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ABSTRACT

The correspondence between statistical properties of decaying states
and fluctuations in resonance scattering is studied in a statistical model
with one open channel. The model is described by an ensemble of ran-
dom nonhermitian matrices. The dependence of the correlation length
on the coupling parameter both for the S-matrix and the cross-section
is studied numerically. We show that maximal correlations in the scat-
tering arise for a certain value of the coupling to the continuum, reflect-
ing a specific change in the internal motion of intermediate decaying
systems. Also, the Fourier transform of the two-point correlation func-
tion of the S-matrix is analyzed both analytically and numerically. The
self-averaging nature of this function is explicitly demonstrated.
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1 Introduction

As is well known, the main problem of classical mechanies is to find the law
of motion which is specific for a given law of interaction. It allows to describe
exactly the time evolution of any part of the given system. This problem,
in principle, always can be solved in the case of one degree of freedom. For
a long time it was believed that the problem to extend the same approach
to the general case of an arbitrary number of degrees of freedom is only of
technical nature. The striking result of recent developments is the discovery
of a specific form of behavior which nowadays is known as dynamical chaos
(see e.g. [1]). It was found that even for a few degrees of freedom the
motion gains, under certain conditions, quite general features which are of
characteristic for random processes. This opens a new way for the universal
description of such a motion on the basis of a statistical approach.

The possibility of chaotic motion for systems with a few degrees of freedom
leads to the important problem of the existence of similar phenomenon in
microphysics where quantum description should be essentially used. This
problem, termed “quantum chaos”, nowadays attracts considerable attention
(see e.g. [2,3]). Since propertics of a quantum systems may be quite diflerent
from classical ones even in the deep semiclassical region (see [4]), one of the
main questions is to find proper quantities to describe the degree of chaos in
quantum systems. The well known approach in this diréction is related to the
study of fluctuations in energy spectra of closed physical systems. It turns
out that for quantum systems which are completely chaotic in the classical
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limit, the Auctuations of energy spectra have a specific form and may be
compared to those of eigenvalues of random matrices [5,6]. Such matrices
have been used [7] to describe properties of nuclear spectra long before the
very ideas of quantum chaos appeared. The efficiency of this approach has led
to the fast development of random matrix theory (RMT) [8] which nowadays
has many applications in different fields of physics (see e.g.[3,9]). One of the
best examples is the description of spectra of isolated neutron resonances in
complex nuclei near the threshold of emission of a nucleon. Both spectra
and widths of nuclear resonances are well described within the frame of the
Gaussian Orthogonal Ensemble (GOE) of RMT [10].

Strictly speaking, neutron resonances are not true bound states of nuclei
and reveale themselves in the form of sharp peaks in neutron scattering on
nuclei. Such a strong energy dependence of the cross section implies that
the neutron spends a large time inside the nucleus sharing its energy with
many other nucleons. As a result, an intermediate compound nuclei is formed
which finally decays with the emission of nucleon. Such a compound nucleus
may be regarded as a typical example of complex unstable (open) system.
As a convenient approach to the study of such a sort of scattering processes
the projector operator technique may be used (see for example [11]). In this
approach, two orthogonal sets of states are introduced. The first one (“intrin-
sic basis”, labeled by |k)) represents the internal motion in the compound
nucleus. All states of this basis are essentially bound states and the wave
functions decay outside the interaction region. The commonly chosen basis
in nuclear scattering theory is the basis of shell model states as it is described
in details in the book [12]. Another set is used for the asymptotic motion
with energy E before and after reaction (the so-called reaction “channels”
labelled by |e, E)).

In this way, the Hermitian ITamiltonian of the whole system has nonzero
matrix elements within each subspace as well as between them and can there-
fore be represented in the following form

N M
o= Y Wl + Y [ aBle BB B
|15 ol e=1

k=

M N
iT % / AE{V(B)lk)e, E] +h.c.}. (1.1)

e=T k=1
Here, N is the number of basis vectors needed to describe the internal mo-
tion by the intrinsic Hamiltonian Hye with sufficient accuracy and M is the
number of open channels for a given energy range. The second part in (1.1) is
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assumed to be diagonal provided that one is not interested in direct processes.
Finally, the quantity V© is the transition amplitude between an internal state
k and a channel ¢. This approach is not only restricted to isolated resonances.
The amplitudes V¢ as well as the density of levels of the intermediate nucleus
typically grow with growing energy. As a result the widths of the resonances
also grow and when they strongly overlap new physical phenomena occur
which can be as well described.

Using the Hamiltonian (1.1) one can get the standard representation of
the S-matrix for resonance scattering (see e.g. [12])

i ’
Scc-' E - ﬁcc‘ o i : Vc i (—) Vﬂ . (1-2
( ) § ( k ) E—H 3 £ )

where the internal motion of the open system with the influence of the con-
tinuum is described by the Green’s function

G(E) = -Emi_?{-' (1.3)

The matrix elements of the operator H in (1.2,3) read

' . M
1 ,Vf(E')ﬂC(E’) i P
= H, S i —_—— d 1.4
Hie H;,g+2?rg:?fdﬂ T F 2;(1’1) Ve, ( )

with P denoting the principal-value integral. Note, that the specific form of
the antihermitian part in {(1.4) provides the unitarity of the S-matrix (1.2).
Due to the time reversal invariance of the systems under consideration in this
paper, the matrix elements Hy¢ as well as the amplitudes Vi° are real. As a
result, the whole matrix H is symmetric.

As it was mentioned above, the amplitudes V¢ generally depend on the
energy E. For complicated systems like atomic nuclei whith typically have
a large level density, this dependence is however very smooth as compared
to the sharp explicit energy dependence of the Green’s function (1.3). Re-
stricting ourselves to a limited energy region (including nevertheless a large
number of levels), one can neglect this smooth dependence omiting simulta-
neously the principal-value integral in (1.4). One then can treat the operator
H as an effective Hamiltonian which is essentially non-hermitian.

It is useful to diagonalize the effective Hamiltonian to have the explicit
resonance representation of the S-matrix (1.2)

cire’
Sec(E) = bcer = f; ;k_vgk " (1.5)
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The complex eigenvalues & = F— %I‘k of H give the energies E; and widths
I'; of the resonances whereas the complex amplitudes

Ve=Y Vi, (1.6)
g £

with t,bgk) being the eigenstates of H, have the meaning of decay amplitudes
of unstable eigenstates. _

As a result, the above approach gives a very convenient discretized version
of the dynamics in the continuum. Thus, one gains the possibility to use
powerful matrix methods similar to those in the physics of bound states.

In the next section, the model for complex open systems used in the
present paper is described. The model is based on an ensemble of random
non-hermitian Hamiltonian matrices. This is a natural generalization of the
well-known random matrix approach when describing the universal statistical
properties of closed chaotic quantum systems. This model is assumed to
have generic properties and may therefore be applied to diflerent physical
problems. The main properties of the model which are already known from
previous analytical studies are shortly discussed in section 2.

In section 3, the correlation function for the S-matrix and the cross-section

are investigated numerically. Special attention is paid to the dependence of

their correlation lengths on the coupling to the decay channels. This allows to
reveal the underlying relation between statistical properties of the resonances
and the scattering fluctuations. The latter problem is discussed in detail.

Section 4 is dealing with the time evolution of decaying systems. The en-
ergy averaging is used to evaluate analytically the asymptotics of the Fourier
transform of the S-matrix correlation function. We demonstrate that this
asymptotics is formed as a result of self-averaging. :

2 Description of the statistical model

Our interest is in applying the above approach to complicated quantum sys-
tems like heavy nuclei, atoms or molecules. In this case the internal motion
is supposed to be chaotic. Therefore, one makes some statistical assump-
tions for the effective Hamiltonian (1.4). As it was introduced in [13] and
now is commonly used, we take the hermitian part I to be a member of the
GOE. Correspondingly, the matrix clements Hy, are taken as statistically
independent Gaussian random numbers with zero mean and variance:

_ _[1/N for k#t¢
(Hee)” = { /M for k=£"
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(2.1)

This model has been studied analytically in a number of papers [14] where
the averaged S-matrix as well as two-point correlation functions for matrix
clements have been calculated by using powerful methods similar to those of
quantum field theory. In particular, it was shown, that all statistical prop-
erties of the S-matrix can be expressed in terms of the averaged S-matrix.
Therefore, the fluctuating part of scattering depends only on the so-called
transmission coefficients which describe the probability to form an intermedi-
ate compound system. By this, the important separation of global statistical
properties and local spectral fluctuations has been explicitly demonstrated.

Another approach to the same problem has been developed in [15]. Namely,
the attention is mainly paid to the properties of intermediate states and their
relation to that of the S-matrix. In some sense, this approach is complemen-
tary to the previous one and allows to extract information just about unstable
systems. Thus, one is mainly interested in the statistics of decaying states
and their complex energies. In the papers [15] it has been shown that with
the increasing coupling to the continuum a drastic change in internal motion
may happen. Therefore, two dynamical regimes exist with a sharp transition
between them when the coupling parameter exceeds some critical value. This
phenomenon is closely related to the structure of the antihermitian part of the
effective Hamiltonian (1.4). The first regime (weak coupling) corresponds to
the more or less homogeneous distribution of resonance energies and widths
whereas in the second one (strong coupling) the clear separation of all states
into two groups appears. In the case of M open channels, M very unstable
states are formed and the remaining N — M states become almost stable. It
should be stressed that chaoticity of the internal motion can not destroy the
coherence which is the origin of formation of short-living states.

This effect of formation of short-living resonances has been observed re-
cently [16] in numerical simulation of nuclear reactions. It is interesting
to note, that such kind of phenomena was discussed long ago by Moldauer
[17]. As a real example of such a broad unstable state the Nuclear Analog
Resonances are considered [18] (see also [19] where the role of this effect is
described in application to the theory of giant multipole resonances). Some
other examples of such a phenomenon in nuclear physics as well as in solid
state physics were mentioned in [20]. Similar effects are also observed in
analytical and numerical studies of the scattering by molecules [21].

The link between the two mentioned approaches is clearly revealed by
consideration of the time-evolution of the processes passing through the for-
mation of intermediate unstable systems. The correlation length of the two-
point correlation function defined as the energy difference corresponding to
one half of its maximal value is of special interest. Due to the uncertainty
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principle, this length is proportional to the inverse value of the so-called aver-
age delay time characterizing the reaction time. In this sense, the delay time
is a generalization of the life time of unstable systems with well isolated levels
for the case of strongly overlapping ones. The detailed analysis of the delay
time and its connection to the fluctuations of the S-matrix has been given In
[22,23]. In particular a relation was established [23] between the probability
distribution of the delay time and the Fourier transform of the two-point
correlation function. Recently, a thorough study of the time evolution of an
instantaneously excited state was carried out [24] using the explicit form of
the correlation function found in [14]. '

Statistical properties of unstable states have been systematically inves-
tigated in [15] where the randomness of amplitudes V¢ in addition to that
of Hy¢ has been assumed. The reason is that due to the complexity of the
intrinsic motion, a vector Hlk) is very complicated and can be treated as
a random state. Therefore, it has random projections on any direction in
the total Hilbert space. The statistical independence together with orthog-
onal invariance in the intrinsic subspace imply that the amplitudes V; are
of Gaussian character [7]. Assuming also statistical equivalence of channels,
one chooses therefore

Ve = 0, (v;w’) = eerbre 27/N. (2.2)

Here, the parameter y determines the strength of the coupling to the contin-
uuimn.

For the single channel case, the joint distribution of complex energies of
the resonances has been derived [15] which shows nontrivial energy-width
correlations. One of the distinctive properties of this distribution is the spe-
cific sort of repulsion between neighboring energies £ in the complex plane.
Further studies of some correlations have recently been performed numeri-
cally in [25]. But in both limits of weak and extremely strong coupling to
the continuum this distribution simplifies, as far as the long-living states are
concerned, to the product of the GOE joint distribution of energy levels and
the Porter-Thomas distribution of their width. This means in particular that

the long-living resonances cannot overlap stron gly in the single-channel case

[15,26]. The short-living resonance fluctuates very weakly and therefore does
not influence the S-matrix fluctuations. That is why one can anticipate that
all fluctuations should depend only on the transmission coeflicient (see below)
in full agreement with the statement of ref. [14].

In this paper, we perform the detailed numerical study for the case of one
open channel paying the main attention to the relation between the statis-
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tical properties of resonances and fluctuations of scattering propperties. In
the purely elastic scattering the latter relation reveals itself in the most clear
way, since in this case the S-matrix is expressed in terms of the complex
eigenenergies only (27,28]. Note that recently quasielastic chaotic scatter-
ing of electromagnetic microwaves in an irregular shaped cavity (which is
formally analogous to the quantum scattering), was investigated experimen-
tally in [29]; theoretical analysis of these data is given in [30] by ‘using the
random-matrix approach. The case of many decay channels was considered
in [31] both analytically and numerically, where the distribution of complex
eigenvalues of the non-hermitian Hamiltonian H was studied in dependence
on the coupling and number of channels.

3 Average S-matrix and correlation functions

In what follows we are using two equivalent representations of the resonance
S-matrix. For the single channel case both of them express the S-matrix only
in terms of complex eigenvalues of the effective Hamiltonian (1.4). Therefore,
statistical properties of the S-matrix as well as the cross section are totally
connected to those of complex energies of resonances. The first representation

is (1.5) : )2
' l{}k
S(E) =1 —;)k: e (3.1)

Another expression is given in the equivalent factorized form [27,28]

_TTE-&
“Ey= 1l g5 3.2)

Comparing these two expressions in the vicinity of a given resonance £ one
can easily find that

£y S8
-5

- (f”k)E =1 H

t#k

(3.3)

Though complex, the quantities (Vi)? = T'pe'o* satisfy due to the invariance
of the trace the condition

Y (%) =2ImTrH = ) | T: _ (3.4)
k k

where the right hand side is real. It is easy to check that ['; ~ I provided
that the resonances do not overlap (for y < 1 or ¥ > 1). '
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Using the above representations, we start our numerical study by con-
sidering the average S-matrix. It turns out that for the values of v which
exceed the critical value 4. = 1 [15] the average S-matrix has some char-
acteristic energy dependence which reminds one of the S-matrix for a wide
Breit-Wigner resonance. This is just the evidence of the segregation of the
short-living collective state which is an intimate feature of the model under
consideration as it was mentioned above. Due to this phenomenon the total
average cross section [32]

o(E) = 2(1 - Re(S(E))) (3.5)

can be divided into two parts in a natural way. The first one which can be
called “shape-elastic” cross section is given by

0se(E) = |1 = (S(EN (3.6)

and corresponds to the fast “direct” scattering with excitation of the short-
living state. The second part

ﬂ'abs{E) =1- I(S(E)HE (3?)

is the cross section of absorption due to excitation of the long-hving com-
pound states. This-quantity is just the transmission coefficient T

Fig. 1 represents results of numerical calculations for the cross sections.
The data for the averaged S-matrix are obtained by diagonalization of 2000
matrices drawn from the ensemble (1.4,2.1,2.2) with N = 100, M = 1 and
4 = 2. Due to our normalization (2.1) all resonances should be located in the
energy region [—2, 2] in the limit of infinitely large N. Therefore, one expects
that the absorption cross section is nonzero just in this region. The visible
deviation in Fig. 1 is due to the finite size of the matrices. These results are
in good agreement with the analytical expressions obtained in [15] for the
limit N — oo.

It should be stressed that the Breit-Wigner-like wings of the shape-elastic
cross section are caused by the specific choice of our model for which the res-
onances are restricted to be within a finite energy region. For a real physical
system resonances lying outside this region also exist. This remote resonances
will influence the form of the wings and can distort or even completely destroy
them. Therefore, to proof the existence of the dynamical reorganization of
the unstable system discussed above one needs to find reliable local properties
of the spectrum, which give clear evidence for this phenomenon. Here, we
would like to point out that the average value of the S-matrix in the center of
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Fig. 1. Total, shape-elastic and absorption cross section (3.5-7) as a function
of energy for v = 2 . The averaged S.matrix is obtained by diagonalizing 2000
matrices with dimension N = 100 drawn from the ensemble (1.4,2.1,2.2).

the considered resonance region
iy
3 R 3.8

tends to -1 for ¥ — co. This means that the corresponding scattering phase
has the value /2 which is typical for the center of a Breit-Wigner resonance,
For the same energy region, the transmission coefficient is equal to

4y
TO)= m, (3.9)

and both for small and large values of v it appears to be small

T~ 4y for ']fce’zii‘ (3.10)
4fy for > 1 .

As it was stressed in [14], statistical properties of long-living resonances de-
pend only on the transmission coefficient T itself, rather then on the coupling
parameter 7. Therefore, from (3.10) it is seen that both for week and strong

11




coupling these properties should be the same provided that the values of ¥
are inverse to each other.

On the other hand, the transmission coefficient reaches its maximaum
value for ¥ = 1 which is the critical value where the sharp transition between
two dynamical regimes occurs [15]. Therefore, one can expect some mani-
festations of this phenomenon in the behavior of statistical characteristics of
the system such as correlation functions for the S-matrix or cross section.
That is why these correlation functions have been numerically studied here
in a wide range of the coupling parameter 4 paying special attention to the
~-dependence of correlation lengths. We define the correlation functions for
the S-matrix and the total cross section (3.5) as '

Cs(9) = (S(B)S" (B + )~ (SENE (3.11)
C,(€) = {o(E)o(E + ¢)) — (o(E))>. (3.12)

Sufficiently far from the edges of the resonance region, these functions almost,
do not depend on energy.

In Fig. 2 one can see thée normalized absolute value of the above defined
correlation functions for three different values of 4. To obtain the data, 100
matrices drawn from the ensemble (1.4,2.1,2.2) with dimension N = 400
have been diagonalized. To improve the statistical significance of our data,
the averaging has been performed both over the ensemble and the energy. It
is well known that these two kinds of averaging are equivalent because of the
so-called “ergodicity” of the matrix ensembles [10]. This energy averaging
was performed over 1001 values within the interval [—5d, 5d] in the center of
resonance region [—2,2] where d = 4/N is the mean spacing of resonances.
The data clearly indicate that the correlations are decreasing with increasing
e. As one should expect, for small and large 7 the two correlation functions
are almost identical. For 4 = 1 our results for the correlation function (3.11)
are in good agreement with those given in [33]. The latter have been obtained
by numerical evaluation of a threefold integral which is the exact theoretical
expression given in [14]. ' '

To elucidate the 4-dependence of the correlation functions it is useful to
study the correlation length . Here we define £ as the value of ¢ for which
the correlation function is equal to one half of its maximum value. In Fig. 3
two correlation lengths are shown: for the S-matrix correlation function (£s)
and for the cross section (£). They are obtained from numerical calculations
similar to that in Fig. 2 but just averaged over 81 energy values. These two
lengths turns out to be proportional to each other. The v dependence shows
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Fig. 2. Modulus of the normalized correlation functions for the S-matrix
(3.11) (full line) and total cross section (3.12) (dashed line) for three different
values of the coupling parameter . The average was taken as an ensemble
average over matrices of structure (1.4,2.1,2.2) with N' = 400 as well as an
average over energy (for details see text).
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Fig. 3. Correlation length for the S-matrix (£s) and cross section (£,) cor-
relation function (see text) as a function of the coupling parameter 7.

maxima for the critical value 4. = 1. It means that for this value of v the
maximal coherence appears in the system which results in the formation of
the collective short-living state. After its segregation, when v exceeds this
critical value, this state does not influence the fluctuations in the system.
This is why the correlation lengths are decreasing for y greater than the
critical value. Note that the symmetrical form of the 4 dependence is due to
the fact mentioned above that all statistical properties depend only on the
transmission coefficient, rather then on 7 itself.

It is quite elear that for non-overlapping resonances the correlation length
actually coincides with the mean value of the width of long-living resonances.
On the other hand, the latter is well known [34] to be proportional to the
transmission coefficient. It means that the relation

{I') £
il x o = 2
dlﬂc dIDE

(3.13)

should hold in the regions of asymptotically small and large 7y. Actually
the second equality is not provided automatically by our data obtained for
moderate values of 7. It is because of the somewhat arbitrary definition of
the correlation length for a function with non-Lorentzian form [33]. In Fig. 4
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Fig. 4. Dependence of some characteristics of the model on the coupling
parameter 7. The full curve refers to the transmission coeffieient (3.9). The
dashed curve represents the mean width in units of the local mean spacing
(dioc = 7/N) obtained by diagonalizing 100 matrices for each value of v with
N = 400 drawn from the ensemble (4.1,2.1,2.2). The diamonds correspond
to the equation (3.14). The asterisks give the S-matrix correlation length
rescaled to be equal to the transmission coefficient for v = 0.1.

we therefore show (asterisks) the correlation length rescaled to satisfy the
second equality (3.13) for v = 0.1.

One can sce from Fig. 4 that the mean width exceeds the transmission
coefficient for all values of 7 given in this figure. Note, that fory > 7. = 1 the
broad short-living resonance is not taken into account when averaging. We
conclude that the overlapping of long-living resonances is not at all extremely
small. It is clearly seen that the y-dependence of the correlation length follows
that of the transmission coefficient rather than that of the mean width. This
is in agreement with the connection between the time delay and the S-matrix
fluctuations established in [22,23,35].
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It is interesting to compare (3.9) with the well known formula

T=1-exp (*211' (1) ) | (3.14)

derived in [36,37] for the case of strongly overlappeing resonances. It connects
the transmission coefficient to an arbitary value of the mean width {I'). The
result is also presented in Fig. 4 (diamonds) and is in a good agreement with
the theoretical curve. Nevertheless, this formula is not exactly correct. Using
(3.9) we find for the mean width of long-living resonances the expression -

i) 1
dloc s T o

T g
iy

- (3.15)

which is singular at the point of the critical value of y. Therefore, the relation

(3.14) fails in the domain of transition between two different types of internal

motion. This domain is very narrow because of the logarithm on the right
hand side of (3.15). _

In Fig. 5 we demonstrate how sharp the transition between this two dif-
ferent regions appears. Plotted are the values of the three largest resonance
widths as a function of the coupling parameter y. To get smooth curves we
averaged over 20 matrices. One can clearly sec how the width corresponding
to the wide unstable resonance increases rapidly (note the logarithmic scale)
passing the critical value 7., while the remaining widths decrease together.
In Fig. 5a data are shown which are taken from diagonalization of matrices

with dimension N = 400 while the data in Fig. 5b represent matrices with
N = 1000.

4 Fourier transform of the two point correla-
tion function '

As was already mentioned in the introduction, the decay law of an unstable
state is closely connected to the Fourier transform of the two-point corre-
lation function of the S-matrix. Here, we are interested in its behavior for
asymptotically large times. This asymptotics corresponds to small values of ¢
and was analyzed theoretically in [24] using the analytical results of Ref.[14].
Taking the single channel case as an example, we show below that the same
asymptotics can be obtained in a much more simple way by the direct energy
averaging procedure. To make the averaging over energy it is very convenient
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Fig. 5. The values of the three largest resonance widths as function u{.’ i:,he
coupling paraméter ~ are shown. The data are obtained by diagonalizing
90 matrices drawn from the ensemble (4.1,2.1,2.2) for different values of the

coupling v and two dimensions of the matrices.

to use the Lorentzian weight function
 § 1
2r (E'— E? +31%

The interval I of the averaging should contain a sufficiently large number
of resonances which is nevertheless much smaller than the total amount of
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them, so that d <« I < 4. The form (4.1) for the weight function allows to
perforin the energy exactly averaging provided that one uses the resonance
representation (3.1) for the S-matrix. In the next step, without any trouble
one can get the Fourier transform which for times ¢ > 1/7 reads

F(E;1) = i] de Cs(E; €)'

W—C-C-‘

e 2 i€yt 1 = 1 (_*)2 i£7,t
szh:Vke (E-£k+%f e ) ; Ve: ] et w1 {42)
where Cs(E; €) is the S-matrix correlation function defined in (3.11) but with
energy average rather than ensemble one. The only term omitted in (4.2) is
proportional to exp(—1t/2) and, therefore, small.

Since the interval I contains many resonances one can neglect I'; as com-
pared to I in the denominators in (4.2). This is not possible for the wide
resonance which appears when 4 exceeds 4. = 1. However, the correspond-
ing term is exponentially small for the considered time and can be omitted.
Therefore, for arbitrary values of 4 one gets

s I . = - . =
FE-Y=) V2 =it V2g—i€xt 4
i Z:kw—EﬁuﬁﬁE (%:ﬁ )= (4.3)

k

where the sum is taken over all resonances but the wide one. Averaging over
the whole energy region, one finds the energy independent expression

‘Z ffk?e—*l-f:kt
k

One can see that the interval I dropped out from the expression for F(t).
The asymptotic behavior of the Fourier transform is given by some sort of
self-averaging. For large times, the cross terms in the squared modulus in
(4.4) cancel each other due to the randomness of the phases Eit — a; and

one obtains 5
L e (4.5)
Ik

2

1 e 27
F(f):mf dEF(E;t) = == (4.4)

F(l) =

1

We would like to stress that even small fluctuations of GOE-levels are enough
to provide this cancelation at asymptotically large times. As it was pointed
out above, for small and large values of v the quantities I'y coincide with the
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resonance widths Tx. Since for this cases they are distributed in accordance
with Porter-Thomas’ law

p(T) = i S exp ( § ) ) (4.6)
V2r(D)T 2(T)
one can approximately write

< 6w Fy*
F(t) = fn AL 2" = 3 g{;‘)t)ﬁﬁ : (4.7)

This result is in accordance with that obtained in [24]. In particular, it.‘ gives
the 1~5/2 dependence for asymptotically large times in agreement with the
general asymptotic formular given in [33]. On the other he_md,' fnr‘ val'ues _of'
v near v, the quantities T'; differ from the widths and their Qiﬁ.trlbuhf}n is,
in essence, unknown. Therefore, for this case one can not explicitly estimate
the sum in (4.5). _ | : ﬂ

For numerical calculations of the Fourier transform the expression (4.4)
is used where the quantities f’f are computed according to (3.3). Fig. 6

0
: v=0.1
o
i 10
S !
B ag?
P i
23
(r, 10
10"
o 10 10° 10" 10

t d/27
Fig. 6. Normalized Fourier transform of the S-matrix correla:tio'n functifm. .
The fluctuating curve is obtained numerically from the expression (4.4) using
(3.3) by diagonalizing one matrix of the ensemble (1.4,2.1,2._2) with N ='4{)D
and 7 = 0.1. The smooth curve is given by (4.6) and normalized as explained

in the text.
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F(t)/F(0)

F(t)/F(0)

F(t)/F(0)

t d/27

Fig. 7. Same as Fig. 1 but for three different values of the coupling

parameter ¥ and averaged over 100 matrices of the ensemble (1.4,2.1,2.2)
with N = 400.

presents numerical data for the normalized Fourier transform (fluctuating

line) for one matrix taken from the ensemble {(1.4,2.1,2.2) with N = 400 and
)= 0.1. The dependence (4.7} is shown by the smooth line. As one can see,
Fig. 6 clearly reflects the sell-averaging nature of the calculated quantity.

20
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Large fluctuations on Fig. 6 are removed by averaging over an ensemble of
matrices (see Fig. 7). This averaging was performed over 100 matrices.

In Figs. Ta,c the very good correspondence between the numerical data
8and analytical formula (4.7) is seen in the whole region of its validity. As it
should be expected, these two curves practically coincide. Fig. 7b, where the
case v = 1 is given, demonstrates, in agreement with the above discussion,
a clear deviation of the numerical data from (4.7). Nevertheless, our data
demonstrate that the asymptoticall behavior at extremely large times has
the same form as in (4.7) (see [24]). Due to the fact that the expression (4.7)
is not valid for small times, this function was normalized in the asymptotic

region td/27 > 1.

5 Conclusions

In this paper, we have thoroughly studied the fluctuations of elastic resc-
nance scattering as they reflect the statistical properties of the underlying
intermediate resonance states. The scattering model under consideration 18
based on the random matrix approach. The data obtained are in good agree-
ment with previous analytical results and demonstrate clearly the existence
of a critical value of the coupling to the continuum corresponding to a cer-
tain reorganization of the intrinsic motion of the intermediate complicated
decaying system.
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