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"ABSTRACT

Due to CP-invariance violation a vector particle can acquire T-
and P-odd electromagnetic moment, magnetic quadrupole one. The
W-boson magnetic quadrupole moment is calculated in the Kobayashi-
Maskawa model. This is the only known CP-odd moment arising in
this model in two-loop approximation.
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1. The Kobayashi—Maskawa (KM) model looks now as the most natural
description of CP-violation. It describes properly CP-odd phenomena in the
decays of neutral K-mesons and predicts extremely tiny CP-odd effects in the
flavour-conserving processes. Though its predictions for the electric dipole
moments (EDM) of elementary particles are far beyond the present exper-
imental facilities, the corresponding theoretical investigations are of certain
methodological interest.

To lowest, one-loop approximation in the weak interaction all CP-odd
flavour-conserving amplitudes in the KM model turn to zero trivially. The
point is that in this approximation those amplitudes depend only on the .
moduli squared of elements of the KM matrix, so the result cannot contain
the CP-violating phase.

However, the EDMs of a quark and W-boson vanish also to next, two-
loop approximation as well[1, 2]. It has no transparent explanation, though
in Ref.[3] an attempt was made to explain vanishing of the W-boson EDM
in two-loop approximation starting from general principles only.

In the present work the W-boson magnetic quadrupole moment (MQM)
is calculated in the KM model. It arises already in two-loop approximation
which means in particular that the vanishing of EDM in this approximation
is a very specific, dynamic phenomenon only..

To avoid a possible misunderstanding we wish to mention here that the
interaction of the W-boson MQM with an external electromagnetic field,
being of second order in the field momentum g, does not induce for instance
the electron EDM since its interaction with an electromagnetic field is of first
order in gq. :

2. A general consideration ascending to Ref.[4] demonstrates that a parti-
cle of spin I can have 21 P- and T-odd electromagnetic moments. In particu-
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lar, at 7 = 1 there are two such moments. Besides an electric dipole moment
a particle of spin one can have a magnetic quadrupole moment.

We define the MQM operator by analogy with the electric quadrupole
one, via the interaction with the corresponding field gradient:

o~ R
Ho=-.Qi;ViE;,
o P
Hy = —EM;j‘F;Bj . (1)

The tensor I’ﬁ’.;j is expressed as usual via the irreducible second-rank tensor
constructed from the spin operator I;:

: S S e :
M,-j =M I,;Ij.' +lids — Eé,;f(f + 1)] * (2)

The expectation value M of the operator ﬂr{” in the state with the maximum
spin projection I, = I will be called magnetic quadrupole moment.

Let us consider now the effective interaction of the W-boson with magnetic
field gradient. Since the spin operator acts as follows on the polarization
vector e of a vector particle at rest [5]:

(L e)x = —iei (3)

for such a particle the matrix element of the MQM interaction reduces to
1 Ed
H — ZMEi ej(?,Bj + va*) 7 ("—1)

The covariant form of this interaction is

1 '
H — _EMW;Wp(a#Fyﬂ + 31;F;1r1)k¢1 . (5)

ﬁf\/ﬁl;i T = (Eﬂ!e) is
its covariant polarization vector, 9, = 6‘/’3%, i 5 .,E“mﬁFaﬁ

3. We are going over now to the direct calculatmn of the W-boson MQM
in the standard model to two-loop approximation. The general structure of
the diagrams which could contribute to the effect in that approximation is
presented in Fig.1. The external photon line can be attached to any quark
or W propagator. To first order in the exterpal photon momentum g, which
corresponds to the EDM interaction with a constant external field, the sum

Here k is the 4-momentum of the W-boson, W

of those diagrams vanishes [2]. Now however we are interested in the terms

of second order in g.
The CP-odd part of the loop flavour structure is:

ib[d(c(b — s)t — (b — s)c + (b — s)u — u(b — s)t
+u(b — s)e — c(b — s)u) + s(c(d — b)t —t(b— s)c
4t(d — b)u — u(d — b)t + u(d — b)c — ¢(d — b)u)
+b(c(s —d)t —t(s —d)e +t(s —d)u —u(s —d)t +
: +u(s —d)c —c(s — d)u)] . (6)

For the KM matrix we use the standard parametrization of Ref.[6] where the
CP-odd invariant is _ :
d = sin 6C1¢2C3525233 : ; (7)

The letters u, d, s, ¢, b, ¢ denote here the Green’s functions of the corre-
sponding quarks. Each product of four quark propagators allows for cyclic
permutations of the kind

udes = desu = csud = sudc.

From expression (6) it follows in particular that any diagram should be
antisymmetrized in the masses m; and mj of the quarks adjoint to its upper
block. This upper block can be either mass or vertex operator depending on
where the photon is attached to. This antisymmetry property is sufficient for
vanishing of the first term of the expansion in the photon momentum g, this
term corresponding to EDM [2]. We will demonstrate below that the next
term of the expansion in ¢ does not turn to zero after the antisymmetrization
and summation over all flavors.

From all the possibilities of the photon attachment presented in Figs.2 - 8,
diagrams 5 - 8 only can contribute to the effect. Diagrams 2 - 4 vanish after
the autlsymmetnza.tmn in the masses m; and mga. Let us determine first the
spmcnr structure of the upper part of the quark loop in diagrams 5 - 8, the
mass or vertex operator together with both adjoint gquark propagators. The
left-handed projectors 1+ s present in the weak interaction vertices, single
out in it vector or axial structure only. The type of the MQM interaction
with the electromagnetic field gradient (5) we are looking for, fixes the general
structure of that part (up to multiplying by 7vs) as:

h{p®)(p9)YuPr F s (8)

where p is the momentum inside the quark loop (see Fig.5) and h(p?) is an
invariant function dependent on p® and quark masses squared. It can be
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easily checked that after contracting with the y-matrix structure left and
integrating over p expression (8) produces indeed stucture (5) we are looking
for.

Let us consider now in more detail how structure (8) arises. The complete
expression for the upper part of diagrams 5 - 8 can be written as follows:

Au(1+ys)[e1S1(p - g}, S (P)E(p)Ss(p)
+51(p - ¢)T(p - q,p)S3(p)
+e151(p ~ q)Z(p - ¢)S3(p — )14 S3(p))(1 - 75) . (9)

Here A, is the electromagnetic vector-potential, e is the charge of the quark
with mass m;; S;(p) = (p — m;)~1. The mass operator and the vertex part
are denoted as X and T, respectively. The projectors 1 + s originate from
the external W-boson interaction vertices. - -

The zeroth and first terms of the expansion of expression (9) in ¢ vanish
after the antisymmetrization in the indices 1 and 3 [2]. The second term
of the expansion consists of several contributions. It should be noted first
of all that the contribution corresponding to the second-order term in the
expansion of I'; in ¢ vanishes. Indeed, it is symmetric in the masses m; and
mg since in the propagator S; the momentum q can be put equal to zero. The
contributions left can be conveniently split into two groups. To the first one
belong those terms where the first term of the 'y expansion in g is multiplied
by the first term in the expansion of the propagator S3. To the second one
belong all the contributions with the mass operator and vertex part taken at
the vanishing q.

The first group of contributions does not need renormalization and the
corresponding interim result can be obtained rather easily:

p—g oTy
A 1+‘T$ qu }
i T g
p
P g mg](l —¥5) — (m1 — mg)

| 2e2(mi — m3)A(0*)p*(p9)Vupy F o

(p? — mi)*(p* — m3)?

(1—17s). (10)

Here h(p?) denotes a result of the loop integration which will be explicitly
calculated below, e; is the charge of the quark inside the vertex.

To investigate the second group of contributions we will need expressions
for the mass operator and vertex part [1, 2]. Unrenormalized mass operator

6

in the V-A theory is simple:
T =#1+7)f(p"). (11)

The renormalization introduces into the operator ¥ the dependence on ex-
ternal masses:

Z=p(1+ Ts)f(?z) — fu3[B(1 = v5) —my(1 - v5) —ma(l1+s)], (12)

where fi3 and f are expressed via the function f and masses m;, ms as
follows: '

L m2f, — Ef
fo') = s7°) - LT3k

Jiz= mlzg(_fln';%f3)1 i = f(pz - m:z)i t=1,3.

The vertex part renormalization at the vanishing momentum of external
photon should comply with the Ward identity:

i)
ap, '

Lu(p,p) = —e (13)

Where e; is the charge of the quark with mass mj. This identity allows one
to reduce the second group of contributions to

e14u(1+75)[S1(p ~ 9)7, 51(P)Z(p) S5 (p) — Sy(p — q) %E—Ss(p)
+51(p — ¢)Z(p - ¢)S3(p - 9)7,S3(p)](1 - 7s) . (14)

The substitution of the renormalized operator X into this expression and its
expansion in ¢ leads to a simple result. The sum of the terms proportional
to fi3 is symmetric in the masses and therefore does not contribute to the
effect. A nonvanishing contribution originates from that term in the mass
operator which is proportional to P(1+ ;). Omitting intermediate steps, we
obtain for the second group contribution the following expression:

2(m} — m3) f'p*(9g)7,p F s

(p? — mi)(p? — m3)?

(l "_75) 3 (15)

where ' = af"/a(p?). Curiously enough, the renormalization counterterms
do not contribute at all to the effect since the derivative of f in p® coincides
with that of the unrenormalized function fx

af. . 84
p?)  a(p?)

-
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Both expressions, (10) and (15), produce contributions to the W-boson
MQM. Indeed, their contraction with the gamma-matrix structure left al-
lows one to write down the effective interaction of the electromagnetic field
gradient with W-boson as follows: |

"

x r (W)Pﬁ(f-’uﬁ'#ﬁ o pﬁﬁ'u{;](mg ir mg-}[elf’ = Ezh]pg
E /(2?()4 (p? - m%)E(PE = m%)z[(k —p) - mi} L= 1169

In this expression g is the semiweak charge, my is the mass of the quark in

the lower fermion line. One can easily check that after the integration over p
interaction (5) arises. Indeed, in the result (pg)ppp,(u) is substituted for by
qu(p)kp which reduces (15) to (5). The exact cancellation of contributions (10)
and { 15) is impossible since the functions h(p?) and f'(p?) depend differently
on p® and the masses of the quarks inside the mass operator and vertex part.

4. After convincing ourselves in the absence of the exact cancellation of
the W-boson MQM in two-loop approximation, we are going to find its value.

It is natural to consider all quark masses but m; small as compared to
the W-boson one M. Together with the quark mass hierarchy it allows one
to simplify the calculations considerably, restricting to those contributions to
MQM which are of lowest order in the light quark masses. Besides, it is also
natural to single out the contributions with logarithms of large mass ratios,
e.g., log(my/m.), log(ms/m,), log(M/my) etc.

All the diagrams can be split into two types, depending on which quarks,
U (u, ¢, t) or D (d, s, b), flow inside the mass or vertex operator. It 1s
convenient to sum first of all over the flavours of the quarks masses of which
were denoted up to now as m; and my. For the two types mentioned we get
respectively:

(mi — m3) : —-mfm
B o 1 T ey s [ e
£,23
B i = (17)

p(p? — my)* (p* — mg)?

In expression (17) we put m, = mgq = 0. We can determine now the charac-
teristic momenta p. When quarks are arranged according to the second line
of formula (17), integral (16) is infrared divergent if one neglects the masses
m, and my in the denominator. It means that the typical loop momenta
contributing to the effect are p ~ my. In the opposite case when D-quarks
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are inside the mass or vertex operator, the typical momenta range is large:
p~ M.

Now we have to sum over the flavors left. Here the difference is essential in
the dependence of f'(p®) and h(p?) on quark masses. The function f allows
for the expansion in the mass for the case of a light quark inside the mass
operator:

Fmt) = Fhm? = 0) 4 mi Dy (18)
H T 1 m— ee
d(mz) m=~0

We neglect the terms of higher order in a light quark mass. For D-quarks
inside the mass operator one can easily demonstrate the cancellation of the
terms of zeroth, second and fourth powers in mass:

) ~ £ | ) = ) £ L) _ g
(k — p)? — m3 i (k—p)? — m} s (k — p)? — m? = O(mym;).) (19)

Therefore this contribution to the MQM is O(mim?2m?), i.e., it is suppressed
as the eighth power of the ratio of light quark masses to that of W. In the
opposite group of diagrams one cannot expand in my, so the summation left
introduces the suppression ~ m?:

s e o et B R
(k — p)* — m3) d(m?) |ppeo (k—p2—mf  ° (k- p)*

(20)
Since the integral over p is dominated by momenta p ~ m; (see formula
(17)), the discussed contribution to the MQM is O(mjm2m?). However, we
will not calculate it since this contribution is small as compared with another
term in expression (16) which contains the function h(p?, m?).

The point is that, as distinct from the function f, h does not allow for a
simple expansion in a light gquark mass. For a light quark inside the vertex
part, A conta.ms terms proportional to m? log m?. Therefore, the terms con-
taining m2m; in the expression analogous to (19), not only do not cancel,
but are enhanced as log(m}/m?). Let us demonstrate this assertion in more
detail. To this end we write down the vertex integral explicitly (in fact its
dominating part where the quark interacts with the external field) and sum
over the masses of all quarks in the upper and lower propagators of the quark

loop. The result is:

2 26

((k — p)? — mZ)((k - p)* — m3)
9




d*l FHF(TMIF + r?s‘ﬂnpv)(l +'l"5} (21)
(2m) B2 — meP (12 — mi2[(p - 1)* — M7
It is obvious now that the integral is dominated by the momenta region

m, < | € my and contains a large logarithm. Expanding the denominator
in the ratio (pl)/(p* — M?) we obtain

g*eam?m; log(m7 /m?)
 1673((k - p)* — m2)((k — p) — m})

1 1 ~ w
X 77 = ) + Y Fuvtup (14 75).. (22) g
This formula is valid for all p* as long as p*> — M? > Mm,. ¥
The last integral over p contains also a large logarithm when W-boson -
is on mass shell. It can be easily checked indeed that the integral diverges
logarithmically if one neglects quark masses in the denominator of the factor
preceding the integral in formula (21) and put k2 = M2, Retaining in the
last integral that contribution only which is enhanced by a large logarithmic
factor log(M?/m}), we obtain the final expression for the CP-odd interaction
of W-boson with the electromagnetic field gradient:
- eg? m2 mfmf_ my
H eff = f5 3
T 12016022 T MY (m? - M)
x log(mj /m?) log{ME/mE)W;WV(aﬂf'ya 5 5 3,,}‘?"#(,):’;:“ ; (23)
As to another group of diagrams, with U-quarks in the vertex part, they
also contain log[(M? — p?)/m?] in a formula analogous to (22), but cannot
compete with (23) since they have no log in the integral over p*. ﬂ:
Going over to the Fermi constant Gp = V2¢% /(8 M?) we get the final
formula for the W-boson MQM in the Kobayashi-Maskawa model:
Y& g € SGE mfmsmg mf 1 2 2 ] Mﬂ 2 24 i
_4811'4 F M4 (mf S Mg)g 'O.g[mb/ma) Og( fmb) : ( )

The extreme smallness of the MQM in the standard model is in no way
unexpected. In other models of CP-violation M can well turn out much
larger. :

We are greatly indebted to C.P. Burgess, C. Hamzaoui, G. Couture, G.
Jakimow and I. Maksymyk for stimulating discussion and correspondence.
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