbations with a scale-length much
in excess of the Debye radius), we use the following approach. We consider
some group of particles (of a total number AN) that in the initial state have
certain values of ¢ and p, and that arc filling a drift surface characterized
with a certain value of J. When we slowly turn on the electrostatic potential
of the perturbation, the drift surface deforms and the kinetic energy of the
particles changes. If we find the change of the kinetic energy AW for this
group, then, by summation over all the groups, we find the required quantity
w.

The group AN is drifting along the contour ®(3) determined by the
instantaneous configuration of the electrostatic field and the instantaneous
value of £ . The number of particles from this group dAN, occupying the
section of the contour of the arc length d3 , can be presented in the form
dAN = vdy , where v is the number of particles per unit arc length. The
stationarity condition vip = const yields:

ANQ,
T —
27y

(9)

where y’: is the angular velocity of the bounce-averaged drift motion [12]:

. 2me
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t) = Je is the transit time between the turning points, and €4 is the drift
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ﬂd IQ?T[/ %] _ (11)
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frequency,

We use notations J. = 8J /0¢, Jp = 08J /0¥, etc., for the partial derivatives.
The change of the kinetic energy of these particles is, obviously,

final

siide U:-h 4 E{P)dlp] fulbial (12

where the subscripts indicate the difference between the final and initial state,

The total energy ¢ of particles is constant over the drift surface in the time-
scale of §2,7 !, while their kinetic energy € — e varies from one field line to
another according to variation of ¢ . In this respect, AW, if divided by AN,
represents the average (over the drift surface) change of the kinetic energy.
The condition of flux conservation inside the drift surface can be written

in the form:

2 final
/ y)y| =0, (13)
0 initial
where ®(1) is a solution of the equation
'}.(Euu; tI’: 19{))|?n[;tailal = 0. (14)

In principle, equations (9)-(14) allow one to find the particle kinetic energy
at arbitrarily large ¢ . However, we will consider only the case of small ¢
The quantities of the first order in ¢ will be denoted by the subscript “17,
the second order corrections by the subscript “2”, etc.

In the linear approximation, equation (14) yields:
(1 — ep)Je + P1Jo =0, (15)
wherefrom, taking into account relationships (6) and (13), we find that
g1 =10, P = ep—. (16)
The next order expansion of (14) gives:

1 1
Je(ea — ePrps) + JoPa + §J£E(Ep)2 — Jea®Piep + ;qu,.yﬁlz =007




The requirement (13), when applied to @3 , yields:

i 27 dtﬁ) 1 1 5 18
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while from (12) we find that

_ AN [ ¢y -
AW = —— ; [Eerpﬁ- (2 — e®103))d. (19)

From equation (10) one obtains that

Winis J.;,E{Pm_l_JQ(J.;, hi g ot

Now, using relationships (6), (16), (19) and (20), we can express AW in

terms of :

: 1 2 Je 89: ( Jew Jee JEJ‘i“I’)jI
o il s 9 - - . 21
AW.= —ze AN [J@ 5 + @ S 72 (21)

To perform the summation over the plasma particles, we introduce the
distribution function F(e,u, ®), normalized according to the relationship
AN = F(e,p,®)AeApA®. Then, the energy W of the perturbation ac-

quires its final form:

w :._iez/d&‘dpdqﬁf*’(s,;.f,,@)x
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Sometimes it’s more convenient to use the expression for W in the form:

W = %cz / dedpd®@® x

8 Jg Jgitl ‘}EE JEJ*IHI')]
Pl 3 L = i 23
T [é@ (FJ@::) . (2 g > el 1L S

which can be obtained from (22) through the integration by parts of the

first term in the square brackets (22). There is no contribution from the
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integration limits, since on the upper limit there are no particles, and so the
distribution function equals to zero, while on the lower limit the potential
vanishes according to (7).

In Appendix, we derive also the expression for the energy variation, rele-
vant to the conditions when the longitudinal energy of the particles is small
as compared with their transverse energy. In such a case plasma is located
near the surface formed by the points of the minirnum feld strength on the
given field line (the so-called “disk”-like plasma}, and the contribution of the

particles with fast drift can be expressed as

r f"r ¥ :
.-: /d,uddr 8 E}i . ) (24)

or after the integration by parts

e? Juiigh
W=—-— [ dudd
4 ./ e pBog O

(25)

where By is the minimum value of the field strengih on the magnetic surface,

corresponding to the flux @, and Byg = 0By /9.

III Generalization of the energy principle for
the case: I/m <« <T

The crucial point of the derivation of the expression for the energy variation
in Section II {as well as in [7]) is the exploitation of the fact that the flux
adiabatic invariant conserves. As is well known (see, e.g. [11]), when the

frequency of the drift motion {2; around the axis is high as compared with the

‘inverse characteristic time of variation of the clectric and magnetic fields, then

the magnetic flux @ encompassed by the drift surface is an adiabatic invariant

[
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(notation @ shouldn’t be confused with a flux coordinate ® , an independent
variable). In the case considered in the present paper, the magnetic field is
constant; the varying is electrostatic potential ¢ of the perturbations. The
slowness of variation of ¢ in the above mentioned sense (see (4)) guarantees
the conservation of ®.

When considering the case of perturbations with high azimuthal mode
number m > 1, one may encounter the situation when the drift frequency

Q4 1s lower then T but higher than I'/m :
I/'m€Q<l. (26)

The inequality 23 < T' means that one cannot thoughtlessly use the tradi-
tional adiabatic invariant ®. However, we shall show that, under the condi-
tion T'/m < Qg, there exists another adiabatic invariant, similar to ®.

We consider the potential perturbation (not necessarily small) which is of
the form (6) and changes in time with the characteristic frequency I'. Then
the inequality I'/m < 03 means that the guiding centre traverses one spatial
period of the system in a time that is short as compared to the time of
potential variation. Just this fact 1s a basis for existence of the generalized
adiabatic invariant.

The guiding centre motion, averaged over the fast bouncing along the

field line, is governed by the following equations [12]:

I;Ei a8 _J?If'{: J.{,,
€£||
; (27)
. TC
(15 - E.ﬁjtp’

where {) = J. is the transit time between the turning points. In the context

of the problem under consideration, J is a constant of motion (as well as p).
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Resolving the equation J = const with respect to ¢ , we can find the function
é(4, ®) for a given particle. By differentiating the function J(e(3, ®), ®, ¢)
over ¥ and ® , we find:

de Lol 0
MY T og -
and the equations of motion (27) acquire the Hamiltonian form:
. 2nwe . Ot
"
(28
& _2mc Oc )
RS,

with ¢ and @ being canonically conjugate variables and ¢ playing a role of
Hamiltonian. As the explicit dependence of ¢ u.n t 18 slow in the sense that
the guiding centre traverses one spatial period of the system (in coordinate
1 ) in a time short as compared to the time of potential variation, equations

(28) possess an adiabatic invariant

* =
L ; ® dy, (29)

where integration is carried out over one spatial period Ty, equal to 27 /m.
Of course, for slow enough potential variations, I' < 4 , the integration in
(29) can be extended to a full rotation of a particle around the axis, and (29)
reduces to the standard flux invariant.

Now 1t becomes clear that the expression for the energy variation, that
takes into account conditions (26), coincides with formula (22). Indeed, all
calculations in this case would exactly repeat calculations, performed in Sec-
tion II, with the only exclusion: ® conservation requirement should be re-
placed by the requirement of the conservation of ®*. But this changing

doesn’t, obviously, affect formula (22), since the averaging of the expressions,

13




composed of function (6), either over 27 /m-interval (as in (29)) or over 27-

interval (as in the expression for ®) would finally lead to the same result.

IV  Qualitative estimates

Formulas (22), (23) define the contribution of the fast drifting particles (4)
to the total energy variation; there exist also contributions, originating from
plasma particles with small drift frequencies (1), whose response can be ob-
tained in the framework of MHD approach. The corresponding additional

L : i : _
"(¥)) and the potential (W()) energies of the

terms represent the kinetic {14
slow particles. 1f we resirict ourselves by the most dangerous “global” mode,

the kinetic energy can be evaluated as
W) &~ M.n.a?L.£2, (30)

where n.,T,, a are densiiy, temperature and radius of plasma in the central
cell; € is a displacement of the plasma column as a whole in the central cell.
The potential energy arises [rom the curvature eflects in the transition region

and can be written in the form:

) 1,‘_11"“:“'5: 2 i
* ] o " Fy
W) a2 _ —— (31)

The sign of W) is negative due to the unfavorable field line curvature in
the transition region. As it follows from (30), (31), in the central cell it-

self (with the anchors being switched off) the instability developes with the

(2).

L8

characteristic growth rate given by

Taking into consideration the contribution (22) of the fast particles, notice

] ;

that the expression for W scales as *. Since the displacement £ of the

i

flux tube, filled with a cold plasma, is determined by formula (5) with n =

14

—(1/c) [ edt, we see that, if (23) is expressed in terms of &, it s;ales as

r3 2 2
ne LY EE{IEB;:‘ .

e s (32)

Here we have supposed the radial dimension of plasma in the stabilizer to
be of the order of L,, and have taken into account the conservation of the

magnetic flux through the plasma cross-section,
2 2
Be.a: ~ B, L. (33)

As it follows from (32), W scales as a kinetic energy of the perturbations
(~ {,‘*}, giving contribution to W), not to W), Therefore the presence of
the fast drifting particles manifests itself in changing of the “inertia” of the
perturbations, not of their “rigidity”.

Fast drifting particles may affect the stability in two different ways, de-
pending on the sign of the energy W. Positive value of W gives rise to the
increasing of the effective kinetic energy of the perturbations (or of their ef-
fective “inertia”) that , in turn, leads to the decreasing of the growth rate T,
but the instability still remains.

When, on the contrary, W is negative and, moreover, the foliowing re-
quirement is satisfied:

W LW <0, (34)

the “inertia” of the perturbations becomes negative. Since the frequency of
such oscillations is, obviously, real, condition (34) allows one to conclude that
the system becomes stable.

Estimates (30}, (32), together with (34), impose one more constraint on
the plasma parameters:

; 2 132
Tlg L‘g_ P’_ﬂ'l 11.3_1_
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where pg, is the Larmor radius of the hot ion in the stabilizer region.

Now it’s appropriate to mark one more aspect. The stabilization due to
strong FLR effects takes place in the conditions [4]

cl,

r :
- eB.a?

(35)

Combining (1), (3), (35) and taking into account (33), one can find that the
assumption of the dominating FLR effects in the limit (1) is valid only if

1, €T..

Since the latter condition is rather restrictive, it stresses all the more the

actuality of the stability analysis, involving particles with fast drift frequency
(4).

One more example of the magnetic configuration in which the fast drifting
particles may considerably affect the stability of the plasma, is a siﬁgle—cel]
non-paraxial mirror device of length L (with a plasma occupying a volume of
the Dr&er of L?). Let plasma consist of a thermal population with tempera-
ture 7" and density n, and a hot population with temperature T, and density
n. < n; let also the pressure of the hot component exceed that of the cold
one: n,T, > nT. For the mode of a “global” displacement one can evaluate
the plasma kinetic energy (per unit volume) as

Nedy .
(Qﬁyz +nM) &, (36)

where £ is a (small) plasma displacement. The first term here represents a

contribution of the fast particles. The potential energy is just

nT(£/L)?, (37)
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as fast particles do not contribute to it. If the drift frequency of the fast
particles Q4 is not too high,

Y s ks
ﬂd{f(nM) ;

the inertia of the fast particles dominates. The estimate for the growth-rate

nT 1/2
a2y’

As n,T. > nT, the growth-rate is automatically less than the drift frequency,

I' is then

ensuring the applicability of our analysis. So, we see that, indeed, the “iner-
tia” of the fast drifting particles can be dominant, despite their small density.

Notice that though in the present section we have restrected ourselves
with the stability analysis of the “global” mode (estimates (30), (31), (36),
(37) hold just for the “global” mode perturbations), the stabilization due to
the “negative inertia” effect, discussed above, makes it possible to suppress,
in principle, the instability of an arbitrary azimuthal mode. However, as the
“inertia” of the oscillations is negative (see (34)), the dissipative instabilities

are possible.

V.1 Paraxial approximation

As it was shown in Section IV, the necessary condition for the stabilization
of the flute instability due to the “negative inertia” effect is the negative

definition of the energy variation W of the fast particles:
W < 0. (38)

In the given magnetic field the latter inequality imposes certain restrictions

on the possible profiles of the distribution function F' of the fast particles.

i




In the present Section we consider the requirements, which the distribution
function ¥ should fit to satisfy (38) in the magnetic mirror configuration.
We start with the stability analysis of the paraxial magnetic mirror. In
the framework of the paraxial approach, the plasma radial dimension should
be small compared to the mirror-to-mirror distance. If we use the coordi-
nate frame with the axis coinciding with the magnetic axis, the longitudinal

invariant J, up to the terms linear in @, can be written as [13]
J = JOe, ) + 8TV (e, ).

The neglect of the higher order terms in @ is justified in the paraxial region.
Since the variation of F' in ® has a small scale-length (the plasma radius is
assumed to be much smaller than the device length!), first term in (23) is

dominant, and so expression for W reduces to a simplified form:

ol I8 85

Since the derivative dF/3® defines the sign of the diamagnetic frequency,
one can conclude from (10), (39), taking into account Jém > 0, that the
energy variation would be negative for those particles whose directions of the
curvature-induced and diamagnetic drifts coincide, and would be positive in
the opposite case.

As an example of the stability analysis of the concrete plasma configura-
tion, we examine the stability of the hot “disk”-like plasma located in the
middle plane of the magnetic mirror. The energy variation of such a plasma
is given by formulas (24), (25). The paraxial expansion of the magnetic field

in the middle plane can be presented in the form [13]:

_ 1 B" ;
By =B s o P, (40)

i B

p—t
o)

o

where B is the field strength on the axis and prime denotes the derivative
along the axis. Note that B” > 0, since the magnetic field has a minimum in

the middle plane. Inserting (40) into (25), one obtains:

B ¢* OF
A | e S pat 41
W = me B dud® 5% (41)

As it follows from the latter expression, condition (38), necessary for the

stabilization, 1s satisfied for
: oF

BE{U'

V.2 Stability of the “global” mode

Expression (41) can be further simplified in the case of a global mode when

the potential ¢ is given by
@ = poV® cos . (42)

After the substitution of (40), (42) into (24), one can find

B F

W = —me

For B” > 0, inequality (38) is satisfied, and the “negative inertia” stabiliza-
tion is realizable. We see that the perturbation of the fast particle kinetic
energy is negative irrespectively to possible presence of regions (in the radial
direction) where dF/0% is positive.

Up till now in the present Section the discussion has been restricted by the
framework of the paraxial plasma configurations. To illustrate the influence
of non-paraxiality on the stability of the plasma with fast particles, we turn

to the stability analysis of the hot “disk”-like plasma, localized in the middle

19




plane of the magnetic mirror produced by two point-like co-axial coils Fig.1

(<f. [13]).

Fig. 1. Field lines of the magnetic mirror produced by two co-axial point-like

coils. Bold line marks the separatrix, that passes through the point of the zero field

strength.

The magnetic field in the midplane of such a mirror can be written in the

form

5 (2-2)
BD_B*Q(:E-I-I)EM’ (44)

where £ = 4r? /L%, ris aradius in the middle plane, L is a distance between

dipoles and B, is the field strength in the middle point between them. The

magnetic flux can be expressed in terms of = as follows:

33/2 T '
¢ =, TP (45)

where ®, denotes the flux, corresponding to the separatrix that bounds the

region of the adiabatic confinement (see Fig.1).

Now we examine the sign' of the energy variation W for the “global” mode

perturbation (42). Consider the plasma ring, involving particles located on

20

the distance R from the axis in the equilibrium state. Inserting (42), (44),
(45) into (24), after elementary analysis one can obtain, that the energy

variation W occurs to be negative for the plasma rings with radii
— < 0.72, (46)

where R, is the separatrix radius, while for radii Rg, being outside the interval
(46), the energy W has a positive sign. Hence, non-paraxial effects lead to
the violation of the condition (38), and so the region of distant radii gives
unfavorable contribution to W in the sense of the possibility of the “negative

inertia” stabilization.

VI Application to the beam-plasma neutron

source

QOur results can be of some interest for the development of the beam-plasma
neutron source (BPNS) [10]. In this system a relatively short mirror cell is
filled with a cold tritium plasma which serves as a target for the deuterons
with the mean energy of ~60keV, which are produced by NB injection and
confined in the same mirror cell. In order to reduce the heat losses through
the cold plasma electrons, there is envisaged the use of the long solenoidal
sections with gradually decreasing magnetic field between the mirror cell and
the end-walls: as the target plasma is a collisional one and the heat flux
is determined by the thermal conductivity, this arrangement indeed reduces
the heat flux. Another implication of the using of these long sections is a

considerable increase of the inertia of the flute perturbations. As one can
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easily show [15], for the global mode the kinetic energy can be evaluated as

: Mndl
&-Eﬂ'{lgf)’g/ B’

where £ is a plasma displacement in the equatorial plane of the device, By and
ap are magnetic field strength and plasma radius in this plane, respectively.
In the BPNS conditions the ionized and the neutral components in the flaring
of the magnetic field are strongly coupled via charge exchange and ellastic
collisions, so that n here is the total density of the charged and neutral
components,

Denoting the half-length of the mirror cell as L, one can obtain the fol-

lowing expression for the potential energy:
fz(n;T.. /Lg)waﬁ.ﬂ,

where the subscript “#” refers to the high energy particles.

The growth-rate I' of the flute perturbations is equal to
' ey
1 ( ; 4 ) o G
L\M » f ndl: fo 2
while the drift frequency of the fast ions is

Here p, denotes the Larmor radius of the hot particle. After the substitution

of the numerical values of all variables (see [10]), it turns out that

r
oz~ 0L

that 1s, the contribution of the fast ions to the potential energy of the flute

perturbations in fact is zero. This should allow the change of the magnetic
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configuration from Yin-Yang to axisymmetric one, with the corresponding

simplification of design of the neutron source.

VII Conclusions

In the present paper we have analyzed the stability of the axisymmetric
mirror device with respect to purely electrostatic flute perturbations. We
have investigated the scheme consisting of the long central cell conjugated
with the end stabilizer that contains hot plasma. One of the main results of
the paper is the establishing of the fact, that a population of hot particles
with fast azimuthal drift (see (4)) may give a favorable contribution to the
stability of the system as the whole. The reason is that fast drifting particles
affect not a potential energy of MHD perturbations but rather their kinetic
energy, and in the case, when the effective kinetic energy is found to be
negative, the stabilization takes place.

Another system, to which our results can be applied, is a two-component
plasma consisting of a cold dense background and a minority of hot particles
that determines the plasma pressure (like in some versions of mirror-based
neutron sources [10, 16]). At high enough density of a cold component,
condition (4) can easily be met.

We have also showed that the energy principle, formulated in [9], can
be generalized to the intermediate frequency interval I'/m <« Q4 < T for
the azimuthal modes with high numbers m. Therefore all the conclusions,
concerning the stabilization due to the “negative inertia” eflect, can be trans-

formed to these conditions as well.
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A - Energy principle for the “disk”-like plasma

Consider the limit of the zero longitudinal pressure of the hot plasma, py = 0,
when the transverse energy of hot particles greatly exceeds their longitudi-

nal energy. In the equilibrium state these particies perform small bounce

oscillations round minimum field point, so that
€ — pBo € pby, (47)

By marks the minimum value of the field strength on the given field line.

Using expansion of B along the field line in the vicinity of By,
B ~ By + BI?,

one can carry out the integration in (8) explicitly:

b A
E I Y e (48)

v/ uB
with Ae = ¢ — uBp. Now it would not be difficult to calculate with sufficient

accuracy &- and ®- derivatives of J:

Je = &i{&_} Jo = ”#Bn@é, -
T, oty —%ﬁ%, - (49)
Jss = —#Bnrl-@--i—s + pBos %EJE
'.24

Here we have t;a,ken into account, that Ae/uBy isa smal__l parameter according
to (47). Substitution of (49) into (22) leads to the following expression for

the energy variation:

e? F d ( @2 )
- ity S oies 4 50
W = fd”dq’ T 0% \ Bos : (50)

Note that there is no integration over de in (50). The reason is that in the case
under consideration, the distribution function F depends on & approximately
in a §-functional way, F' ~ 8(¢ — pByp), and so the integration over de can be

done explicitly.
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