SUPERSYMMETRIC MODEL ASSUMPTIONS

The exclusion of particle masses within a mass range \((m_1, m_2)\) will be denoted with the notation “none \(m_1 - m_2\)” in the VALUE column of the following Listings. The latest unpublished results are described in the “Supersymmetry: Experiment” review.

CONTENTS:

\(\tilde{\chi}_1^0\) (Lightest Neutralino) Mass Limit
- Accelerator limits for stable \(\tilde{\chi}_1^0\)
- Bounds on \(\tilde{\chi}_1^0\) from dark matter searches
- \(\tilde{\chi}_1^0-p\) elastic cross section
 - Spin-dependent interactions
 - Spin-independent interactions
- Other bounds on \(\tilde{\chi}_1^0\) from astrophysics and cosmology
- Unstable \(\tilde{\chi}_1^0\) (Lightest Neutralino) Mass Limit
\(\tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0\) (Neutralinos) Mass Limits
\(\tilde{\chi}_1^\pm, \tilde{\chi}_2^\pm\) (Charginos) Mass Limits
Long-lived \(\tilde{\chi}_1^\pm\) (Chargino) Mass Limits
\(\tilde{\nu}\) (Sneutrino) Mass Limit
Charged Sleptons
- \(\tilde{e}\) (Selectron) Mass Limit
- \(\tilde{\mu}\) (Smuon) Mass Limit
- \(\tilde{\tau}\) (Stau) Mass Limit
- Degenerate Charged Sleptons
- Long-lived \(\tilde{\ell}\) (Slepton) Mass Limit
\(\tilde{q}\) (Squark) Mass Limit
Long-lived \(\tilde{q}\) (Squark) Mass Limit
\(\bar{b}\) (Sbottom) Mass Limit
\(\bar{t}\) (Stop) Mass Limit
Heavy \(\tilde{g}\) (Gluino) Mass Limit
Long-lived/light \(\tilde{g}\) (Gluino) Mass Limit
Light \(\tilde{G}\) (Gravitino) Mass Limits from Collider Experiments
Supersymmetry Miscellaneous Results

\(\tilde{\chi}_1^0\) (Lightest Neutralino) MASS LIMIT

\(\tilde{\chi}_1^0\) is often assumed to be the lightest supersymmetric particle (LSP). See also the \(\tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0\) section below.

We have divided the \(\tilde{\chi}_1^0\) listings below into five sections:
1) Accelerator limits for stable $\tilde{\chi}_1^0$.
2) Bounds on $\tilde{\chi}_1^0$ from dark matter searches,
3) $\tilde{\chi}_1^0 - p$ elastic cross section (spin-dependent, spin-independent interactions),
4) Other bounds on $\tilde{\chi}_1^0$ from astrophysics and cosmology, and
5) Unstable $\tilde{\chi}_1^0$ (Lightest Neutralino) mass limit.

Accelerator limits for stable $\tilde{\chi}_1^0$

Unless otherwise stated, results in this section assume spectra, production rates, decay modes, and branching ratios as evaluated in the MSSM, with gaugino and sfermion mass unification at the GUT scale. These papers generally study production of $\tilde{\chi}_i^0 \tilde{\chi}_j^0$ ($i \geq 1$, $j \geq 2$), $\tilde{\chi}_1^0 \tilde{\chi}_2^0$, and (in the case of hadronic collisions) $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$ pairs. The mass limits on $\tilde{\chi}_1^0$ are either direct, or follow indirectly from the constraints set by the non-observation of $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ states on the gaugino and higgsino MSSM parameters M_2 and θ. In some cases, information is used from the nonobservation of slepton decays.

Obsolete limits obtained from $e^+ e^-$ collisions up to $\sqrt{s}=184$ GeV have been removed from this compilation and can be found in the 2000 Edition (The European Physical Journal C15 1 (2000)) of this Review.

\[\Delta m = m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} \]

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>>40</td>
<td>95</td>
<td>1 ABBIENDI</td>
<td>04H</td>
<td>OPAL all tanβ, $\Delta m > 5$ GeV, $m_0 > 500$ GeV, $A_0 = 0$</td>
</tr>
<tr>
<td>>42.4</td>
<td>95</td>
<td>2 HEISTER</td>
<td>04</td>
<td>ALEP all tanβ, all Δm, all m_0</td>
</tr>
<tr>
<td>>39.2</td>
<td>95</td>
<td>3 ABDALLAH</td>
<td>03M</td>
<td>DLPH all tanβ, $m_0 > 500$ GeV</td>
</tr>
<tr>
<td>>46</td>
<td>95</td>
<td>4 ABDALLAH</td>
<td>03M</td>
<td>DLPH all tanβ, all Δm, all m_0</td>
</tr>
<tr>
<td>>32.5</td>
<td>95</td>
<td>5 ACCIARRI</td>
<td>00D</td>
<td>L3 tan$\beta > 0.7$, $\Delta m > 3$ GeV, all m_0</td>
</tr>
</tbody>
</table>

- - - We do not use the following data for averages, fits, limits, etc. - - -

<table>
<thead>
<tr>
<th>6 DREINER</th>
<th>09</th>
<th>THEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 ABBOTT</td>
<td>98</td>
<td>D0</td>
</tr>
<tr>
<td>8 ABE</td>
<td>98</td>
<td>CDF</td>
</tr>
</tbody>
</table>

1 ABBIENDI 04H search for charginos and neutralinos in events with acoplanar leptons+jets and multi-jet final states in the 192–209 GeV data, combined with the results on leptonic final states from ABBIENDI 04. The results hold for a scan over the parameter space covering the region $0 < M_2 < 5000$ GeV, $-1000 < \mu < 1000$ GeV and $\tan\beta$ from 1 to 40. This limit supersedes ABBIENDI 00H.

2 HEISTER 04 data collected up to 209 GeV. Updates earlier analysis of selectrons from HEISTER 02E, includes a new analysis of charginos and neutralinos decaying into stau and uses results on charginos with initial state radiation from HEISTER 02J. The limit is based on the direct search for charginos and neutralinos, the constraints from the slepton search and the Higgs mass limits from HEISTER 02 using a top mass of 175 GeV, interpreted in a framework with universal gaugino and sfermion masses. Assuming the mixing in the stau sector to be negligible, the limit improves to 43.1 GeV. Under the assumption of MSUGRA with unification of the Higgs and sfermion masses, the limit improves to 50 GeV, and reaches 53 GeV for $A_0 = 0$. These limits include and update the results of BARATE 01.
3 ABDALLAH 03M uses data from $\sqrt{s} = 192$–208 GeV. A limit on the mass of $\tilde{\chi}^0_1$ is derived from direct searches for neutralinos combined with the chargino search. Neutralinos are searched in the production of $\tilde{\chi}^0_1\tilde{\chi}^0_2$, $\tilde{\chi}^0_1\tilde{\chi}^0_3$, as well as $\tilde{\chi}^0_2\tilde{\chi}^0_4$ and $\tilde{\chi}^0_2\tilde{\chi}^0_5$ giving rise to cascade decays, and $\tilde{\chi}^0_1\tilde{\chi}^0_2$, followed by the decay $\tilde{\chi}^0_2 \rightarrow \tilde{\tau}\tau$. The results hold for the parameter space defined by values of $M_2 < 1$ TeV, $|\mu| \leq 2$ TeV with the $\tilde{\chi}^0_1$ as LSP. The limit is obtained for $\tan\beta = 1$ and large m_0, where $\tilde{\chi}^0_2\tilde{\chi}^0_4$ and chargino pair production are important. If the constraint from Higgs searches is also imposed, the limit improves to 49.0 GeV in the M^max scenario with $m_\tilde{t} = 174.3$ GeV. These limits update the results of ABREU 00W.

4 ABDALLAH 03M uses data from $\sqrt{s} = 192$–208 GeV. An indirect limit on the mass of $\tilde{\chi}^0_1$ is derived by constraining the MSSM parameter space by the results from direct searches for neutralinos (including cascade decays and $\tilde{\tau}\tilde{\tau}$ final states), for charginos (for all Δm_\pm) and for sleptons, stop and sbottom. The results hold for the full parameter space defined by values of $M_2 < 1$ TeV, $|\mu| \leq 2$ TeV with the $\tilde{\chi}^0_1$ as LSP. Constraints from the Higgs search in the M^max scenario assuming $m_\tilde{t} = 174.3$ GeV are included. The limit is obtained for $\tan\beta \geq 5$ when stau mixing leads to mass degeneracy between $\tilde{\tau}_1$ and $\tilde{\chi}^0_1$ and the limit is based on $\tilde{\chi}^0_1$ production followed by its decay to $\tilde{\tau}_1\tau$. In the pathological scenario where m_0 and $|\mu|$ are large, so that the $\tilde{\chi}^0_1$ production cross section is negligible, and where there is mixing in the stau sector but not in stop nor sbottom, the limit is based on charginos with soft decay products and an ISR photon. The limit then degrades to 39 GeV. See Figs 40–42 for the dependence of the limit on $\tan\beta$ and $m_\tilde{g}$. These limits update the results of ABREU 00W.

5 ACCIARRI 00D data collected at $\sqrt{s}=189$ GeV. The results hold over the full parameter space defined by $0.7 \leq \tan\beta \leq 60$, $0 \leq M_2 \leq 2$ TeV, $m_0 \leq 500$ GeV, $|\mu| \leq 2$ TeV. The minimum mass limit is reached for $\tan\beta=1$ and large m_0. The results of slepton searches from ACCIARRI 99W are used to help set constraints in the region of small m_0. The limit improves to 48 GeV for $m_0 \gtrsim 200$ GeV and $\tan\beta \gtrsim 10$. See their Figs. 6–8 for the $\tan\beta$ and m_0 dependence of the limits. Updates ACCIARRI 98F.

6 DREINER 09 show that in the general MSSM with non-universal gaugino masses there exists no model-independent laboratory bound on the mass of the lightest neutralino. An essentially massless $\tilde{\chi}^0_1$ is allowed by the experimental and observational data, imposing some constraints on other MSSM parameters, including M_2, μ and the slepton and squark masses.

7 ABBOTT 98c searches for trilepton final states ($\ell=e,\mu$). See footnote to ABBOTT 98c in the Chargino Section for details on the assumptions. Assuming a negligible decay rate of $\tilde{\chi}^\pm_1$ and $\tilde{\chi}^0_2$ to quarks, they obtain $m_{\tilde{\chi}^0_2} \gtrsim 51$ GeV.

8 ABE 98j searches for trilepton final states ($\ell=e,\mu$). See footnote to ABE 98j in the Chargino Section for details on the assumptions. The quoted result corresponds to the best limit within the selected range of parameters, obtained for $m_{\tilde{g}} > m_{\tilde{q}}$, $\tan\beta=2$, and $\mu=-600$ GeV.

Bounds on $\tilde{\chi}^0_1$ from dark matter searches

These papers generally exclude regions in the $M_2-\mu$ parameter plane assuming that $\tilde{\chi}^0_1$ is the dominant form of dark matter in the galactic halo. These limits are based on the lack of detection in laboratory experiments, telescopes, or by the absence of a signal in underground neutrino detectors. The latter signal is expected if $\tilde{\chi}^0_1$ accumulates in the Sun or the Earth and annihilates into high-energy ν's.
We do not use the following data for averages, fits, limits, etc.

1 ABRAMOWSKI11 HESS
2 ABDO 10 FRMI
3 ACKERMANN 10 FRMI
4 ABBASI 09b ICB
5 ACHTERBERG 06 AMND
6 ACKERMANN 06 AMND
7 DEBOER 06 RVUE
8 DESAI 04 SKAM
9 AMBROSIO 99 MCRO
10 LOSECCO 95 RVUE
11 MORI 93 KAMI
12 BOTTINO 92 COSM
13 BOTTINO 91 RVUE
14 GELMINI 91 COSM
15 KAMIONKOW.91 RVUE
16 OLIVE 88 COSM

none 4–15 GeV

1 ABRAMOWSKI 11 place upper limits on the annihilation cross section with $\gamma \gamma$ final states.
2 ABDO 10 place upper limits on the annihilation cross section with $\gamma \gamma$ or $\mu^+ \mu^-$ final states.
3 ACKERMANN 10 place upper limits on the annihilation cross section with $b \bar{b}$ or $\mu^+ \mu^-$ final states.
4 ABBASI 09 is based on data collected during 104.3 effective days with the IceCube 22-string detector. They looked for interactions of ν_μ's from neutralino annihilations in the Sun over a background of atmospheric neutrinos and set 90% CL limits on the muon flux. They also obtain limits on the spin dependent neutralino–proton cross section for neutralino masses in the range 250–5000 GeV.
5 ACHTERBERG 06 is based on data collected during 421.9 effective days with the AMANDA detector. They looked for interactions of ν_μ's from the centre of the Earth over a background of atmospheric neutrinos and set 90% CL limits on the muon flux. Their limit is compared with the muon flux expected from neutralino annihilations into $W^+ W^-$ and $b \bar{b}$ at the centre of the Earth for MSSM parameters compatible with the relic dark matter density, see their Fig. 7.
6 ACKERMANN 06 is based on data collected during 143.7 days with the AMANDA-II detector. They looked for interactions of ν_μ's from the Sun over a background of atmospheric neutrinos and set 90% CL limits on the muon flux. Their limit is compared with the muon flux expected from neutralino annihilations into $W^+ W^-$ in the Sun for SUSY model parameters compatible with the relic dark matter density, see their Fig. 3.
7 DEBOER 06 interpret an excess of diffuse Galactic gamma rays observed with the EGRET satellite as originating from π^0 decays from the annihilation of neutralinos into quark jets. They analyze the corresponding parameter space in a supergravity inspired MSSM model with radiative electroweak symmetry breaking, see their Fig. 3 for the preferred region in the $(m_0, m_{1/2})$ plane of a scenario with large $\tan \beta$.
8 AMBROSIO 99 and DESAI 04 set new neutrino flux limits which can be used to limit the parameter space in supersymmetric models based on neutralino annihilation in the Sun and the Earth.
9 LOSECCO 95 reanalyzed the IMB data and places lower limit on $m_{\tilde{\chi}^0_1}$ of 18 GeV if the LSP is a photino and 10 GeV if the LSP is a higgsino based on LSP annihilation in
the sun producing high-energy neutrinos and the limits on neutrino fluxes from the IMB detector.

10 MORI 93 excludes some region in $M_2-\mu$ parameter space depending on $\tan \beta$ and lightest scalar Higgs mass for neutralino dark matter $m_{\tilde{\chi}_1^0} > m_W$, using limits on upgoing muons produced by energetic neutrinos from neutralino annihilation in the Sun and the Earth.

11 BOTTINO 92 excludes some region $M_2-\mu$ parameter space assuming that the lightest neutralino is the dark matter, using upgoing muons at Kamiokande, direct searches by Ge detectors, and by LEP experiments. The analysis includes top radiative corrections on Higgs parameters and employs two different hypotheses for nucleon-Higgs coupling. Effects of rescaling in the local neutralino density according to the neutralino relic abundance are taken into account.

12 BOTTINO 91 excluded a region in $M_2-\mu$ plane using upgoing muon data from Kamioka experiment, assuming that the dark matter surrounding us is composed of neutralinos and that the Higgs boson is not too heavy.

13 GELMINI 91 exclude a region in $M_2-\mu$ plane using dark matter searches.

14 KAMIONKOWSKI 91 excludes a region in the $M_2-\mu$ plane using IMB limit on upgoing muons originated by energetic neutrinos from neutralino annihilation in the sun, assuming that the dark matter is composed of neutralinos and that $m_{H_1^0} \lesssim 50$ GeV. See Fig. 8 in the paper.

15 MORI 918 exclude a part of the region in the $M_2-\mu$ plane with $m_{\tilde{\chi}_1^0} \lesssim 80$ GeV using a limit on upgoing muons originated by energetic neutrinos from neutralino annihilation in the earth, assuming that the dark matter surrounding us is composed of neutralinos and that $m_{H_1^0} \lesssim 80$ GeV.

16 OLIVE 88 result assumes that photinos make up the dark matter in the galactic halo. Limit is based on annihilations in the sun and is due to an absence of high energy neutrinos detected in underground experiments. The limit is model dependent.

$\tilde{\chi}_1^0$-p elastic cross section

Experimental results on the $\tilde{\chi}_1^0$-p elastic cross section are evaluated at $m_{\tilde{\chi}_1^0}=100$ GeV. The experimental results on the cross section are often mass dependent. Therefore, the mass and cross section results are also given where the limit is strongest, when appropriate. Results are quoted separately for spin-dependent interactions (based on an effective 4-Fermi Lagrangian of the form $\tilde{\chi}_1^0 \gamma^5 \chi \Gamma(q)$ and spin-independent interactions $\tilde{\chi}_1^0 \chi q$). For calculational details see GRIEST 88, ELLIS 88, BARBIERI 89c, DREES 93b, ARNOWITT 96, BERGSTROM 96, and BAER 97 in addition to the theory papers listed in the Tables. For a description of the theoretical assumptions and experimental techniques underlying most of the listed papers, see the review on “Dark matter” in this “Review of Particle Physics,” and references therein. Most of the following papers use galactic halo and nuclear interaction assumptions from (LEWIN 96).

Spin-dependent interactions

<table>
<thead>
<tr>
<th>VALUE (pb)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.07</td>
<td>90</td>
<td>1 BEHNKE</td>
<td>11 COUP</td>
<td>CF31</td>
</tr>
</tbody>
</table>

HTTP://PDG.LBL.GOV Page 5 Created: 6/18/2012 15:10
<table>
<thead>
<tr>
<th>5 × 10^{-10} to 10^{-5}</th>
<th>95</th>
<th>2 BUCHMUEL... 11B THEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.3</td>
<td>90</td>
<td>3 ARCHAMBAU .09 PICA F</td>
</tr>
<tr>
<td>< 0.8</td>
<td>90</td>
<td>4 LEBEDENKO 09A ZEP3 Xe</td>
</tr>
<tr>
<td>< 1</td>
<td>90</td>
<td>5 ANGLE 08A XE10 Xe</td>
</tr>
<tr>
<td>< 0.055</td>
<td>90</td>
<td>6 BEDNYAKOV 08 HDMS Ge</td>
</tr>
<tr>
<td>< 0.33</td>
<td>90</td>
<td>7 BUHNKE 08 COUP CF_{3}I</td>
</tr>
<tr>
<td>< 15</td>
<td>90</td>
<td>8 ALNER 07 ZEP2 Xe</td>
</tr>
<tr>
<td>< 0.17</td>
<td>90</td>
<td>9 LEE 07A KIMS CsI</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10 AKERIB 06 CDMS Ge</td>
</tr>
<tr>
<td>< 2</td>
<td>6</td>
<td>11 SHIMIZU 06A CNTR CaF_{2}</td>
</tr>
<tr>
<td>< 0.4</td>
<td>7</td>
<td>12 ALNER 05 NAIA NaI Spin Dep.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13 BARNABE-HE.05 PICA C</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>14 GIRARD 05 SMPL F, Cl</td>
</tr>
<tr>
<td>2 × 10^{-11} to 1 × 10^{-4}</td>
<td>15</td>
<td>15 ELLIS 04 THEO \mu > 0</td>
</tr>
<tr>
<td>< 16</td>
<td>16</td>
<td>16 GIULIANI 04 SIMP F</td>
</tr>
<tr>
<td>< 0.8</td>
<td>17</td>
<td>17 AHMED 03 NAIA NaI Spin Dep.</td>
</tr>
<tr>
<td>< 40</td>
<td>18</td>
<td>18 TAKEDA 03 BOLO NaF Spin Dep.</td>
</tr>
<tr>
<td>< 10</td>
<td>19</td>
<td>19 ANGLOHER 02 CRES Saphire</td>
</tr>
<tr>
<td>8 × 10^{-7} to 2 × 10^{-5}</td>
<td>20</td>
<td>20 ELLIS 01C THEO \tan \beta \leq 10</td>
</tr>
<tr>
<td>< 3.8</td>
<td>21</td>
<td>21 BERNABEI 00D DAMA Xe</td>
</tr>
<tr>
<td>< 15</td>
<td>22</td>
<td>22 COLLAR 00 SMPL F</td>
</tr>
<tr>
<td>< 0.8</td>
<td>23</td>
<td>23 BELLi 99C DAMA F</td>
</tr>
<tr>
<td>< 100</td>
<td>24</td>
<td>24 OOTANI 99 BOLO LiF</td>
</tr>
<tr>
<td>< 0.6</td>
<td>23</td>
<td>25 BERNABEI 98C DAMA Xe</td>
</tr>
<tr>
<td>< 5</td>
<td></td>
<td>26 BERNABEI 97 DAMA F</td>
</tr>
</tbody>
</table>

1 The strongest limit is 0.05 pb and occurs at \(m_\chi = 55 \) GeV.

2 Predictions for the spin-dependent elastic cross section based on a frequentist approach to electroweak observables in the framework of \(N = 1 \) supergravity models with radiative breaking of the electroweak gauge symmetry.

3 The strongest limit is 0.16 pb and occurs at \(m_\chi = 24 \) GeV. The strongest limit for the scattering on neutrons is 2.6 pb, also at \(m_\chi = 24 \) GeV.

4 The strongest upper limit is 0.76 pb and occurs at \(m_\chi \approx 55 \) GeV. The strongest limit on the neutron spin-dependent cross section is 0.01 pb, also at \(m_\chi \approx 55 \) GeV (the same limit is achieved for \(m_\chi = 100 \) GeV).

5 The strongest limit is 0.6 pb and occurs at \(m_\chi = 30 \) GeV. The limit for scattering on neutrons is 0.01 pb at \(m_\chi = 100 \) GeV, and the strongest limit is 0.0045 pb at \(m_\chi = 30 \) GeV.

6 Limit applies to neutron elastic cross section.

7 The strongest upper limit is 0.25 pb and occurs at \(m_\chi \approx 40 \) GeV.

8 The strongest upper limit is 14 pb and occurs at \(m_\chi \approx 65 \) GeV. The limit on the neutron spin-dependent cross section is 0.08 pb at \(m_\chi = 100 \) GeV and the strongest limit for scattering on neutrons is 0.07 pb at \(m_\chi = 65 \) GeV.

9 The limit on the neutron spin-dependent cross section is 6 pb at \(m_\chi = 100 \) GeV.

10 The strongest upper limit is 4 pb and occurs at \(m_\chi \approx 60 \) GeV. The limit on the neutron spin-dependent elastic cross section is 0.07 pb. This latter limit is improved in AHMED 09, where a limit of 0.02 pb is obtained at \(m_\chi = 100 \) GeV. The strongest limit in AHMED 09 is 0.018 pb and occurs at \(m_\chi = 60 \) GeV.
11 The strongest upper limit is 1.2 pb and occurs at $m_\chi \simeq 40$ GeV. The limit on the neutron spin-dependent cross section is 35 pb.
12 The strongest upper limit is 0.35 pb and occurs at $m_\chi \simeq 60$ GeV.
13 The strongest upper limit is 1.2 pb and occurs $m_\chi \simeq 30$ GeV.
14 The strongest upper limit is 1.2 pb and occurs $m_\chi \simeq 40$ GeV.
15 ELLIS 04 calculates the χp elastic scattering cross section in the framework of $N=1$ supergravity models with radiative breaking of the electroweak gauge symmetry, but without universal scalar masses. In the case of universal squark and slepton masses, but non-universal Higgs masses, the limit becomes 2×10^{-4}, see ELLIS 03E.
16 The strongest upper limit is 10 pb and occurs at $m_\chi \simeq 30$ GeV.
17 The strongest upper limit is 0.75 pb and occurs at $m_\chi \approx 70$ GeV.
18 The strongest upper limit is 30 pb and occurs at $m_\chi \approx 20$ GeV.
19 The strongest upper limit is 8 pb and occurs at $m_\chi \simeq 30$ GeV.
20 ELLIS 01C calculates the χp elastic scattering cross section in the framework of $N=1$ supergravity models with radiative breaking of the electroweak gauge symmetry. In models with nonuniversal Higgs masses, the upper limit to the cross section is 6×10^{-4}.
21 The strongest upper limit is 3 pb and occurs at $m_\chi \simeq 60$ GeV. The limits are for inelastic scattering $X^0 + 129Xe \rightarrow X^0 + 129Xe^*$ (39.58 keV).
22 The strongest upper limit is 9 pb and occurs at $m_\chi \simeq 30$ GeV.
23 The strongest upper limit is 4.4 pb and occurs at $m_\chi \simeq 60$ GeV.
24 The strongest upper limit is about 35 pb and occurs at $m_\chi \simeq 15$ GeV.

Spin-independent interactions

<table>
<thead>
<tr>
<th>VALUE (pb)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3.3 $\times 10^{-8}$</td>
<td>90</td>
<td>1 AHMED 11A</td>
<td>Ge</td>
<td></td>
</tr>
<tr>
<td>< 3.1 $\times 10^{-8}$</td>
<td>90</td>
<td>2 APRILE 11 X100</td>
<td>Xe</td>
<td></td>
</tr>
<tr>
<td>< 1.0 $\times 10^{-8}$</td>
<td>90</td>
<td>3 APRILE 11B X100</td>
<td>Xe</td>
<td></td>
</tr>
<tr>
<td>< 4.4 $\times 10^{-8}$</td>
<td>90</td>
<td>4 ARMENGAUD 11 EDE2 Ge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 $\times 10^{-11}$ to 8 $\times 10^{-8}$</td>
<td>95</td>
<td>5 BUCHMUEL... 11B THEO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 $\times 10^{-11}$ to 1.4 $\times 10^{-8}$</td>
<td>95</td>
<td>6 FARINA 11 THEO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 4 $\times 10^{-8}$</td>
<td>90</td>
<td>7 AHMED 10 CDMS Ge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 4 $\times 10^{-8}$</td>
<td>90</td>
<td>8 APRILE 10 X100 Xe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 $\times 10^{-7}$</td>
<td>90</td>
<td>9 ARMENGAUD 10 EDE2 Ge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 $\times 10^{-10}$ to 1 $\times 10^{-7}$</td>
<td>90</td>
<td>10 CAO 10 THEO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 5 $\times 10^{-8}$</td>
<td>90</td>
<td>11 AHMED 09 CDM2 Ge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 7 $\times 10^{-7}$</td>
<td>90</td>
<td>12 ANGLOHER 09 CRES CaWO4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 $\times 10^{-10}$ to 3 $\times 10^{-8}$</td>
<td>95</td>
<td>13 BUCHMUEL... 09 THEO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 $\times 10^{-7}$</td>
<td>90</td>
<td>14 LEBEDENKO 09 ZEP3 Xe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 $\times 10^{-7}$</td>
<td>90</td>
<td>15 ANGLE 08 XE10 Xe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 $\times 10^{-6}$</td>
<td>90</td>
<td>16 BENETTI 08 WARP Ar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 7.5 $\times 10^{-7}$</td>
<td>90</td>
<td>16 ALNER 07A ZEP2 Xe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 22 $\times 10^{-7}$</td>
<td>90</td>
<td>17 LEE 07A KIMS CsI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2 $\times 10^{-7}$</td>
<td>90</td>
<td>18 AKERIB 06A CDMS Ge</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4 \times 10^{-11} \text{ to } 2 \times 10^{-7} \hspace{1cm} 95
\frac{1}{2} x 10^{-11} \text{ to } 1.5 \times 10^{-7} \hspace{1cm} 95
2 \times 10^{-11} \text{ to } 8 \times 10^{-6} \hspace{1cm} 26, 27
< 5 \times 10^{-8} \hspace{1cm} 28
< 2 \times 10^{-5} \hspace{1cm} 29
< 3 \times 10^{-6} \hspace{1cm} 30
2 \times 10^{-13} \text{ to } 2 \times 10^{-7} \hspace{1cm} 31
< 1.4 \times 10^{-5} \hspace{1cm} 32
< 6 \times 10^{-6} \hspace{1cm} 33
< 1.4 \times 10^{-6} \hspace{1cm} 34
1 \times 10^{-12} \text{ to } 7 \times 10^{-6} \hspace{1cm} 35
< 3 \times 10^{-5} \hspace{1cm} 36
< 1 \times 10^{-5} \hspace{1cm} 37
< 3 \times 10^{-5} \hspace{1cm} 38
< 4.5 \times 10^{-6} \hspace{1cm} 39
< 7 \times 10^{-6} \hspace{1cm} 40
< 1 \times 10^{-8} \hspace{1cm} 41
5 \times 10^{-10} \text{ to } 1.5 \times 10^{-8} \hspace{1cm} 42
< 4 \times 10^{-6} \hspace{1cm} 43
2 \times 10^{-10} \text{ to } 1 \times 10^{-7} \hspace{1cm} 44
< 3 \times 10^{-6} \hspace{1cm} 45
< 6 \times 10^{-7} \hspace{1cm} 46
2.5 \times 10^{-9} \text{ to } 3.5 \times 10^{-8} \hspace{1cm} 47
< 1.5 \times 10^{-5} \hspace{1cm} 48
< 4 \times 10^{-5} \hspace{1cm} 49
< 7 \times 10^{-6} \hspace{1cm} 50
< 7 \times 10^{-6} \hspace{1cm} 51

1 \text{ AHMED 11A gives combined results from CDMS and EDELWEISS. The strongest limit is at } m_\chi = 90 \text{ GeV.}

2 \text{ APRILE 11 updates the result of APRILE 10. The strongest upper limit is } 2.4 \times 10^{-8} \text{ pb and occurs at } m_\chi \approx 50 \text{ GeV. Superseded by APRILE 11B.}

3 \text{ APRILE 11B updates the result of APRILE 10 and APRILE 11. The strongest upper limit is } 7 \times 10^{-9} \text{ pb and occurs at } m_\chi \approx 50 \text{ GeV.}

4 \text{ ARMENGAUD 11 updates result of ARMENGAUD 10. Strongest limit at } m_\chi = 85 \text{ GeV.}

5 \text{ Predictions for the spin-independent elastic cross section based on a frequentist approach to electroweak observables in the framework of } N = 1 \text{ supergravity models with radiative breaking of the electroweak gauge symmetry.}
Predictions for the spin-independent elastic cross section based on a frequentist approach to electroweak observables in the framework of \(N = 1 \) supergravity models with radiative breaking of the electroweak gauge symmetry.

The strongest upper limit is \(< 3.8 \times 10^{-8} \) pb and occurs at \(m_\chi \simeq 70 \) GeV. AHMED 09 updates the results of AHMED 09.

The strongest upper limit is \(< 3.4 \times 10^{-8} \) pb and occurs at \(m_\chi \simeq 55 \) GeV. Supersedes by APRILE 11.

The strongest limit is at \(m_\chi = 80 \) GeV. Superseded ARMENGAUD 11.

Uses relic density and various collider experiments to set limits on neutralino-nucleon cross section in MSSM models with gaugino mass unification.

AHMED 09 updates the results of AKERIB 06. The strongest limit is \(4.6 \times 10^{-8} \) pb and occurs at \(m_\chi = 60 \) GeV. Superseded by AHMED 10.

The strongest upper limit is \(4.8 \times 10^{-7} \) pb and occurs at \(m_\chi = 50 \) GeV.

BUCHMUELLER 09 makes predictions for the spin-independent elastic cross section based on a frequentist approach to electroweak observables in the framework of \(N = 1 \) supergravity models with radiative breaking of the electroweak gauge symmetry.

The strongest upper limit is \(8.1 \times 10^{-8} \) pb and occurs at \(m_\chi = 60 \) GeV.

The strongest upper limit is \(5.1 \times 10^{-8} \) pb and occurs at \(m_\chi \simeq 30 \) GeV. The values quoted here are based on the analysis performed in ANGLE 08 with the update from SORENSEN 09.

The strongest upper limit is \(6.6 \times 10^{-7} \) pb and occurs at \(m_\chi \simeq 65 \) GeV.

The strongest upper limit is \(19 \times 10^{-7} \) pb and occurs at \(m_\chi \simeq 65 \) GeV. Supersedes LEE 06.

AKERIB 06A updates the results of AKERIB 05. The strongest upper limit is \(1.6 \times 10^{-7} \) pb and occurs at \(m_\chi \approx 60 \) GeV.

Predictions for the spin-independent elastic cross section based on a Bayesian approach to electroweak observables in the framework of \(N = 1 \) supergravity models with radiative breaking of the electroweak gauge symmetry.

The strongest upper limit is \(8 \times 10^{-6} \) pb and occurs at \(m_\chi \simeq 70 \) GeV.

AKERIB 05 is incompatible with the DAMA most likely value. The strongest upper limit is \(4 \times 10^{-7} \) pb and occurs at \(m_\chi \simeq 60 \) GeV.

The strongest upper limit is also close to \(1.0 \times 10^{-6} \) pb and occurs at \(m_\chi \simeq 70 \) GeV. BENOIT 06 claim that the discrimination power of ZEPLIN-I measurement (ALNER 05A) is not reliable enough to obtain a limit better than \(1 \times 10^{-3} \) pb. However, SMITH 06 do not agree with the criticisms of BENOIT 06.

The strongest upper limit is also close to \(1.4 \times 10^{-6} \) pb and occurs at \(m_\chi \simeq 70 \) GeV.

AKERIB 04 is incompatible with BERNABEI 00 most likely value, under the assumption of standard WIMP-halo interactions. The strongest upper limit is \(4 \times 10^{-7} \) pb and occurs at \(m_\chi \simeq 60 \) GeV.

Predictions for the spin-independent elastic cross section in the framework of \(N = 1 \) supergravity models with radiative breaking of the electroweak gauge symmetry.

KIM 02 and ELLIS 04 calculate the \(\chi p \) elastic scattering cross section in the framework of \(N=1 \) supergravity models with radiative breaking of the electroweak gauge symmetry, but without universal scalar masses.

In the case of universal squark and slepton masses, but non-universal Higgs masses, the limit becomes \(2 \times 10^{-6} \) (\(2 \times 10^{-11} \) when constraint from the BNL \(g-2 \) experiment are included), see ELLIS 03E. ELLIS 05 display the sensitivity of the elastic scattering cross section to the \(\pi \)-Nucleon \(\Sigma \) term.

PIERCE 04A calculates the \(\chi p \) elastic scattering cross section in the framework of models with very heavy scalar masses. See Fig. 2 of the paper.

The strongest upper limit is \(1.8 \times 10^{-5} \) pb and occurs at \(m_\chi \approx 80 \) GeV.
Under the assumption of standard WIMP-halo interactions, Akerib 03 is incompatible with BERNABEI 00 most likely value at the 99.98% CL. See Fig. 4.

BAER 03a calculates the \(\chi p \) elastic scattering cross section in several models including the framework of \(N=1 \) supergravity models with radiative breaking of the electroweak gauge symmetry.

The strongest upper limit is \(7 \times 10^{-6} \) pb and occurs at \(m_\chi \simeq 30 \) GeV.

ABRAMS 02 is incompatible with the DAMA most likely value at the 99.9% CL. The strongest upper limit is \(3 \times 10^{-6} \) pb and occurs at \(m_\chi \simeq 30 \) GeV.

BENOIT 02 excludes the central result of DAMA at the 99.8%CL.

The strongest upper limit is \(2 \times 10^{-5} \) pb and occurs at \(m_\chi \simeq 40 \) GeV.

The strongest upper limit is \(7 \times 10^{-6} \) pb and occurs at \(m_\chi \simeq 46 \) GeV.

The strongest upper limit is \(1.8 \times 10^{-5} \) pb and occurs at \(m_\chi \simeq 32 \) GeV.

BOTTINO 01 calculates the \(\chi p \) elastic scattering cross section in the framework of the following supersymmetric models: \(N=1 \) supergravity with the radiative breaking of the electroweak gauge symmetry, \(N=1 \) supergravity with nonuniversal scalar masses and an effective MSSM model at the electroweak scale.

Calculates the \(\chi p \) elastic scattering cross section in the framework of \(N=1 \) supergravity models with radiative breaking of the electroweak gauge symmetry.

ELLIS 01c calculates the \(\chi p \) elastic scattering cross section in the framework of \(N=1 \) supergravity models with radiative breaking of the electroweak gauge symmetry. EL-

LIS 02b find a range \(2 \times 10^{-8} \text{-} 1.5 \times 10^{-7} \) at \(\tan \beta = 50 \). In models with nonuniversal Higgs masses, the upper limit to the cross section is \(4 \times 10^{-7} \).

ACCOMANDO 00 calculate the \(\chi p \) elastic scattering cross section in the framework of minimal \(N=1 \) supergravity models with radiative breaking of the electroweak gauge symmetry. The limit is relaxed by at least an order of magnitude when models with nonuniversal scalar masses are considered. A subset of the authors in ARNOWITT 02 updated the limit to \(< 9 \times 10^{-6} \) (\(\tan \beta < 55 \)).

BERNABEI 00 search for annual modulation of the WIMP signal. The data favor the hypothesis of annual modulation at 4\(\sigma \) and are consistent, for a particular model framework quoted there, with \(m_\chi^0 = 44^{+12}_{-9} \) GeV and a spin-independent \(\chi^0 p \)-proton cross section of \((5.4 \pm 1.0) \times 10^{-6} \) pb. See also BERNABEI 01 and BERNABEI 00c.

FENG 00 calculate the \(\chi p \) elastic scattering cross section in the framework of \(N=1 \) supergravity models with radiative breaking of the electroweak gauge symmetry with a particular emphasis on focus point models. At \(\tan \beta = 50 \), the range is \(8 \times 10^{-8} \text{-} 4 \times 10^{-7} \).

BERNABEI 99 search for annual modulation of the WIMP signal. The data favor the hypothesis of annual modulation at 99.6%CL and are consistent, for the particular model framework considered there, with \(m_\chi^0 = 59^{+17}_{-14} \) GeV and spin-independent \(\chi^0 p \)-proton cross section of \((7.0^{+0.4}_{-0.3}) \times 10^{-6} \) pb (1\(\sigma \) errors).

BERNABEI 98 search for annual modulation of the WIMP signal. The data are consistent, for the particular model framework considered there, with \(m_\chi^0 = 59^{+36}_{-19} \) GeV and spin-independent \(\chi^0 p \)-proton cross section of \((1.0^{+0.1}_{-0.4}) \times 10^{-5} \) pb (1\(\sigma \) errors).

Other bounds on \(\chi^0_1 \) from astrophysics and cosmology

Most of these papers generally exclude regions in the \(M_2 - \mu \) parameter plane by requiring that the \(\chi^0_1 \) contribution to the overall cosmological density is less than some maximal value to avoid overclosure of the Universe. Those not based on the cosmological density are indicated. Many of these papers also include LEP and/or other bounds.

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>>46 GeV</td>
<td>1 ELLIS</td>
<td>00 RVUE</td>
<td></td>
</tr>
</tbody>
</table>

HTTP://PDG.LBL.GOV Page 10 Created: 6/18/2012 15:10
• • • We do not use the following data for averages, fits, limits, etc. • • •

2 AKULA 11A COSM
3 ALLANACH 11A COSM
4 BUCHMUEL... 11 COSM
5 BUCHMUEL... 11A COSM
6 BUCHMUEL... 11B COSM
7 FARINA 11 COSM
8 PROFUMO 11 COSM
9 ROSZKOWSKI 11 COSM
10 BECHTLE 10 COSM
11 ELLIS 10 COSM
12 BUCHMUEL... 09 COSM
13 DREINER 09 THEO
14 BUCHMUEL... 08 COSM
15 ELLIS 08 COSM
16 CALIBBI 07 COSM
17 ALLANACH 06 COSM
18 DE-AUSTRI 06 COSM
19 BAER 05 COSM
20 BALTZ 04 COSM
21 BELANGER 04 THEO
22 ELLIS 04B COSM
23 PIERCE 04A COSM
24 BAER 03 COSM
25 CHATTOPAD... 03 COSM
26 ELLIS 03 COSM
27 ELLIS 03B COSM
28 ELLIS 03C COSM
29 > 6 GeV
20 HOOPER 03 COSM $\Omega_{\chi} = 0.05–0.3$
24 LAHANAS 03 COSM
25 BAER 02 COSM
26 ELLIS 02 COSM
27 LAHANAS 02 COSM
28 BARGER 01C COSM
29 DJOUADI 01 COSM
30 ELLIS 01B COSM
31 ROSZKOWSKI 01 COSM
32 LAHANAS 00 COSM
33 ELLIS 98B COSM
34 EDSJO 97 COSM Co-annihilation
35 BAER 96 COSM
9 BEREZINSKY 95 COSM
30 FALK 95 COSM CP-violating phases
37 DREES 93 COSM Minimal supergravity
38 FALK 93 COSM Sfermion mixing
37 KELLEY 93 COSM Minimal supergravity
Table 1: Constraints on SUSY Parameter Space

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Model</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mizuta</td>
<td>93</td>
<td>COSM</td>
<td>Co-annihilation</td>
</tr>
<tr>
<td>Lopez</td>
<td>92</td>
<td>COSM</td>
<td>Minimal supergravity, $m_0=A=0$</td>
</tr>
<tr>
<td>McDonald</td>
<td>92</td>
<td>COSM</td>
<td>Minimal supergravity</td>
</tr>
<tr>
<td>Griest</td>
<td>91</td>
<td>COSM</td>
<td>Minimal supergravity</td>
</tr>
<tr>
<td>Nojiri</td>
<td>91</td>
<td>COSM</td>
<td>Minimal supergravity</td>
</tr>
<tr>
<td>Olive</td>
<td>91</td>
<td>COSM</td>
<td>Minimal supergravity</td>
</tr>
<tr>
<td>Rozkowski</td>
<td>91</td>
<td>COSM</td>
<td>Minimal supergravity</td>
</tr>
<tr>
<td>Griest</td>
<td>90</td>
<td>COSM</td>
<td>Minimal supergravity</td>
</tr>
<tr>
<td>Olive</td>
<td>89</td>
<td>COSM</td>
<td>Minimal supergravity</td>
</tr>
<tr>
<td>Srednicki</td>
<td>88</td>
<td>COSM</td>
<td>$\tilde{\gamma}$; $m_{\tilde{f}}=100$ GeV</td>
</tr>
<tr>
<td>Ellis</td>
<td>84</td>
<td>COSM</td>
<td>$\tilde{\gamma}$; for $m_{\tilde{f}}=100$ GeV</td>
</tr>
<tr>
<td>Goldberg</td>
<td>83</td>
<td>COSM</td>
<td>$\tilde{\gamma}$</td>
</tr>
<tr>
<td>Krauss</td>
<td>83</td>
<td>COSM</td>
<td>$\tilde{\gamma}$</td>
</tr>
<tr>
<td>Vysotskii</td>
<td>83</td>
<td>COSM</td>
<td>$\tilde{\gamma}$</td>
</tr>
</tbody>
</table>

1. **Ellis 00** updates **Ellis 98**. Uses LEP e^+e^- data at $\sqrt{s}=202$ and 204 GeV to improve bound on neutralino mass to 51 GeV when scalar mass universality is assumed and 46 GeV when Higgs mass universality is relaxed. Limits on $\tan\beta$ improve to >2.7 ($\mu>0$), >2.2 ($\mu<0$) when scalar mass universality is assumed and >1.9 (both signs of μ) when Higgs mass universality is relaxed.

2. **Akula 11a** places constraints on the SUSY parameter space in the framework of $N=1$ supergravity models with radiative breaking of the electroweak gauge symmetry using results from 35 pb$^{-1}$ of LHC data.

3. **Allanach 11a** updates the results of **Allanach 11** and places constraints on the SUSY parameter space in the framework of $N=1$ supergravity models with radiative breaking of the electroweak gauge symmetry using results from 35 pb$^{-1}$ of LHC data.

4. **Buchmuller 11** places constraints on the SUSY parameter space in the framework of $N=1$ supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches and including supersymmetry breaking relations between A and B parameters.

5. **Buchmuller 11a** places constraints on the SUSY parameter space in the framework of $N=1$ supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches and results from 35 pb$^{-1}$ of LHC data. Superseded by **Buchmuller 11b**.

6. **Buchmuller 11b** places constraints on the SUSY parameter space in the framework of $N=1$ supergravity models with radiative breaking of the electroweak gauge symmetry using results from 35 pb$^{-1}$ of LHC data and from XENON100 data as well as indirect experimental searches. See also **Buchmuller 11a**.

7. **Farina 11** places constraints on the SUSY parameter space in the framework of $N=1$ supergravity models with radiative breaking of the electroweak gauge symmetry using results from 1.1 fb$^{-1}$ of LHC data and from XENON100 data as well as indirect experimental searches.

8. **Profumo 11** places constraints on the SUSY parameter space in the framework of $N=1$ supergravity models with radiative breaking of the electroweak gauge symmetry using results from 35 pb$^{-1}$ of LHC data and from XENON100.

9. Places constraints on the SUSY parameter space in the framework of $N=1$ supergravity models with radiative breaking of the electroweak gauge symmetry but non-Universal Higgs masses.

10. **Bchtle 10** places constraints on the SUSY parameter space in the framework of $N=1$ supergravity models with radiative breaking of the electroweak gauge symmetry.

11. **Ellis 10** places constraints on the SUSY parameter space in the framework of $N=1$ supergravity models with radiative breaking of the electroweak gauge symmetry with universality above the GUT scale.
12 BUCHMUELLER 09 places constraints on the SUSY parameter space in the framework of $N = 1$ supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches.

13 DREINER 09 show that in the general MSSM with non-universal gaugino masses there exists no model-independent laboratory bound on the mass of the lightest neutralino. An essentially massless χ^0_1 is allowed by the experimental and observational data, imposing some constraints on other MSSM parameters, including M_2, μ and the slepton and squark masses.

14 BUCHMUELLER 08 places constraints on the SUSY parameter space in the framework of $N = 1$ supergravity models with radiative breaking of the electroweak gauge symmetry using indirect experimental searches.

15 CALIBBI 07 places constraints on the SUSY parameter space in the framework of $N = 1$ supergravity models with radiative breaking of the electroweak gauge symmetry with universality above the GUT scale including the effects of right-handed neutrinos.

16 ELLIS 07 places constraints on the SUSY parameter space in the framework of $N = 1$ supergravity models with radiative breaking of the electroweak gauge symmetry with universality below the GUT scale.

17 ALLANACH 06 places constraints on the SUSY parameter space in the framework of $N = 1$ supergravity models with radiative breaking of the electroweak gauge symmetry.

18 DE-AUSTRI 06 places constraints on the SUSY parameter space in the framework of $N = 1$ supergravity models with radiative breaking of the electroweak gauge symmetry.

19 BALTZ 04 places constraints on the SUSY parameter space in the framework of $N = 1$ supergravity models with radiative breaking of the electroweak gauge symmetry.

20 HOOPER 03, BOTTINO 03 (see also BOTTINO 03A and BOTTINO 04) , and BE-LANGER 04 do not assume gaugino or scalar mass unification.

21 Limit assumes a pseudo scalar mass $< 200 \text{ GeV}$. For larger pseudo scalar masses, $m_\chi > 18(29) \text{ GeV for } \tan\beta = 50(10)$. Bounds from WMAP, $(g - 2)_\mu$, $b \rightarrow s\gamma$, LEP.

22 ELLIS 04B places constraints on the SUSY parameter space in the framework of $N = 1$ supergravity models with radiative breaking of the electroweak gauge symmetry including supersymmetry breaking relations between A and B parameters. See also ELLIS 03D.

23 PIERCE 04A places constraints on the SUSY parameter space in the framework of models with very heavy scalar masses.

24 BAER 03, CHATTOpadhYaY 03, ELLIS 03C and LAHANAS 03 place constraints on the SUSY parameter space in the framework of $N = 1$ supergravity models with radiative breaking of the electroweak gauge symmetry based on WMAP results for the cold dark matter density.

25 BOEHM 00B and ELLIS 03 place constraints on the SUSY parameter space in the framework of minimal $N = 1$ supergravity models with radiative breaking of the electroweak gauge symmetry. Includes the effect of $\chi - \tilde{t}$ co-annihilations.

26 DJOUADI 01, ROSZKOWSKI 01, and BAER 02 place constraints on the SUSY parameter space in the framework of minimal $N = 1$ supergravity models with radiative breaking of the electroweak gauge symmetry.

27 ELLIS 02 places constraints on the soft supersymmetry breaking masses in the framework of minimal $N = 1$ supergravity models with radiative breaking of the electroweak gauge symmetry.

28 LAHANAS 02 places constraints on the SUSY parameter space in the framework of minimal $N = 1$ supergravity models with radiative breaking of the electroweak gauge symmetry. Focuses on the role of pseudo-scalar Higgs exchange.

29 BARGER 01C use the cosmic relic density inferred from recent CMB measurements to constrain the parameter space in the framework of minimal $N = 1$ supergravity models with radiative breaking of the electroweak gauge symmetry.

30 ELLIS 01B places constraints on the SUSY parameter space in the framework of minimal $N = 1$ supergravity models with radiative breaking of the electroweak gauge symmetry. Focuses on models with large $\tan\beta$.

31 FENG 00 explores cosmologically allowed regions of MSSM parameter space with multi-TeV masses.
LAHANAS 00 use the new cosmological data which favor a cosmological constant and its implications on the relic density to constrain the parameter space in the framework of minimal \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry.

ELLIS 98 assumes a universal scalar mass and radiative supersymmetry breaking with universal gaugino masses. The upper limit to the LSP mass is increased due to the inclusion of \(\chi \rightarrow \tilde{\tau} R\) coannihilations.

EDSJO 97 included all coannihilation processes between neutralinos and charginos for any neutralino mass and composition.

Notes the location of the neutralino \(Z\) resonance and \(h\) resonance annihilation corridors in minimal supergravity models with radiative electroweak breaking.

Mass of the bino (=LSP) is limited to \(m_{\tilde{B}} \lesssim 350\) GeV for \(m_t = 174\) GeV.

DREES 93, KELLEY 93 compute the cosmic relic density of the LSP in the framework of minimal \(N=1\) supergravity models with radiative breaking of the electroweak gauge symmetry.

FALK 93 relax the upper limit to the LSP mass by considering sfermion mixing in the MSSM.

MIZUTA 93 include coannihilations to compute the relic density of Higgsino dark matter.

LOPEZ 92 calculate the relic LSP density in the MSSM including exact tree-level annihilation cross sections for all two-body final states.

GRIEST 91 improve relic density calculations to account for coannihilations, pole effects, and threshold effects.

NOJIRI 91 uses minimal supergravity mass relations between squarks and sleptons to narrow cosmologically allowed parameter space.

Mass of the bino (=LSP) is limited to \(m_{\tilde{B}} \lesssim 350\) GeV for \(m_t \leq 200\) GeV. Mass of the higgsino (=LSP) is limited to \(m_{\tilde{H}} \lesssim 1\) TeV for \(m_t \leq 200\) GeV.

ROSZKOWSKI 91 calculates LSP relic density in mixed gaugino/higgsino region.

Mass of the bino (=LSP) is limited to \(m_{\tilde{B}} \lesssim 550\) GeV. Mass of the higgsino (=LSP) is limited to \(m_{\tilde{H}} \lesssim 3.2\) TeV.

KRAUSS 83 finds \(m_{\chi}\) not 30 eV to 2.5 GeV. KRAUSS 83 takes into account the gravitino decay. Find that limits depend strongly on reheated temperature. For example a new allowed region \(m_{\chi} = 4-20\) MeV exists if \(m_{\text{gravitino}} < 40\) TeV. See figure 2.

Unstable \(\tilde{\chi}_1^0\) (Lightest Neutralino) MASS LIMIT

Unless otherwise stated, results in this section assume spectra and production rates as evaluated in the MSSM. Unless otherwise stated, the goldstino or gravitino mass \(m_{\tilde{G}}\) is assumed to be negligible relative to all other masses. In the following, \(\tilde{G}\) is assumed to be undetected and to give rise to a missing energy (\(E^\star\)) signature.

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(>149)</td>
<td>95</td>
<td>1 CHATRCHYAN 11B CMS</td>
<td>(\tilde{W}^0 \rightarrow \gamma \tilde{G}, \tilde{W}^\pm \rightarrow \ell^\pm \tilde{G}, \text{GMSB})</td>
</tr>
<tr>
<td>(>197)</td>
<td>99</td>
<td>2 AALTONEN 10 CDF</td>
<td>(p\bar{p} \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_1^\pm, \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}, \text{GMSB})</td>
</tr>
</tbody>
</table>
versus Wino mass (see Fig. 4). Mass degeneracy of the produced squarks and gluinos is expected background is observed. Limits are derived in the plane of squark/gluino mass excess of events beyond expectation. An upper limit on the cross section is calculated assumed.

1 CHATRCHYAN 11b looked in 35 pb$^{-1}$ of $p p$ collisions at $\sqrt{s}=7$ TeV for events with an isolated lepton (e or μ), a photon and E_T which may arise in a generalized gauge mediated model from the decay of Wino-like NLSPs. No evidence for an excess over the expected background is observed. Limits are derived in the plane of squark/gluino mass versus Wino mass (see Fig. 4). Mass degeneracy of the produced squarks and gluinos is assumed.

2 AALTONEN 10 searched in 2.6 fb$^{-1}$ of $p p$ collisions at $\sqrt{s}=1.96$ TeV for diphoton events with large E_T. They may originate from the production of $\tilde{\chi}_0^\pm$ in pairs or associated to a $\tilde{\chi}_2^0$ decaying into $\tilde{\chi}_1^0$ which itself decays in GMSB to $\gamma \tilde{G}$. There is no excess of events beyond expectation. An upper limit on the cross section is calculated.
in the GMSB model as a function of the \(\tilde{\chi}_1^0 \) mass and lifetime, see their Fig. 2. A limit is derived on the \(\tilde{\chi}_1^0 \) mass of 149 GeV for \(\tau_{\tilde{\chi}_1^0} \ll 1 \) ns, which improves the results of previous searches.

ABAZOV 10\(^p \) looked in 6.3 fb\(^{-1} \) of \(pp \) collisions at \(\sqrt{s} = 1.96 \) TeV for events with at least two isolated \(\gamma \)s and large \(E_T \). These could be the signature of \(\tilde{\chi}_2^0 \) and \(\tilde{\chi}_1^\pm \) production, decaying to \(\tilde{\chi}_1^0 \) and finally \(\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G} \) in a GMSB framework. No significant excess over the SM expectation is observed, and a limit at 95\% C.L. on the cross section is derived for \(N_{\text{mes}} = 1 \), \(\tan\beta = 15 \) and \(\mu > 0 \), see their Fig. 2. This allows them to set a limit on the effective SUSY breaking scale \(\Lambda > 124 \) TeV, from which the excluded \(\tilde{\chi}_1^0 \) mass range is obtained.

AALTONEN 08\(^u \) searched in 570 pb\(^{-1} \) of \(pp \) collisions at \(\sqrt{s} = 1.96 \) TeV for events that contain a time-delayed photon, at least one jet, and large \(E_T \). The time-of-arrival is measured for each electromagnetic tower with a resolution of 0.50 ns. The number of observed events in the signal region is consistent with the background estimation. An upper limit on the cross section is set. The comparison with the NLO cross section for GMSB yields an exclusion of the \(\tilde{\chi}_1^0 \) mass as a function of its lifetime, see Fig. 24. The comparison with the NLO cross section for GMSB yields an exclusion of the \(\tilde{\chi}_1^0 \) mass as a function of its lifetime, see Fig. 25. See ABULENCIA 07\(^p \) for a previous analysis of the same data set.

ABAZOV 08\(^{f} \) looked in 1.1 fb\(^{-1} \) of \(pp \) collisions at \(\sqrt{s} = 1.96 \) TeV for diphoton events with large \(E_T \). They may originate from the production of \(\tilde{\chi}_1^\pm \) in pairs or associated to a \(\tilde{\chi}_2^0 \), decaying to a \(\tilde{\chi}_1^0 \) which itself decays promptly in GMSB to \(\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G} \). No significant excess was found compared to the background expectation. A limit is derived on the masses of SUSY particles in the GMSB framework for \(M = 2\Lambda, N = 1, \tan\beta = 15 \) and \(\mu > 0 \), see Figure 2. It also excludes \(\Lambda < 91.5 \) TeV. Supersedes the results of ABAZOV 05\(^{t} \).

ABAZOV 08\(^x \) searched in 1.1 fb\(^{-1} \) of \(pp \) collisions at \(\sqrt{s} = 1.96 \) TeV for an excess of events with electron pairs. Their vertex, reconstructed from the directions measured in the segmented electromagnetic calorimeter, is required to be away from the primary interaction point. Such delayed decays might be expected for a Higgsino-like \(\tilde{\chi}_1^0 \) in GMSB. No significant excess was found compared to the background expectation. Upper limits on the cross-section times branching ratio are extracted as a function of the lifetime for several ranges of dielectron invariant masses, see their Fig. 3.

ABULENCIA 07\(^{h} \) searched in 346 pb\(^{-1} \) of \(pp \) collisions at \(\sqrt{s} = 1.96 \) TeV for events with at least three leptons (\(e \) or \(\mu \)) from the decay of \(\tilde{\chi}_1^0 \) via \(LLE \) couplings. The results are consistent with the hypothesis of no signal. Upper limits on the cross-section are extracted and a limit is derived in the framework of mSUGRA on the masses of \(\tilde{\chi}_1^0 \) and \(\tilde{\chi}_1^\pm \), see e.g. their Fig. 3 and Tab. II.

ABAZOV 06\(^{d} \) looked in 360 pb\(^{-1} \) of \(pp \) collisions at \(\sqrt{s} = 1.96 \) TeV for events with three leptons originating from the pair production of charginos and neutralinos, followed by \(R \) decays mediated by \(LLE \) couplings. One coupling is assumed to be dominant at a time. No significant excess was found compared to the background expectation in the \(e e \ell, \mu \mu \ell \) nor \(e e \gamma \) (\(\ell = e, \mu \)) final states. Upper limits on the cross-section are extracted in a specific MSUGRA model and a MSSM model without unification of \(M_1 \) and \(M_2 \) at the GUT scale. A limit is derived on the masses of charginos and neutralinos for both scenarios assuming \(\lambda_{ijk} \) couplings such that the decay length is less than 1 cm, see their Table III and Fig. 4.

ABAZOV 06\(^{p} \) looked in 380 pb\(^{-1} \) of \(pp \) collisions at \(\sqrt{s} = 1.96 \) TeV for events with at least 2 opposite sign isolated muons which might arise from the decays of neutralinos into \(\mu \mu \nu \) via \(R \) couplings \(LLE \). No events are observed in the decay region defined by a radius between 5 and 20 cm, in agreement with the SM expectation. Limits are set on the cross-section times branching ratio as a function of lifetime, shown in their Fig.
3. This limit excludes the SUSY interpretation of the NuTeV excess of dimuon events reported in ADAMS 01.

ABBIENDI 04N use 600 pb$^{-1}$ of data from $\sqrt{s} = 189–209$ GeV. They look for events with diphotons + E_T final states originating from prompt decays of pair-produced neutralinos in a GMSB scenario with $\tilde{\chi}_1^0$ NLSP. Limits on the cross-section are computed as a function of $m(\tilde{\chi}_1^0)$, see their Fig. 14. The limit on the $\tilde{\chi}_1^0$ mass is for a pure Bino state assuming a prompt decay, with lifetimes up to 10^{-9}s. Supersedes the results of ABBIENDI 04N.

ABDALLAH 05b use data from $\sqrt{s} = 189–209$ GeV. They look for events with single photons + E_T final states. Limits are computed in the plane $(m(\tilde{G}), m(\tilde{\chi}_1^0))$, shown in their Fig. 9b for a pure Bino state in the GMSB framework and in Fig. 9c for a no-scale supergravity model. Supersedes the results of ABREU 00z.

ABDALLAH 05b use data from $\sqrt{s} = 130–209$ GeV. They look for events with diphotons + E_T final states and single photons not pointing to the vertex, expected in GMSB when the $\tilde{\chi}_1^0$ is the NLSP. Limits are computed in the plane $(m(\tilde{G}), m(\tilde{\chi}_1^0))$, see their Fig. 10.

The lower limit is derived on the $\tilde{\chi}_1^0$ mass for a pure Bino state assuming a prompt decay and $m_{\tilde{e}_R} = m_{\tilde{e}_L} = 2 m_{\tilde{\chi}_1^0}$. It improves to 100 GeV for $m_{\tilde{e}_R} = m_{\tilde{e}_L} = 1.1 m_{\tilde{\chi}_1^0}$, and the limit in the plane $(m(\tilde{\chi}_1^0), m(\tilde{\gamma}))$ is shown in Fig. 10b. For long-lived neutralinos, cross-section limits are displayed in their Fig 11. Supersedes the results of ABREU 00z.

ACOSTA 05b looked in 202 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV for diphoton events with large E_T. They may originate from the production of $\tilde{\chi}_1^\pm$ in pairs or associated to a $\tilde{\chi}_2^0$, decaying to a $\tilde{\chi}_1^0$ which itself decays promptly in GMSB to $\gamma\tilde{G}$. No events are selected at large E_T compared to the background expectation. A limit is derived on the masses of SUSY particles in the GMSB framework for $M = 2 \Lambda$, $N = 1$, $\tan\beta = 15$ and $\mu > 0$, see Figure 2. It also excludes $\Lambda < 69$ TeV. Supersedes the results of ABE 99l.

AKTAS 05a data collected at 319 GeV with 64.3 pb$^{-1}$ of $e^+ p$ and 13.5 pb$^{-1}$ of $e^- p$. They look for R resonant $\tilde{\chi}_1^0$ production via t-channel exchange of a \tilde{e}, followed by prompt GMSB decay of the $\tilde{\chi}_1^0$ to $\gamma\tilde{G}$. Upper limits at 95% on the cross section are derived, see their Fig. 4, and compared to two example scenarios. In Figure 5, they display 95% exclusion limits in the plane of $M(\tilde{\chi}_1^0)$ versus $M(\tilde{\gamma})$ for the two scenarios and several values of the λ' Yukawa coupling.

ABBIENDI 04N use data from $\sqrt{s} = 189–209$ GeV, setting limits on $\sigma(e^+ e^- \rightarrow X X)\times B^2(X \rightarrow Y \gamma)$, with Y invisible (see their Fig. 4). Limits on $\tilde{\chi}_1^0$ masses for a specific model are given. Supersedes the results of ABBIENDI,G 00D.

ABDALLAH 04H use data from LEP 1 and $\sqrt{s} = 192–208$ GeV. They re-use results or re-analyze the data from ABDALLAH 03M to put limits on the parameter space of anomaly-mediated supersymmetry breaking (AMSB), which is scanned in the region $1 < m_{3/2} < 50$ TeV, $0 < m_0 < 1000$ GeV, $1.5 < \tan\beta < 35$, both signs of μ. The constraints are obtained from the search for mass degenerate chargino and neutralino, for SM-like and invisible Higgs, for leptonically decaying charginos and from the limit on non-SM Z width of 3.2 MeV. The limit is for $m_{\tilde{t}} = 174.3$ GeV (see Table 2 for other $m_{\tilde{t}}$ values).

The limit improves to 73 GeV for $\mu < 0$.

ABDALLAH 04M use data from $\sqrt{s} = 192–208$ GeV to derive limits on sparticle masses under the assumption of R with $LL\overline{E}$ or \overline{SUDD} couplings. The results are valid in the ranges $90 < m_0 < 500$ GeV, $0.7 < \tan\beta < 30$, $-200 < \mu < 200$ GeV, $0 < M_2 < 400$ GeV. Supersedes the result of ABREU 01d and ABREU 00U.

The limit improves to 39.5 GeV for $LL\overline{E}$ couplings.

ACHARD 04E use data from $\sqrt{s} = 189–209$ GeV. They look for events with single photons + E_T final states. Limits are computed in the plane $(m(\tilde{G}), m(\tilde{\chi}_1^0))$, shown in their Fig. 8c for a no-scale supergravity model, excluding, e.g., Gravitino masses below 10^{-5} eV for neutralino masses below 172 GeV. Supersedes the results of ACCIARRI 99R.
21 ACHARD 04e use data from $\sqrt{s} = 189$–209 GeV. They look for events with diphotons + E_T final states. Limits are computed in the plane $(m(\tilde{\chi}_1^0), m(\tilde{\tau}_R))$, see their Fig. 8d. The limit on the $\tilde{\chi}_1^0$ mass is for a pure Bino state assuming a prompt decay, with $m_{\tilde{\tau}_L} = 1.1 \ m_{\tilde{\chi}_1}^0$ and $m_{\tilde{\tau}_R} = 2.5 \ m_{\tilde{\chi}_1}^0$. Supersedes the results of ACCIARRI 99R.

22 ABDALLAH 03d use data from $\sqrt{s} = 161$–208 GeV. They look for 4-tau + E_T final states, expected in GMSB when the $\tilde{\tau}_1$ is the NLSP, and 4-lepton + E_T final states, expected in the co-NLSP scenario, and assuming a short-lived $\tilde{\chi}_1^0$ $(m(\tilde{\chi}_1^0) < 1$ eV). Limits are computed in the plane $(m(\tilde{\tau}_1), m(\tilde{\chi}_1^0))$ from a scan of the GMSB parameters space, after combining these results with the search for slepton pair production from the same paper to cover prompt decays and for the case of $\tilde{\chi}_1^0$ NLSP from ABREU 00z. The limit above is reached for a single generation of messengers and when the $\tilde{\tau}_1$ is the NLSP. Stronger limits are obtained when more messenger generations are assumed or when the other sleptons are co-NLSP, see their Fig. 10. Supersedes the results of ABREU 01g.

23 HEISTER 03c use the data from $\sqrt{s} = 189$–209 GeV to search for $\gamma \ E_T$ final states with non-pointing photons and $\gamma \gamma$ events. Interpreted in the framework of Minimal GMSB, a lower bound on the $\tilde{\chi}_1^0$ mass is obtained as function of its lifetime. For a laboratory lifetime of less than 3 ns, the limit at 95% CL is 98.8 GeV. For other lifetimes, see their Fig. 5. These results are interpreted in a more general GMSB framework in HEISTER 02R.

24 HEISTER 03c use the data from $\sqrt{s} = 189$–209 GeV to search for $\gamma \ E_T$ final states. They obtained an upper bound on the cross section for the process $e^+e^- \rightarrow \tilde{\chi}_1^0$, followed by the prompt decay $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, shown in their Fig. 4. These results supersede BARATE 98H.

25 ACHARD 02 searches for the production of sparticles in the case of R prompt decays with LLE or $UD\bar{D}$ couplings at \sqrt{s}=189–208 GeV. The search is performed for direct and indirect decays, assuming one coupling at the time to be nonzero. The MSUGRA limit results from a scan over the MSSM parameter space with the assumption of gaugino and scalar mass unification at the GUT scale, imposing simultaneously the exclusions from neutralino, chargino, sleptons, and squarks analyses. The limit holds for $UD\bar{D}$ couplings and increases to 40.2 GeV for LLE couplings. For L3 limits from $LQ\bar{D}$ couplings, see ACCIARRI 01.

26 HEISTER 02R search for signals of GMSB in the 189–209 GeV data. For the $\tilde{\chi}_1^0$ NLSP scenario, they looked for topologies consisting of $\gamma \gamma$/$\ell \ell$ or a single γ not pointing to the interaction vertex. For the $\tilde{\chi}_1^0$ NLSP case, the topologies consist of $\ell \ell E$ or $4\ell E$ (from $\chi_1^0 \chi_1^0$ production), including leptons with large impact parameters, kinks, or stable particles. Limits are derived from a scan over the GMSB parameters (see their Table 5 for the ranges). The limits are valid whichever is the NLSP. The absolute mass bound on the $\tilde{\chi}_1^0$ for any lifetime includes indirect limits from the chargino search, and from the slepton search HEISTER 02e preformed within the MSUGRA framework. A bound for any NLSP and any lifetime of 77 GeV has also been derived by using the constraints from the neutral Higgs search in HEISTER 02. Limits on the universal SUSY mass scale Λ are also derived in the paper. Supersedes the results from BARATE 00c.

27 ABBIENDI 01 looked for final states with $\gamma \gamma E$, $\ell \ell E$, with possibly additional activity and four leptons + E_T to search for prompt decays of $\tilde{\chi}_1^0$ or $\tilde{\tau}_1$ in GMSB. They derive limits in the plane $(m(\tilde{\chi}_1^0), m(\tilde{\tau}_1))$, see Fig. 6, allowing either the $\tilde{\chi}_1^0$ or a $\tilde{\tau}_1$ to be the NLSP. Two scenarios are considered: $\tan \beta = 2$ with the 3 sleptons degenerate in mass and $\tan \beta = 20$ where the $\tilde{\tau}_1$ is lighter than the other sleptons. Data taken at \sqrt{s}=189 GeV.

28 ACCIARRI 01 searches for multi-lepton and/or multi-jet final states from R prompt decays with LLE, $LQ\bar{D}$, or $UD\bar{D}$ couplings at \sqrt{s}=189 GeV. The search is performed for direct and indirect decays of neutralinos, charginos, and scalar leptons, with the $\tilde{\chi}_1^0$ or a $\tilde{\tau}$ as LSP and assuming one coupling to be nonzero at a time. Mass limits are derived
using simultaneously the constraints from the neutralino, chargino, and slepton analyses; and the Z^0 width measurements from ACCIARRI 00c in a scan of the parameter space assuming MUSUGRA with gaugino and scalar mass universality. Updates and supersedes the results from ACCIARRI 99.

29 ADAMS 01 looked for neutral particles with mass > 2.2 GeV, produced by 900 GeV protons incident on a Beryllium oxide target and decaying through weak interactions into $\mu\mu$, $\mu\nu$, or $\mu\pi$ final states in the decay channel of the NuTeV detector (E815) at Fermilab. The number of observed events is 3 $\mu\mu$, 0 $\mu\nu$, and 0 $\mu\pi$ with an expected background of 0.069 ± 0.010, 0.13 ± 0.02, and 0.14 ± 0.02, respectively. The $\mu\mu$ events are consistent with the R decay of a neutralino with mass around 5 GeV. However, they share several aspects with ν-interaction backgrounds. An upper limit on the differential production cross section of neutralinos in pp interactions as function of the decay length is given in Fig. 3.

30 ABBIENDI 99T searches for the production of neutralinos in the case of R-parity violation with LLL, LQD, or UDD couplings using data from $\sqrt{s}=183$ GeV. They investigate topologies with multiple leptons, jets plus leptons, or multiple jets, assuming one coupling at the time to be non-zero and giving rise to direct or indirect decays. Mixed decays (where one particle has a direct, the other an indirect decay) are also considered for the UDD couplings. Upper limits on the cross section are derived which, combined with the constraint from the Z^0 width, allow to exclude regions in the M_2 versus μ plane for any coupling. Limits on the neutralino mass are obtained for non-zero LLL couplings $>10^{-5}$. The limit disappears for $\tan\beta < 1.2$ and it improves to 50 GeV for $\tan\beta > 20$.

31 BARATE 99E looked for the decay of gauginos via R-violating couplings LQD. The bound is significantly reduced for smaller values of m_0. Data collected at $\sqrt{s}=130–172$ GeV.

32 ABREU 98 uses data at $\sqrt{s}=161$ and 172 GeV. Upper bounds on $\gamma\gamma\ell\ell$ cross section are obtained. Similar limits on $\gamma\ell\ell$ are also given, relevant for $e^+e^-\rightarrow\tilde{\chi}_1^0\tilde{\gamma}$ production.

33 BARATE 98S looked for the decay of gauginos via R-violating coupling LLL. The bound improves to 25 GeV if the chargino decays into neutralino which further decays into lepton pairs. Data collected at $\sqrt{s}=130–172$ GeV.

34 ELLIS 97 reanalyzed the LEP2 ($\sqrt{s}=161$ GeV) limits of $\sigma(\gamma\gamma+E_{miss})<0.2$ pb to exclude $m_{\tilde{\gamma}} < 63$ GeV if $m_{e_L}=m_{e_R} < 150$ GeV and $\tilde{\chi}_1^0$ decays to $\gamma\tilde{\gamma}$ inside detector.

35 CABIBBO 81 consider $\tilde{\chi} \rightarrow \gamma +\text{goldstino}$. Photino must be either light enough (<30 eV) to satisfy cosmology bound, or heavy enough (>0.3 MeV) to have disappeared at early universe.

$\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0$ (Neutralinos) Mass Limits

Neutralinos are unknown mixtures of photinos, z-ino, and neutral higgsinos (the supersymmetric partners of photons and of Z and Higgs bosons). The limits here apply only to $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$, and $\tilde{\chi}_4^0$. $\tilde{\chi}_2^0$ is the lightest supersymmetric particle (LSP); see $\tilde{\chi}_1^0$ Mass Limits. It is not possible to quote rigorous mass limits because they are extremely model dependent; i.e. they depend on branching ratios of various $\tilde{\chi}_1^0$ decay modes, on the masses of decay products (e, γ, q, $\tilde{\nu}$), and on the $\tilde{\nu}$ mass exchanged in $e^+e^- \rightarrow \tilde{\chi}_j^0\tilde{\chi}_j^0$. Limits arise either from direct searches, or from the MSSM constraints set on the gaugino and higgsino mass parameters M_2 and μ through searches for lighter charginos and neutralinos. Often limits are given as contour plots in the $m_{\tilde{\chi}_1^0}$ vs other parameters. When specific assumptions are made, e.g. the neutralino is a pure photonino (ν), pure z-ino (\tilde{Z}), or pure neutral higgsino (\tilde{H}), the neutralinos will be labelled as such.

Limits obtained from e^+e^- collisions at energies up to 136 GeV, as well as other limits from different techniques, are now superseded and have not been included in
This compilation. They can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review. $\Delta m = m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0}$.

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 78</td>
<td>95</td>
<td>1 ABBIENDI</td>
<td>04H</td>
<td>OPAL $\tilde{\chi}_2^0$, all tanβ, $\Delta m > 5$ GeV, $m_0 > 500$ GeV, $A_0 = 0$</td>
</tr>
<tr>
<td>> 62.4</td>
<td>95</td>
<td>2 ABREU</td>
<td>00W</td>
<td>DLPH $\tilde{\chi}_2^0$, 1 \leq tanβ \leq 40, all Δm, all m_0</td>
</tr>
<tr>
<td>> 99.9</td>
<td>95</td>
<td>2 ABREU</td>
<td>00W</td>
<td>DLPH $\tilde{\chi}_3^0$, 1 \leq tanβ \leq 40, all Δm, all m_0</td>
</tr>
<tr>
<td>>116.0</td>
<td>95</td>
<td>2 ABREU</td>
<td>00W</td>
<td>DLPH $\tilde{\chi}_4^0$, 1 \leq tanβ \leq 40, all Δm, all m_0</td>
</tr>
</tbody>
</table>

1 ABBIENDI 04H search for charginos and neutralinos in events with acoplanar leptons+jets and multi-jet final states in the 192–209 GeV data, combined with the results on leptonic final states from ABBIENDI 04. The results hold for a scan over the parameter space covering the region 0 $< M_2 < 5000$ GeV, $-1000 < \mu < 1000$ GeV and tanβ from 1 to 40. This limit supersedes ABBIENDI 00H.

2 ABREU 00W combines data collected at $\sqrt{s} = 189$ GeV with results from lower energies. The mass limit is obtained by constraining the MSSM parameter space with gaugino and sfermion mass universality at the GUT scale, using the results of negative direct searches for neutralinos (including cascade decays and $\tilde{\tau} \tau$ final states) from ABREU 01, for charginos from ABREU 00J and ABREU 00T (for all Δm_{\pm_1}), and for charged sleptons from ABREU 01B. The results hold for the full parameter space defined by all values of M_2 and $|\mu| \leq 2$ TeV with the $\tilde{\chi}_1^0$ as LSP.
ABULENICIA 07N searched in 1 fb$^{-1}$ of p\bar{p} collisions at $\sqrt{s} = 1.96$ TeV for events with two same sign leptons (e or μ) from the decay of $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{0} X$ and large E_T. A slight excess of 13 events is observed over a SM background expectation of 7.8 ± 1.1. However, the kinematic distributions do not show any anomalous deviation from expectations in any particular region of parameter space.

ABDALLAH 05B use data from $\sqrt{s} = 130$–209 GeV, looking for events with diphotons + E_T. Limits on the cross-section are computed in the plane ($m(\tilde{\chi}_1^0)$, $m(\tilde{\nu}_R)$), see Fig. 12. Supersedes the results of ABREU 00z.

ACHARD 04 searches for the production of sparticles in the case of $\tilde{\nu}$ prompt decays with $\tilde{\nu} L E$ or $\tilde{\nu} U D D$ couplings at \sqrt{s}=189–208 GeV. The search is performed for direct and indirect decays, assuming one coupling at the time to be nonzero. The MSUGRA limit results from a scan over the MSSM parameter space with the assumption of gaugino and scalar mass unification at the GUT scale, imposing simultaneously the exclusions from neutralino, chargino, and slepton analyses. The limit of $\tilde{\chi}_1^0$ holds for $\tilde{\nu} U D D$ couplings and increases to 84.0 GeV for $\tilde{\nu} L E$ couplings. The same $\tilde{\chi}_3^0$ limit holds for both $\tilde{\nu} L E$ and $\tilde{\nu} U D D$ couplings. For L3 limits from $L Q D$ couplings, see ACCIARRI 01.

ABREU 01B used data from $\sqrt{s}=189$ GeV to search for the production of $\tilde{\chi}_1^0$ and $\tilde{\chi}_1^0$. They looked for di-jet and di-lepton pairs with E_T for events from $\tilde{\chi}_j^0 \tilde{\chi}_j^0$ with the decay $\tilde{\chi}_j^0 \rightarrow f \tilde{T} \tilde{\chi}_j^0$, multi-jet and multi-lepton pairs with or without additional photons to cover the cascade decays $\tilde{\chi}_j^0 \rightarrow f \tilde{T} \tilde{\chi}_2^0$, followed by $\tilde{T} \rightarrow \tilde{\chi}_1^0 \gamma$ or $\tilde{\chi}_j^0 \rightarrow \gamma \tilde{\chi}_1^0$; multi-tau final states from $\tilde{\chi}_2^0 \rightarrow \tau \tilde{\chi}_1^0$ or $\tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$. They obtained an upper limit for the cross-section for the production $e^+ e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ followed by the prompt decay $\tilde{\chi}_2^0 \rightarrow \gamma \tilde{\chi}_1^0$ of 0.075–0.80 pb in the region $m_{\tilde{\chi}_2^0} > m_{\tilde{\chi}_1^0}$, $m_{\tilde{\chi}_2^0} = 91–183$ GeV, and $\Delta m > 5$ GeV. See Fig. 7 for explicit limits in the ($m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_1^0}$) plane.

ACCIAIRRI 01 searches for multi-lepton and/or multi-jet final states from R prompt decays with $\tilde{\nu} L E$, $L Q D$, or $U D D$ couplings at \sqrt{s}=189 GeV. The search is performed for direct and indirect decays of neutralinos, charginos, and scalar leptons, with the $\tilde{\chi}_1^0$ or a $\tilde{\ell}$ as LSP and assuming one coupling to be nonzero at a time. Mass limits are derived using simultaneously the constraints from the neutralino, chargino, and slepton analyses; and the Z^0 width measurements from ACCIARRI 00c in a scan of the parameter space assuming MSUGRA with gaugino and scalar mass universality. Updates and supersedes the results from ACCIARRI 99.

ABREU 00u searches for the production of charginos and neutralinos in the case of R-parity violation with $\tilde{\nu} L E$ couplings, using data from $\sqrt{s}=189$ GeV. They investigate topologies with multiple leptons or jets plus leptons, assuming one coupling to be nonzero at the time and giving rise to direct or indirect decays. Limits are obtained in the M_2 versus μ plane and a limit on the neutralino mass is derived from a scan over the parameters m_0 and $\tan \beta$.

ABBINDEI 99f looked for γE_T final states at $\sqrt{s}=183$ GeV. They obtained an upper bound on the cross section for the production $e^+ e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^0$ followed by the prompt decay $\tilde{\chi}_2^0 \rightarrow \gamma \tilde{\chi}_1^0$ of 0.075–0.80 pb in the region $m_{\tilde{\chi}_2^0} + m_{\tilde{\chi}_1^0} > m_Z$, $m_{\tilde{\chi}_2^0} = 91–183$ GeV, and $\Delta m > 5$ GeV. See Fig. 7 for explicit limits in the ($m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_1^0}$) plane.

ABBINDEI 99f looked for γE_T final states at $\sqrt{s}=183$ GeV. They obtained an upper bound on the cross section for the production $e^+ e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^0$ followed by the prompt decay $\tilde{\chi}_2^0 \rightarrow \gamma \tilde{\chi}_1^0$ of 0.08–0.37 pb for $m_{\tilde{\chi}_2^0} = 45–81.5$ GeV, and $\Delta m > 5$ GeV. See Fig. 11 for explicit limits in the ($m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_1^0}$) plane.
12 ABBOTT 98c searches for trilepton final states (ℓ=e,μ). See footnote to ABBOTT 98c in the Chargino Section for details on the assumptions. Assuming a negligible decay rate of $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ to quarks, they obtain $m_{\tilde{\chi}^-} \gtrsim 103$ GeV.

13 ABE 98j searches for trilepton final states (ℓ=e,μ). See footnote to ABE 98j in the Chargino Section for details on the assumptions. The quoted result for $m_{\tilde{\chi}^-}$ corresponds to the best limit within the selected range of parameters, obtained for $m_{\tilde{q}} > m_{\tilde{g}}$, $\tan \beta = 2$, and $\mu = -600$ GeV.

14 ACCHARRI 98f is obtained from direct searches in the $e^+e^- \to \tilde{\chi}_1^0 \tilde{\chi}_2^0$ production channels, and indirectly from $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_1^0$ searches within the MSSM. See footnote to ACCHARRI 98f in the chargino Section for further details on the assumptions. Data taken at $\sqrt{s} = 130-172$ GeV.

15 ACCHARRI 98v looked for $\gamma(\gamma)E$ final states at $\sqrt{s}=138$ GeV. They obtained an upper bound on the cross section for the production $e^+e^- \to \tilde{\chi}_2^0 \tilde{\chi}_1^0$ followed by the prompt decay $\tilde{\chi}_2^0 \to \gamma \tilde{\chi}_1^0$. See Figs. 4a and 6a for explicit limits in the $(m_{\tilde{\chi}^-}, m_{\tilde{\chi}^0})$ plane.

16 BARATE 98h looked for $\gamma\gamma E$ final states at $\sqrt{s} = 161.172$ GeV. They obtained an upper bound on the cross section for the production $e^+e^- \to \tilde{\chi}_2^0 \tilde{\chi}_1^0$ followed by the prompt decay $\tilde{\chi}_2^0 \to \gamma \tilde{\chi}_1^0$ of 0.4–0.8 pb for $m_{\tilde{\chi}^-} = 10-80$ GeV. The bound above is for the specific case of $\tilde{\chi}_1^0 = \tilde{H}^0$ and $\tilde{\chi}_2^0 = \tilde{\gamma}$ and $m_{\tilde{\rho}_R} = 100$ GeV. See Fig. 6 and 7 for explicit limits in the $(\tilde{\chi}_2^0, \tilde{\rho}_R)$ plane.

17 BARATE 98j looked for $\gamma\gamma E$ final states at $\sqrt{s} = 161-183$ GeV. They obtained an upper bound on the cross section for the production $e^+e^- \to \tilde{\chi}_2^0 \tilde{\chi}_1^0$ followed by the prompt decay $\tilde{\chi}_2^0 \to \gamma \tilde{\chi}_1^0$ of 0.08–0.24 pb for $m_{\tilde{\chi}^-} < 91$ GeV. The bound above is for the specific case of $\tilde{\chi}_1^0 = \tilde{H}^0$ and $\tilde{\chi}_2^0 = \tilde{\gamma}$ and $m_{\tilde{\rho}_R} = 100$ GeV.

18 ABACI 96 searches for 3-lepton final states. Efficiencies are calculated using mass relations and branching ratios in the Minimal Supergravity scenario. Results are presented as lower bounds on $\sigma(\tilde{\chi}_1^\pm \tilde{\chi}_2^0) \times B(\tilde{\chi}_1^\pm \to \ell \nu_{\ell} \tilde{\chi}_1^0) \times B(\tilde{\chi}_2^0 \to \ell^+ \ell^- \tilde{\chi}_1^0)$ as a function of $m_{\tilde{\chi}^-}$. Limits range from 3.1 pb ($m_{\tilde{\chi}_1^0} = 45$ GeV) to 0.6 pb ($m_{\tilde{\chi}_1^0} = 100$ GeV).

19 ABE 96k looked for trilepton events from chargino-neutralino production. They obtained lower bounds on $m_{\tilde{\chi}_1^0}$ as a function of μ. The lower bounds are in the 45–50 GeV range for gaugino-dominant $\tilde{\chi}_2^0$ with negative μ, if $\tan \beta < 10$. See paper for more details of the assumptions.

$\tilde{\chi}_1^\pm$, $\tilde{\chi}_2^\pm$ (Charginos) MASS LIMITS

Charginos are unknown mixtures of winos and charged higgsinos (the supersymmetric partners of W and Higgs bosons). A lower mass limit for the lightest chargino ($\tilde{\chi}_1^\pm$) of approximately 45 GeV, independent of the field composition and of the decay mode, has been obtained by the LEP experiments from the analysis of the Z width and decays. These results, as well as other now superseded limits from e^+e^- collisions at energies below 136 GeV, and from hadronic collisions, can be found in the 1998 Edition (The European Physical Journal C3 1 (1998)) of this Review.

Unless otherwise stated, results in this section assume spectra, production rates, decay modes and branching ratios as evaluated in the MSSM, with gaugino and sfermion mass unification at the GUT scale. These papers generally study production of $\tilde{\chi}_1^0 \tilde{\chi}_2^0$. http://pdg.lbl.gov
\(\tilde{\chi}_1^+ \tilde{\chi}_1^-\) and (in the case of hadronic collisions) \(\tilde{\chi}_1^0 \tilde{\chi}_2^0\) pairs, including the effects of cascade decays. The mass limits on \(\tilde{\chi}_1^\pm\) are either direct, or follow indirectly from the constraints set by the non-observation of \(\tilde{\chi}_2^0\) states on the gaugino and higgsino MSSM parameters \(M_2\) and \(\mu\). For generic values of the MSSM parameters, limits from high-energy \(e^+e^-\) collisions coincide with the highest value of the mass allowed by phase-space, namely \(m_{\tilde{\chi}_1^\pm} \lesssim \sqrt{s}/2\). The still unpublished combination of the results of the four LEP collaborations from the 2000 run of LEP2 at \(\sqrt{s}\) up to \(\approx 209\) GeV yields a lower mass limit of 103.5 GeV valid for general MSSM models. The limits become however weaker in certain regions of the MSSM parameter space where the detection efficiencies or production cross sections are suppressed. For example, this may happen when: (i) the mass differences \(\Delta m_+ = m_{\tilde{\chi}_1^+} - m_{\tilde{\chi}_1^-}\) or \(\Delta m_\nu = m_{\tilde{\chi}_1^+} - m_{\tilde{\chi}_1^-}\) are very small, and the detection efficiency is reduced; (ii) the electron sneutrino mass is small, and the \(\tilde{\chi}_1^\pm\) production rate is suppressed due to a destructive interference between \(s\) and \(t\) channel exchange diagrams. The regions of MSSM parameter space where the following limits are valid are indicated in the comment lines or in the footnotes.

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>>101</td>
<td>95</td>
<td>ABBIENDI</td>
<td>04H</td>
<td>OPAL</td>
</tr>
<tr>
<td>> 89</td>
<td>95</td>
<td>ABBIENDI</td>
<td>03H</td>
<td>OPAL</td>
</tr>
<tr>
<td>> 97.1</td>
<td>95</td>
<td>ABDALLAH</td>
<td>03M</td>
<td>DLPH</td>
</tr>
<tr>
<td>> 75</td>
<td>95</td>
<td>ABDALLAH</td>
<td>03M</td>
<td>DLPH</td>
</tr>
<tr>
<td>> 70</td>
<td>95</td>
<td>ABDALLAH</td>
<td>03M</td>
<td>DLPH</td>
</tr>
<tr>
<td>> 94</td>
<td>95</td>
<td>ABDALLAH</td>
<td>03M</td>
<td>DLPH</td>
</tr>
<tr>
<td>> 88</td>
<td>95</td>
<td>HEISTER</td>
<td>02J</td>
<td>ALEP</td>
</tr>
<tr>
<td>> 67.7</td>
<td>95</td>
<td>ACCIARRI</td>
<td>00D</td>
<td>L3</td>
</tr>
<tr>
<td>> 69.4</td>
<td>95</td>
<td>ACCIARRI</td>
<td>00K</td>
<td>L3</td>
</tr>
<tr>
<td>>163</td>
<td>95</td>
<td>CHATRCHYAN11B</td>
<td>CMS</td>
<td>CHATRCHYAN11V</td>
</tr>
<tr>
<td>>129</td>
<td>95</td>
<td>AALTONEN</td>
<td>09G</td>
<td>CDF</td>
</tr>
<tr>
<td>>138</td>
<td>95</td>
<td>ABAZOV</td>
<td>09T</td>
<td>D0</td>
</tr>
<tr>
<td>>229</td>
<td>95</td>
<td>ABAZOV</td>
<td>08F</td>
<td>D0</td>
</tr>
<tr>
<td>>229</td>
<td>95</td>
<td>ABAZOV</td>
<td>08L</td>
<td>D0</td>
</tr>
<tr>
<td>>229</td>
<td>95</td>
<td>ABAZOV</td>
<td>08F</td>
<td>D0</td>
</tr>
<tr>
<td>>229</td>
<td>95</td>
<td>ABAZOV</td>
<td>08L</td>
<td>D0</td>
</tr>
</tbody>
</table>

We do not use the following data for averages, fits, limits, etc.

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>>163</td>
<td>95</td>
<td>CHATRCHYAN11B</td>
<td>CMS</td>
<td>CHATRCHYAN11V</td>
</tr>
<tr>
<td>>129</td>
<td>95</td>
<td>AALTONEN</td>
<td>09G</td>
<td>CDF</td>
</tr>
<tr>
<td>>138</td>
<td>95</td>
<td>ABAZOV</td>
<td>09T</td>
<td>D0</td>
</tr>
<tr>
<td>>229</td>
<td>95</td>
<td>ABAZOV</td>
<td>08F</td>
<td>D0</td>
</tr>
<tr>
<td>>229</td>
<td>95</td>
<td>ABAZOV</td>
<td>08L</td>
<td>D0</td>
</tr>
</tbody>
</table>

We do not use the following data for averages, fits, limits, etc. • • •
>195 95 19 ABAZOV 05A D0 $\rho \bar{\rho} \rightarrow \tilde{\chi}_1 \tilde{\chi}_1^\pm, \tilde{\chi}_2^- \tilde{\chi}_2^0$
$\gamma \tilde{G}$, GMSB

>167 95 20 ACOSTA 05E CDF $\rho \bar{\rho} \rightarrow \tilde{\chi}_1 \tilde{\chi}_1^\pm, \tilde{\chi}_2^- \tilde{\chi}_2^0$
$\gamma \tilde{G}$, GMSB

> 66 95 21,22 ABDALLAH 04H DLPH AMSB, $\mu > 0$

>102.5 95 23,24 ABDALLAH 04M DLPH $\beta(\overline{t}t\bar{t}D)$

>100 95 25 ABDALLAH 03D DLPH $e^+e^- \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_1^\mp$
$(\tilde{\chi}_1^\pm \rightarrow \tilde{\chi}_1 \nu_\tau)$

>103 95 26 HEISTER 03G ALEP β decays, $m_0 > 500$ GeV

>102.7 95 27 ACHARD 02 L3 β, MSUGRA

> 40 95 28 GHODBANE 02 THEO

> 94.3 95 29 ABREU 01C DLPH $\tilde{\chi}_1^\pm \rightarrow \tau J$

> 93.8 95 30 ACIARRI 01 L3 β, all m_0, 0.7 \leq tanβ \leq 40

>100 95 31 BARATE 01B ALEP β decays, $m_0 > 500$ GeV

> 91.8 95 32 ABREU 00V DLPH $e^+e^- \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_1^\mp$
$(\tilde{\chi}_1^\pm \rightarrow \tilde{\chi}_1 \nu_\tau)$

33 CHO 00B THEO EW analysis

> 76 95 34 ABBIENDI 99T OPAL β, m_0=500 GeV

> 51 95 35 MALTONI 99B THEO EW analysis, $\Delta m_+ \sim 1$ GeV

> 81.5 95 36 ABE 98J CDF $\rho \bar{\rho} \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_2^0$

37 ACKERSTAFF 98K OPAL $\chi^+ \rightarrow e^+ E$

> 65.7 95 38 ACKERSTAFF 98L OPAL $\Delta m_+ > 3$ GeV, $\Delta m_\nu > 2$ GeV

39 ACKERSTAFF 98V OPAL light gluino

40 CARENA 97 THEO $g_\mu - 2$

41 KALINOWSKI 97 THEO $W \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_1^0$

42 ABE 96K CDF $pp \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_2^0$

1 ABBIENDI 04H search for charginos and neutralinos in events with acoplanar leptons+jets and multi-jet final states in the 192–209 GeV data, combined with the results on leptonic final states from ABBIENDI 04. The results hold for a scan over the parameter space covering the region $0 < m_\chi < 5000$ GeV, $-1000 < \mu < 1000$ GeV and tanβ from 1 to 40. This limit supersedes ABBIENDI 00H.

2 ABBIENDI 03H used e^+e^- events at $\sqrt{s} = 188–209$ GeV to search for chargino pair production in the case of small Δm_+. They select events with an energetic photon, large E_T and little hadronic or leptonic activity. The bound applies to higgsino-like charginos with zero lifetime and a 100% branching ratio $\tilde{\chi}_1^\pm \rightarrow \tilde{\chi}_1^0 W^*$. The mass limit for gaugino-like charginos, in case of non-universal gaugino masses, is of 92 GeV for $m_\tau = 1000$ GeV and is lowered to 74 GeV for $m_\tau \geq 100$ GeV. Limits in the plane $(m_\chi, \Delta m_\chi)$ are shown in Fig. 7. Exclusion regions are also derived for the AMSB scenario in the $(m_3/2, \tan \beta)$ plane, see their Fig. 9.

3 ABDALLAH 03M searches for the production of charginos using data from $\sqrt{s} = 192$ to 208 GeV to investigate topologies with multiple leptons, jets plus leptons, multi-jets, or isolated photons. The first limit holds for $\tan \beta \geq 1$ and is obtained at $\Delta m_+ = 3$ GeV in the higgsino region. For $\Delta m_+ \geq 10$ (5) GeV and large m_0, the limit improves to 102.7 (101.7) GeV. For the region of small Δm_+, all data from $\sqrt{s} = 130$ to 208 GeV are used to investigate final states with heavy stable charged particles, decay vertices inside the detector and soft topologies with a photon from initial state radiation. The second limit is obtained in the higgsino region, assuming gaugino mass universality at the GUT scale and $1 < \tan \beta < 50$. For the case of non-universality of gaugino masses, the parameter space is scanned in the domain $1 < \tan \beta < 50$ and, for $\Delta m_+ < 3$ GeV, for
values of \(M_1, M_2 \) and \(\mu \) such that \(M_2 \leq 2M_1 \leq 10M_2 \) and \(|\mu| \geq M_2 \). The third limit is obtained in the gaugino region. See Fig. 36 for the dependence of the low \(\Delta m_+ \) limits on \(\Delta m_+ \). These limits include and update the results of ABREU 00J and ABREU 00T.

ABDALLAH 03M uses data from \(\sqrt{s} = 192–208 \text{ GeV} \) to obtain limits in the framework of the MSSM with gaugino and sfermion mass universality at the GUT scale. An indirect limit on the mass of charginos is derived by constraining the MSSM parameter space by the results from direct searches for neutralinos (including cascade decays), for charginos and for sleptons. These limits are valid for values of \(M_2 < 1 \text{ TeV} \), \(|\mu| < 2 \text{ TeV} \) with the \(\chi^0_1 \) as LSP. Constraints from the Higgs search in the \(M_{h_{	ext{max}}} \) scenario assuming \(m_t = 174.3 \text{ GeV} \) are included. The quoted limit applies if there is no mixing in the third family or when \(m_{\chi^0_1} - m_{\chi^0_2} > 6 \text{ GeV} \). If mixing is included the limit degrades to 90 GeV. See Fig. 43 for the mass limits as a function of \(\tan\beta \). These limits update the results of ABREU 00W.

HEISTER 02J search for chargino production with small \(\Delta m_+ \) in final states with a hard isolated initial state radiation photon and few low-momentum particles, using 189–208 GeV data. This search is sensitive in the intermediate \(\Delta m_+ \) region. Combined with searches for \(E_T \) topologies and for stable charged particles, the above bound is obtained for \(m_0 \) larger than few hundred GeV, \(1<\tan\beta < 300 \) and holds for any chargino field contents. For light scalars, the general limit reduces to the one from the \(Z^0 \), but under the assumption of gaugino and sfermion mass unification the above bound is recovered. See Figs. 4–6 for the more general dependence of the limits on \(\Delta m_+ \). Updates BARATE 98X.

ACCIARRI 00D data collected at \(\sqrt{s} = 189 \text{ GeV} \). The results hold over the full parameter space defined by \(0.7 \leq \tan\beta \leq 60, 0 \leq M_2 \leq 2 \text{ TeV}, |\mu| < 2 \text{ TeV} \) \(m_0 \leq 500 \text{ GeV} \). The results of slepton searches from ACCIARRI 99W are used to help set constraints in the region of small \(m_0 \). See their Figs. 5 for the \(\tan\beta \) and \(M_2 \) dependence on the limits. See the text for the impact of a large \(B(\chi^\pm \rightarrow \tau\nu_\tau) \) on the result. The region of small \(\Delta m_+ \) is excluded by the analysis of ACCIARRI 00K. Updates ACCIARRI 98F.

ACCIARRI 00k searches for the production of charginos with small \(\Delta m_+ \) using data from \(\sqrt{s} = 189 \text{ GeV} \). They investigate soft final states with a photon from initial state radiation. The results are combined with the limits on prompt decays from ACCIARRI 00D and from heavy stable charged particles from ACCIARRI 99L (see Heavy Charged Lepton Searches). The production and decay branching ratios are evaluated within the MSSM, assuming heavy sfermions. The parameter space is scanned in the domain \(1<\tan\beta < 50, 0.3 < M_1/M_2 < 50 \), and \(0<|\mu| < 2 \text{ TeV} \). The limit is obtained in the higgsino region and improves to 78.6 GeV for gaugino-like charginos. The limit is unchanged for light scalar quarks. For light \(\nu \) or \(\nu_\tau \), the limit is unchanged in the gaugino-like region and is lowered by 0.9 GeV in the higgsino-like case. For light \(\nu_\mu \) or \(\nu_\tau \), the limit is unchanged in the higgsino-like region and is lowered by 0.9 GeV in the gaugino-like region. No direct mass limits are obtained for light \(\nu \) or \(\nu_\tau \).

CHATRCHYAN 11b looked in 35 \(\text{pb}^{-1} \) of \(pp \) collisions at \(\sqrt{s} = 7 \text{ TeV} \) for events with an isolated lepton (\(e \) or \(\mu \)), a photon and \(E_T \) which may arise in a generalized gauge mediated model from the decay of Wino-like NLSPs. No evidence for an excess over the expected background is observed. Limits are derived in the plane of squark/gluino mass versus Wino mass (see Fig. 4). Mass degeneracy of the produced squarks and gluinos is assumed.

CHATRCHYAN 11v looked in 35 \(\text{pb}^{-1} \) of \(pp \) collisions at \(\sqrt{s} = 7 \text{ TeV} \) for events with \(\geq 3 \) isolated leptons (\(e, \mu \) or \(\tau \)), with or without jets and \(E_T \). No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM \((m_0, m_{1/2})\) plane for \(\tan\beta = 3 \) (see Fig. 5).

AALTONEN 09G searched in 976 \(\text{pb}^{-1} \) of \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \text{ TeV} \) for events with trileptons (\(\mu\mu\mu \) or \(\mu\mu e \)) with a low, 5 GeV, \(p_T \) threshold, and large \(E_T \) from the decay of \(\chi^\pm_1 \). The selected number of events is consistent with the SM background expectation. The results are combined with the analysis of AALTONEN 07J to set a limit on the \(\chi^\pm_1 \) mass for a mSUGRA scenario with no slepton mixing.
rion. The data are used to constrain the cross section times branching ratio as a function
of the \(\tilde{\chi}^\pm_1 \) mass under the assumption that \(m_{\tilde{\chi}^\pm_1} = m_{\tilde{\chi}^0_2} = 2 m_{\tilde{\chi}^0_1} \), \(\tan\beta = 3 \), \(\mu > 0 \) and that the sleptons are heavier than the \(\tilde{\chi}^\pm_1 \), see their
Fig. 8. A chargino lighter than 138 GeV is excluded in the “3l-max” scenario. Exclusion regions in the \((m_0, m_{1/2}) \) plane are shown in their Fig. 9 for a mSUGRA scenario with
\(\tan\beta = 3 \), \(A_0 = 0 \) and \(\mu > 0 \). The \(\tan\beta \) dependence of this exclusion is illustrated in Fig. 10. Supersedes the results of ABAZOV 05u.

12 AALTONEN 08E searched in 2.0 fb\(^{-1}\) of \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \) TeV for events with
triplets \((e, \mu \) or hadronically decaying \(\tau \) \) from the decay of \(\tilde{\chi}^\pm_1 \tilde{\chi}^0_0 \) and large \(E_T \). The selected number of events is consistent with the SM background
expectation. The data are used to constrain the cross section times branching ratio as a function of the \(\tilde{\chi}^\pm_1 \) mass. Exclusion regions in the \((m_0, m_{1/2}) \) plane are shown in their
Fig. 2 for a mSUGRA scenario. When the \(\tilde{\chi}^\pm_1 \) is nearly mass degenerate with the \(\tilde{\tau}_1 \) the leptons are too soft and no limit is obtained. For the case \(m_0 = 60 \) GeV a lower limit
of 145 GeV on the chargino mass is obtained in this mSUGRA scenario.

13 AALTONEN 08L searched in 0.7 to 1.0 fb\(^{-1}\) of \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \) TeV for events with one high-\(p_T \) electron or muon and two additional leptons \((e \) or \(\mu \) \) from the
decay of \(\tilde{\chi}^\pm_1 \tilde{\chi}^0_0 \). The selected number of events is consistent with the SM background
expectation. The data are used to constrain the cross section times branching ratio as a function of the \(\tilde{\chi}^\pm_1 \) mass. The results are compared to three MSSM scenarios. An exclusion on chargino and neutralino production is only obtained in a scenario of
no mixing between sleptons, yielding nearly equal branching ratios to all three lepton
flavors. It amounts to \(m_{\tilde{\chi}^\pm_1} > 151 \) GeV, while the analysis is not sensitive to chargino
masses below about 110 GeV. The analyses have been combined with the analyses of
AALTONEN 07J and ABULENCIA 07n. The observed limits for the combination are less stringent than the one obtained for the high-\(p_T \) analysis due to slight excesses in the other channels.

14 ABAZOV 09T looked in 1.1 fb\(^{-1}\) of \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \) TeV for diphoton events
with large \(E_T \). They may originate from the production of \(\tilde{\chi}^\pm \) in pairs or associated to a \(\tilde{\chi}^0 \), decaying to a \(\tilde{\chi}^0 \tilde{\chi}^0 \) which itself decays promptly in GMSB to \(\tilde{\chi}^0 \gamma \tilde{G} \). No
significant excess was found compared to the background expectation. A limit is derived
on the masses of SUSY particles in the GMSB framework for \(M = 2 \Lambda \), \(N = 1 \), \(\tan\beta = 15 \) and \(\mu > 0 \), see Figure 2. It also excludes \(\Lambda < 91.5 \) TeV. Supersedes the results of ABAZOV 05A.

15 AALTONEN 07J searched in 0.7 to 1.1 fb\(^{-1}\) of \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \) TeV for events with
either two same sign leptons \((e \) or \(\mu \) \) or trileptons from the decay of \(\tilde{\chi}^\pm_1 \tilde{\chi}^0_0 \) and
large \(E_T \). The selected number of events is consistent with the SM background
expectation. The data are used to constrain the cross section times branching ratio as a function of the \(\tilde{\chi}^\pm_1 \) mass. The results, shown in their Fig. 2, are compared to several MSSM
scenarios. The strongest exclusion is in the case of no mixing between sleptons, yielding
nearly equal branching ratios to all three lepton flavors, and amounting to \(m_{\tilde{\chi}^\pm_1} > 129 \)
GeV. This analysis includes the same sign dilepton analysis of ABULENCIA 07n.

16 ABULENCIA 07n searched in 346 pb\(^{-1}\) of \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \) TeV for events with
at least three leptons \((e \) or \(\mu \) \) from the decay of \(\tilde{\chi}^0_1 \) via \(L\bar{L}E \) couplings. The results
are consistent with the hypothesis of no signal. Upper limits on the cross-section are
extracted and a limit is derived in the framework of mSUGRA on the masses of \(\tilde{\chi}^0_1 \) and
\(\tilde{\chi}^\pm_1 \), see e.g. their Fig. 3 and Tab. II.

Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) (URL: http://pdg.lbl.gov)
17 ABULENCIA 07N searched in 1 fb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV for events with two same sign leptons (\(e\) or \(\mu\)) from the decay of \(\tilde{\chi}_1^{\pm}\tilde{\chi}_1^0\) and large \(E_T\). A slight excess of 13 events is observed over a SM background expectation of \(7.8 \pm 1.1\). However, the kinematic distributions do not show any anomalous deviation from expectations in any particular region of parameter space.

18 ABAZOV 06D looked in 360 pb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV for events with three leptons originating from the pair production of charginos and neutralinos, followed by \(R\) decays mediated by \(L\bar{L}\vec{E}\) couplings. One coupling is assumed to be dominant at a time. No significant excess was found compared to the background expectation in the \(ee\ell, \mu\mu\ell\) or \(e\ell\ell (\ell = e, \mu)\) final states. Upper limits on the cross-section are extracted in a specific MSUGRA model and a MSSM model without unification of \(M_1\) and \(M_2\) at the GUT scale. A limit is derived on the masses of charginos and neutralinos for both scenarios assuming \(\lambda_{ijk}\) couplings such that the decay length is less than 1 cm, see their Table III and Fig. 4.

19 ABAZOV 05A looked in 263 pb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV for diphoton events with large \(E_T\). They may originate from the production of \(\tilde{\chi}_1^\pm\) in pairs or associated to a \(\tilde{\chi}_2^0\) decaying to a \(\tilde{\chi}_1^0\) which itself decays promptly in GMSB to \(\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}\). No significant excess was found at large \(E_T\) compared to the background expectation. A limit is derived on the masses of SUSY particles in the GMSB framework for \(M = 2 \Lambda\), \(N = 1\), \(\tan\beta = 15\) and \(\mu > 0\), see Figure 2. It also excludes \(\Lambda < 79.6\) TeV. Very similar results are obtained for different choices of parameters, see their Table 2. Supersedes the results of ABBOTT 98.

20 ACOSTA 05E looked in 202 pb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV for diphoton events with large \(E_T\). They may originate from the production of \(\tilde{\chi}_1^\pm\) in pairs or associated to a \(\tilde{\chi}_2^0\) decaying to a \(\tilde{\chi}_1^0\) which itself decays promptly in GMSB to \(\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}\). No events are selected at large \(E_T\) compared to the background expectation. A limit is derived on the masses of SUSY particles in the GMSB framework for \(M = 2 \Lambda\), \(N = 1\), \(\tan\beta = 15\) and \(\mu > 0\), see Figure 2. It also excludes \(\Lambda < 69\) TeV. Supersedes the results of ABE 99.

21 ABDALLAH 04H use data from LEP 1 and \(\sqrt{s} = 192–208\) GeV. They re-use results or re-analyze the data from ABDALLAH 03M to put limits on the parameter space of anomaly-mediated supersymmetry breaking (AMSB), which is scanned in the region \(1 < m_{3/2} < 50\) TeV, \(0 < m_0 < 1000\) GeV, \(1.5 < \tan\beta < 35\), both signs of \(\mu\). The constraints are obtained from the searches for mass degenerate chargino and neutralino, for SM-like and invisible Higgs, for leptonically decaying charginos and from the limit on non-SM \(Z\) width of 3.2 MeV. The limit is for \(m_t = 174.3\) GeV (see Table 2 for other \(m_t\) values).

22 The limit improves to 73 GeV for \(\mu < 0\).

23 ABDALLAH 04M use data from \(\sqrt{s} = 192–208\) GeV to derive limits on sparticle masses under the assumption of \(R\) with \(L\bar{L}\vec{E}\) or \(U\bar{D}\vec{D}\) couplings. The results are valid in the ranges \(90 < m_0 < 500\) GeV, \(0.7 < \tan\beta < 30\), \(-200 < \mu < 200\) GeV, \(0 < M_2 < 400\) GeV. Supersedes the result of ABREU 01D and ABREU 00U.

24 The limit improves to 103 GeV for \(L\bar{L}\vec{E}\) couplings.

25 ABDALLAH 03D use data from \(\sqrt{s} = 183–208\) GeV. They look for final states with two acoplanar leptons, expected in GMSB when the \(\tilde{\tau}_1\) is the NLSP and assuming a short-lived \(\tilde{\chi}_1^\pm\). Limits are obtained in the plane \((m(\tilde{\tau})\tilde{\chi}_1^\pm))\) for different domains of \(m(\tilde{G})\), after combining these results with the search for slepton pair production from the same paper. The limit above is valid if the \(\tilde{\tau}_1\) is the NLSP for all values of \(m(\tilde{G})\). For larger \(m(\tilde{G}) = 100\) eV the limit improves to 102 GeV, see their Fig. 11. In the co-NLSP scenario, the limits are 96 and 102 GeV for all \(m(\tilde{G})\) and \(m(\tilde{G}) > 100\) eV, respectively. Supersedes the results of ABREU 01G.

26 HEISTER 03G searches for the production of charginos prompt decays. In the case of \(R\) prompt decays with \(L\bar{L}\vec{E}\), \(LQ\bar{D}\) or \(U\bar{D}\vec{D}\) couplings at \(\sqrt{s} = 189–209\) GeV. The search is performed for indirect decays, assuming one coupling at a time to be non-zero. The limit holds for \(\tan\beta = 1.41\). Excluded regions in the \((\mu, M_2)\) plane are shown in their Fig. 3.
27 ACHARD 02 searches for the production of sparticles in the case of R prompt decays with LLE or UDD couplings at $\sqrt{s}=189–208$ GeV. The search is performed for direct and indirect decays, assuming one coupling at the time to be nonzero. The MSUGRA limit results from a scan over the MSSM parameter space with the assumption of gaugino and scalar mass unification at the GUT scale, imposing simultaneously the exclusions from neutralino, chargino, slepton, and squark analyses. The limit of $\chi_1^{±}$ holds for UDD couplings and increases to 103.0 GeV for LLE couplings. For L3 limits from LQD couplings, see ACCIARRI 01.

28 GHODBANE 02 reanalyzes DELPHI data at $\sqrt{s}=189$ GeV in the presence of complex phases for the MSSM parameters.

29 ABREU 01c looked for τ pairs with $\ell^+\ell^-$ at $\sqrt{s}=183–189$ GeV to search for the associated production of charginos, followed by the decay $\tilde{\chi}_1^± \rightarrow \tau J$, J being an invisible massless particle. See Fig. 6 for the results excluded in the (μ, M_2) plane.

30 ACCIARRI 01 searches for multi-lepton and/or multi-jet final states from R prompt decays with LLE, LQD, or UDD couplings at $\sqrt{s}=189$ GeV. The search is performed for direct and indirect decays of neutralinos, charginos, and scalar leptons, with the $\tilde{\chi}_1^0$ or a $\tilde{\chi}_2^0$ as LSP and assuming one coupling to be nonzero at a time. Mass limits are derived assuming simultaneously the constraints from the neutralino, chargino, and slepton analyses; and the Z^0 width measurements from ACCIARRI 99 in a scan of the parameter space assuming MSUGRA with gaugino and scalar mass universality. Updates and supersede the results from ACCIARRI 99.

31 BARATE 01b searches for the production of charginos in the case of R prompt decays with LLE, LQD, or UDD couplings at $\sqrt{s}=189–202$ GeV. The search is performed for indirect decays, assuming one coupling at a time to be nonzero. Updates BARATE 00H.

32 ABREU 00v use data from $\sqrt{s}=183–189$ GeV. They look for final states with two acoplanar leptons, expected in GMSB when the $\tilde{\chi}_1^0$ is the NLSP and assuming a short-lived $\tilde{\chi}_1^±$. Limits are obtained in the plane $(m_{\tilde{\chi}_1}, m_{\tilde{\chi}_2})$ for different domains of $m^G_{\tilde{\chi}}$, after combining these results with the search for slepton pair production in the SUGRA framework from ABREU 01 to cover prompt decays and on stable particle searches from ABREU 00q. The limit above is valid for all values of $m^G_{\tilde{\chi}}$.

33 CHO 00b studied constraints on the MSSM spectrum from precision EW observables. Global fits favour charginos with masses at the lower bounds allowed by direct searches. Allowing for variations of the squark and slepton masses does not improve the fits.

34 ABBIENDI 99t searches for the production of neutralinos in the case of R-parity violation with LLE, LQD, or UDD couplings using data from $\sqrt{s}=183$ GeV. They investigate topologies with multiple leptons, jets plus leptons, or multiple jets, assuming one coupling at the time to be non-zero and giving rise to direct or indirect decays. Mixed decays (where one particle has a direct, the other an indirect decay) are also considered for the UDD couplings. Upper limits on the cross section are derived which, combined with the constraint from the Z^0 width, allow to exclude regions in the m_{χ_1} versus μ plane for any coupling. Limits on the chargino mass are obtained for non-zero LLE couplings $>10^{-5}$ and assuming decays via a W^\pm.

35 MALTONI 99b studied the effect of light chargino-neutralino to the electroweak precision data with a particular focus on the case where they are nearly degenerate ($\Delta m_+ \sim 1$ GeV) which is difficult to exclude from direct collider searches. The quoted limit is for higgsino-like case while the bound improves to 56 GeV for wino-like case. The values of the limits presented here are obtained in an update to MALTONI 99b, as described in MALTONI 00.

36 ABE 98j searches for trilepton final states ($\ell=e,\mu$). Efficiencies are calculated using mass relations in the Minimal Supergravity scenario, exploring the domain of parameter space defined by $1.1 < \tan\beta < 8, -1000 < \mu(\text{GeV}) < -200$, and $m^2_{\tilde{q}}/m^2_{\tilde{g}}=1-2$. In this region $m_{\tilde{\chi}_1} \sim m_{\tilde{\chi}_0}$ and $m_{\tilde{\chi}_2} \sim 2m_{\tilde{\chi}_0}$. Results are presented in Fig. 1 as upper
bounds on $\sigma(p\bar{p} \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_2^0) \times B(3\ell)$. Limits range from 0.8 pb ($m_{\pm} = 50$ GeV) to 0.23 pb ($m_{\pm} = 100$ GeV) at 95%CL. The gaugino mass unification hypothesis and the assumed mass relation between squarks and gluinos define the value of the leptonic branching ratios. The quoted result corresponds to the best limit within the selected range of parameters, obtained for $m_{\tilde{q}} > m_{\tilde{g}}$, $\tan\beta = 2$, and $\mu = -600$ GeV. Mass limits for different values of $\tan\beta$ and μ are given in Fig. 2.

37 ACKERSTAFF 98K looked for dilepton+E_T final states at $\sqrt{s} = 130–172$ GeV. Limits on $\sigma(e^+ e^- \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_1^0) \times B(\ell)$, with $B(\ell) = B(\chi^+ \rightarrow \ell^+ \nu_\ell \chi_1^0) \times B(\ell) = B(\chi^+ \rightarrow \ell^+ \tilde{\nu}_\ell)$, are given in Fig. 16 (Fig. 17).

38 ACKERSTAFF 98l limit is obtained for $0 < M_2 < 1500$, $|\mu| < 500$ and $\tan\beta > 1$, but remains valid outside this domain. The dependence on the trilinear-coupling parameter A is studied, and found negligible. The limit holds for the smallest value of m_0 consistent with scalar lepton constraints (ACKERSTAFF 97h) and for all values of m_0 where the condition $\Delta m_{\nu} > 2.0$ GeV is satisfied. $\Delta m_{\nu} > 10$ GeV if $\tilde{\chi}_1^\pm \rightarrow \ell \tilde{\nu}_\ell$. The limit improves to 84.5 GeV for $m_0 = 1$ TeV. Data taken at $\sqrt{s} = 130–172$ GeV.

39 ACKERSTAFF 98V excludes the light gluino with universal gaugino mass where charginos, neutralinos decay as $\tilde{\chi}_1^\pm, \tilde{\chi}_2^0 \rightarrow q\tilde{g}$ from total hadronic cross sections at $\sqrt{s} = 130–172$ GeV. See paper for the case of nonuniversal gaugino mass.

40 CARENA 97 studied the constraints on chargino and sneutrino masses from muon $g–2$. The bound can be important for large $\tan\beta$.

41 KALINOWSKI 97 studies the constraints on the chargino-neutralino parameter space from limits on $\Gamma(W \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_1^0)$ achievable at LEP2. This is relevant when $\tilde{\chi}_1^\pm$ is “invisible,” i.e., if $\tilde{\chi}_1^\pm$ dominantly decays into $\ell \tilde{\nu}_\ell$ with little energy for the lepton. Small otherwise allowed regions could be excluded.

42 ABE 96k looked for trilepton events from chargino-neutralino production. The bound on $m_{\tilde{\chi}_1^\pm}$ can reach up to 47 GeV for specific choices of parameters. The limits on the combined production cross section times 3-lepton branching ratios range between 1.4 and 0.4 pb, for $45 < m_{\tilde{\chi}_1^\pm}$(GeV) < 100. See the paper for more details on the parameter dependence of the results.

Long-lived $\tilde{\chi}_1^\pm$ (Chargino) MASS LIMITS

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 171</td>
<td>95</td>
<td>1 ABAZOV</td>
<td>09M</td>
<td>D0</td>
</tr>
<tr>
<td>> 102</td>
<td>95</td>
<td>2 ABBIENDI</td>
<td>03L</td>
<td>OPAL</td>
</tr>
<tr>
<td>none 2–93.0</td>
<td>95</td>
<td>3 ABREU</td>
<td>00T</td>
<td>DLPH</td>
</tr>
</tbody>
</table>

- *• • • We do not use the following data for averages, fits, limits, etc. • • •

1 ABAZOV 09M searched in 1.1 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV for events with direct production of a pair of charged massive stable particles identified by their TOF. The number of the observed events is consistent with the predicted background. The data are used to constrain the production cross section as a function of the $\tilde{\chi}_1^\pm$ mass, see their Fig. 2. The quoted limit improves to 206 GeV for gaugino-like charginos.

2 ABBIENDI 03L used $e^+ e^-$ data at $\sqrt{s} = 130–209$ GeV to select events with two high momentum tracks with anomalous dE/dx. The excluded cross section is compared to the theoretical expectation as a function of the heavy particle mass in their Fig. 3.
bounds are valid for colorless fermions with lifetime longer than 10^{-6} s. Supersedes the results from ACKERSTAFF 98P.

3 ABREU 00T searches for the production of heavy stable charged particles, identified by their ionization or Cherenkov radiation, using data from $\sqrt{s} = 130$ to 189 GeV. These limits include and update the results of ABREU 98P.

4 BARATE 97K uses e^+e^- data collected at $\sqrt{s} = 130$–172 GeV. Limit valid for $\tan\beta = \sqrt{3}$ and $m_{\tilde{\nu}} > 100$ GeV. The limit improves to 86 GeV for $m_{\tilde{\nu}} > 250$ GeV.

$\tilde{\nu}$ (Sneutrino) MASS LIMIT

The limits may depend on the number, $N(\tilde{\nu})$, of sneutrinos assumed to be degenerate in mass. Only $\tilde{\nu}_L$ (not $\tilde{\nu}_R$) is assumed to exist. It is possible that $\tilde{\nu}$ could be the lightest supersymmetric particle (LSP).

We report here, but do not include in the Listings, the limits obtained from the fit of the final results obtained by the LEP Collaborations on the invisible width of the Z boson ($\Delta\Gamma_{\text{inv.}} < 2.0$ MeV, LEP-SLC 06): $m_{\tilde{\nu}} > 43.7$ GeV ($N(\tilde{\nu})=1$) and $m_{\tilde{\nu}} > 44.7$ GeV ($N(\tilde{\nu})=3$).

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 94</td>
<td>95</td>
<td>1 ABDALLAH</td>
<td>03M</td>
<td>DLPH</td>
</tr>
<tr>
<td>> 84</td>
<td>95</td>
<td>2 HEISTER</td>
<td>02N</td>
<td>ALEP</td>
</tr>
<tr>
<td>> 37.1</td>
<td>95</td>
<td>3 ADRIANI</td>
<td>93M</td>
<td>L3</td>
</tr>
<tr>
<td>> 41</td>
<td>95</td>
<td>4 DECAMP</td>
<td>92</td>
<td>ALEP</td>
</tr>
<tr>
<td>> 36</td>
<td>95</td>
<td>5 ABREU</td>
<td>91F</td>
<td>DLPH</td>
</tr>
<tr>
<td>> 31.2</td>
<td>95</td>
<td>6 ALEXANDER</td>
<td>91F</td>
<td>OPAL</td>
</tr>
</tbody>
</table>

• • • We do not use the following data for averages, fits, limits, etc. • • •

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 95</td>
<td>95</td>
<td>6 AAD</td>
<td>11H</td>
<td>ATLS</td>
</tr>
<tr>
<td>> 95</td>
<td>95</td>
<td>7 AAD</td>
<td>11Z</td>
<td>ATLS</td>
</tr>
<tr>
<td>> 95</td>
<td>95</td>
<td>8 AALTONEN</td>
<td>10Z</td>
<td>CDF</td>
</tr>
<tr>
<td>> 95</td>
<td>95</td>
<td>9 ABAZOV</td>
<td>10M</td>
<td>D0</td>
</tr>
<tr>
<td>> 95</td>
<td>95</td>
<td>10 AALTONEN</td>
<td>09V</td>
<td>CDF</td>
</tr>
<tr>
<td>> 95</td>
<td>95</td>
<td>11 ABAZOV</td>
<td>08Q</td>
<td>D0</td>
</tr>
<tr>
<td>> 95</td>
<td>95</td>
<td>12 SCHIEL</td>
<td>07A</td>
<td>ALEP</td>
</tr>
<tr>
<td>> 95</td>
<td>95</td>
<td>13 ABAZOV</td>
<td>06L</td>
<td>D0</td>
</tr>
<tr>
<td>> 95</td>
<td>95</td>
<td>14 ABDALLAH</td>
<td>06C</td>
<td>DLPH</td>
</tr>
<tr>
<td>> 95</td>
<td>95</td>
<td>15 ABULENCE</td>
<td>06M</td>
<td>CDF</td>
</tr>
<tr>
<td>> 95</td>
<td>95</td>
<td>16 ABULENCE</td>
<td>05A</td>
<td>CDF</td>
</tr>
<tr>
<td>> 95</td>
<td>95</td>
<td>17 ACOSTA</td>
<td>05R</td>
<td>CDF</td>
</tr>
<tr>
<td>> 95</td>
<td>95</td>
<td>18 ABBIENDI</td>
<td>04F</td>
<td>OPAL</td>
</tr>
</tbody>
</table>

HTTP://PDG.LBL.GOV Page 30 Created: 6/18/2012 15:10
> 95 95 25 ABAZOV 02H D0 \(R, \lambda'_{211} \)
> 65 95 26 ACHARD 02 L3 \(\tilde{\nu}_e, R \) decays, \(\mu = -200 \text{ GeV}, \tan\beta = \sqrt{2} \)
> 149 95 26 ACHARD 02 L3 \(\tilde{\nu}_\tau, R \) decays
27 HEISTER 02F ALEP \(e^+ \rightarrow \tilde{\nu}_{\mu,\tau} \ell_k, R \) \(LL \overline{E} \)
none 100–264 95 28 ABBIENDI 00R OPAL \(\tilde{\nu}_{\mu,\tau}, R, (s+t)\)-channel
none 100–200 95 29 ABBIENDI 00R OPAL \(\tilde{\nu}_\tau, R, s\)-channel
none 50–210 95 30 ABREU 00S DLPH \(\tilde{\nu}_\ell, R, (s+t)\)-channel
none 50–210 95 31 ACCIARRI 00P L3 \(\tilde{\nu}_{\mu,\tau}, R, s\)-channel
none 90–210 95 32 BARATE 00l ALEP \(\tilde{\nu}_{\mu,\tau}, R, (s+t)\)-channel
none 100–160 95 33 BARATE 00l ALEP \(\tilde{\nu}_{\mu,\tau}, R, s\)-channel
none 100–160 95 34 ABBIENDI 99 OP AL \(\tilde{\nu}_e, R, t\)-channel
\(\neq m_Z \) 95 35 ACCIARRI 97U L3 \(\tilde{\nu}_\tau, R, s\)-channel
none 125–180 95 36 CARENA 97 THEO \(g_{\mu} - 2 \)
> 46.0 95 37 BUSKULIC 95E ALEP \(N(\tilde{\nu}) = 1, \tilde{\nu} \rightarrow \nu \nu \ell \)
none 20–25000 94 BECK 94 COSM Stable \(\tilde{\nu}, \) dark matter
<600 94 FALK 94 COSM \(\tilde{\nu} \) LSP, cosmic abundance
none 3–90 90 40 SATO 91 KAMI Stable \(\tilde{\nu}_e \) or \(\tilde{\nu}_\mu \),
dark matter
none 4–90 90 40 SATO 91 KAMI Stable \(\tilde{\nu}_\tau, \) dark matter

1 ABDALLAH 03M uses data from \(\sqrt{s} = 192–208 \text{ GeV} \) to obtain limits in the framework of the MSSM with gaugino and sfermion mass universality at the GUT scale. An indirect limit on the mass is derived by constraining the MSSM parameter space by the results from direct searches for neutralinos (including cascade decays) and for sleptons. These limits are valid for values of \(M_2 < 1 \text{ TeV}, |\mu| \leq 1 \text{ TeV} \) with the \(\bar{\chi}^0_1 \) as LSP. The quoted limit is obtained when there is no mixing in the third family. See Fig. 43 for the mass limits as a function of \(\tan\beta \). These limits update the results of ABREU 00W.

2 HEISTER 02N derives a bound on \(m_{\tilde{\nu}_e} \) by exploiting the mass relation between the \(\tilde{\nu}_e \) and \(\tilde{e} \), based on the assumption of universal GUT scale gaugino and scalar masses \(m_{1/2} \) and \(m_0 \) and the search described in the \(\tilde{e} \) section. In the MSUGRA framework with radiative electroweak symmetry breaking, the limit improves to \(m_{\tilde{\nu}_e} > 130 \text{ GeV} \), assuming a trilinear coupling \(A_0 = 0 \) at the GUT scale. See Figs. 5 and 7 for the dependence of the limits on \(\tan\beta \).

3 ADRIANI 93M limit from \(\Delta \Gamma(Z) \) (invisible) \(< 16.2 \text{ MeV} \).
4 DECAMP 92 limit is from \(\Gamma(\text{invisible})/\Gamma(\ell \ell) = 5.91 \pm 0.15 (N_{\nu} = 2.97 \pm 0.07) \).
5 ALEXANDER 91F limit is for one species of \(\tilde{\nu} \) and is derived from \(\Gamma(\text{invisible, new})/\Gamma(\ell \ell) \)< 0.38.
6 AAD 11H looked in 35 \(pb^{-1} \) of \(pp \) collisions at \(\sqrt{s} = 7 \text{ TeV} \) for events with one electron and one muon of opposite charge from the production of \(\tilde{\nu}_\tau \) via an \(R, \lambda'_{311} \) coupling and followed by a decay via \(\lambda'_{312} \) into \(e + \mu \). No evidence for an excess over the SM expectation is observed, and a limit is derived in the plane of \(\lambda'_{311} \) versus \(m_{\tilde{\nu}} \) for several values of \(\lambda'_{312} \); see their Fig. 2. Superseded by AAD 11Z.
AAD 11Z looked in 1.07 fb\(^{-1}\) of \(p p\) collisions at \(\sqrt{s} = 7\) TeV for events with one electron and one muon of opposite charge from the production of \(\tilde{\nu}_\tau\) via an \(R\lambda'_{311}\) coupling and followed by a decay via \(\lambda_{312}\) into \(e + \mu\). No evidence for an \((e, \mu)\) resonance over the SM expectation is observed, and a limit is derived in the plane of \(\lambda'_{311}\) versus \(m_{\tilde{\nu}_\tau}\) for three values of \(\lambda_{312}\), see their Fig. 2. Masses \(m_{\tilde{\nu}_\tau} < 1.32\) (1.45) TeV are excluded for \(\lambda'_{311} = 0.10\) and \(\lambda_{312} = 0.05\) (\(\lambda'_{311} = 0.11\) and \(\lambda_{312} = 0.07\)).

AALTONEN 10Z searched in 1 fb\(^{-1}\) of \(p\overline{p}\) collisions at \(\sqrt{s} = 1.96\) TeV for events from the production of \(d\overline{d} \rightarrow \tilde{\nu}_\tau\) with the subsequent decays \(\tilde{\nu}_\tau \rightarrow e\mu, \mu\tau, e\tau\) in the MSSM framework with \(R\). Two isolated leptons of different flavor and opposite charges are required, with \(\tau\) identified by their hadronic decay. No statistically significant excesses are observed over the SM expectation. Upper limits on \(\lambda^2_{311}\) times the branching ratio are listed in their Table III for various \(\tilde{\nu}_\tau\) masses. Limits on the cross section times branching ratio for \(\lambda'_{311} = 0.10\) and \(\lambda_{312} = 0.05\), displayed in Fig. 2, are used to set limits on the \(\tilde{\nu}_\tau\) mass of 558 GeV for the \(e\mu\), 441 GeV for the \(\mu\tau\) and 442 GeV for the \(e\tau\) channels.

ABAZOV 10M looked in 5.3 fb\(^{-1}\) of \(p\overline{p}\) collisions at \(\sqrt{s} = 1.96\) TeV for events with exactly one pair of high \(p_T\) isolated \(e\mu\) and a veto against hard jets. No evidence for an excess over the SM expectation is observed, and a limit at 95% C.L. on the cross section times branching ratio is derived, see their Fig. 3. These limits are translated into limits on couplings as a function of \(m_{\tilde{\nu}_\tau}\) as shown on their Fig. 4. As an example, for \(m_{\tilde{\nu}_\tau} = 100\) GeV and \(\lambda_{312} \leq 0.07\), couplings \(\lambda'_{311} > 7.7 \times 10^{-4}\) are excluded.

AALTONEN 09V searched in 2.3 fb\(^{-1}\) of \(p\overline{p}\) collisions at \(\sqrt{s} = 1.96\) TeV for events with an oppositely charged pair originating from the \(R\) production of a sneutrino decaying to dimuons. A limit is derived on the cross section times branching ratio, \(B\), of \(\tilde{\nu} \rightarrow e\mu\) for several values of the coupling \(\lambda'\), see their Fig. 3. For \(\lambda'^2B = 0.01\), the range 100 GeV \(\leq m_{\tilde{\nu}_\tau} \leq 810\) GeV is excluded.

ABAZOV 08Q searched in 1.04 fb\(^{-1}\) of \(p\overline{p}\) collisions at \(\sqrt{s} = 1.96\) TeV for an excess of events with oppositely charged \(e\mu\) pairs. They might be expected in a SUSY model with \(R\) where a sneutrino is produced by \(LQ\overline{D}\) couplings and decays via \(L\overline{L}\overline{E}\) couplings, focusing on \(\tilde{\nu}_\tau\), hence on the \(\lambda'_{311}\) and \(\lambda_{312}\) constants. No significant excess was found compared to the background expectation. Upper limits on the cross-section times branching ratio are extracted and displayed in their Fig. 2. Exclusion regions are determined for the \(\tilde{\nu}_\tau\) mass as a function of both couplings, see their Fig. 3. As an indication, for \(\tilde{\nu}_\tau\) masses of 100 GeV and \(\lambda_{312} = 0.01\), values of \(\lambda'_{311} \geq 1.6 \times 10^{-3}\) are excluded at the 95% C.L. Superseded by ABAZOV 10M.

SCHAEL 07A searches for the \(s\)- or \(t\)-channel exchange of sneutrinos in the case of \(R\) with \(L\overline{L}\overline{E}\) couplings by studying di-lepton production at \(\sqrt{s} = 189-209\) GeV. Limits are obtained on the couplings as a function of the \(\tilde{\nu}\) mass, see their Figs. 22-24. The results of this analysis are combined with BARATE 00I.

ABAZOV 06l looked in 380 pb\(^{-1}\) of \(p\overline{p}\) collisions at \(\sqrt{s} = 1.96\) TeV for events with at least 2 muons and 2 jets for \(s\)-channel production of \(\tilde{\mu}\) or \(\tilde{\nu}\) and subsequent decay via \(R\) couplings \(LQ\overline{D}\). The data are in agreement with the SM expectation. They set limits on resonant slepton production and derive exclusion contours on \(\lambda'_{211}\) in the mass plane of \(\tilde{\ell}\) versus \(\lambda'_{10}^0\) assuming a MSUGRA model with \(\tan\beta = 5\), \(\mu < 0\) and \(A_0 = 0\), see their Fig. 3. For \(\lambda'_{211} \geq 0.09\) slepton masses up to 358 GeV are excluded. Supersedes the results of ABAZOV 02H.

ABDALLAH 06C searches for anomalies in the production cross sections and forward-backward asymmetries of the \(e^+e^-(\gamma)\) final states \((\ell=e,\mu,\tau)\) from 675 pb\(^{-1}\) of \(e^+e^-\) data at \(\sqrt{s}=130-207\) GeV. Limits are set on the \(s\) and \(t\)-channel exchange of sneutrinos in the presence of \(R\) with \(L\overline{L}\overline{E}\) couplings. For points between the energies at which data were taken, information is obtained from events in which a photon was radiated.
Exclusion limits in the ($\lambda, m_{\tilde{\chi}^0}$) plane are given in Fig. 16. These limits include and update the results of ABREU 00s.

15 ABULENCIA 06M searched in 344 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV for an excess of events with oppositely charged $e\mu$ pairs. They might be expected in a SUSY model with R where a sneutrino is produced by $LQ\bar{D}$ couplings and decays via $LL\bar{E}$ couplings, focusing on $\tilde{\nu}_\tau$, hence on the λ^L_{311} and λ^L_{132} constants. No significant excess was found compared to the background expectation. Upper limits on the cross-section times branching ratio are extracted and exclusion regions determined for the $\tilde{\nu}_\tau$ mass as a function of both couplings, see their Fig. 3. As an indication, $\tilde{\nu}_\tau$ masses are excluded up to 300 GeV for $\lambda^L_{311} \geq 0.01$ and $\lambda^L_{132} \geq 0.02$. Supersedes by AALTONEN 10.

16 ABULENCIA 05a looked in ~ 200 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV for dimuon and dielectron events. They may originate from the R production of a sneutrino decaying to dileptons. No significant excess rate was found compared to the background expectation. A limit is derived on the cross section times branching ratio, B, of $\tilde{\nu} \rightarrow e e, \mu \mu$ of 25 fb at high mass, see their Figure 2. Sneutrino masses are excluded at 95% CL below 680, 620, 460 GeV ($e e$ channel) and 665, 590, 450 GeV ($\mu \mu$ channel) for a λ' coupling and branching ratio such that $\lambda'^2 B = 0.01, 0.005, 0.001$, respectively.

17 ACOSTA 05R looked in 195 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV for ditau events with one identified hadronic tau decay and one other tau decay. They may originate from the R production of a sneutrino decaying to $\tau \tau$. No significant excess rate was found compared to the background expectation, dominated by Drell-Yan. A limit is derived on the cross section times branching ratio, B, of $\tilde{\nu} \rightarrow \tau \tau$, see their Figure 3. Sneutrino masses below 377 GeV are excluded at 95% CL for a λ' coupling to $d\bar{D}$ and branching ratio such that $\lambda'^2 B = 0.01$.

18 ABBIENDI 04S use data from $\sqrt{s} = 189–209$ GeV. They derive limits on sparticle masses under the assumption of R with $LL\bar{E}$ or $LQ\bar{D}$ couplings. The results are valid for $\tan\beta = 1.5$, $\mu = -200$ GeV, and a BR for the decay given by CMSSM, assuming no sensitivity to other decays. Limits are quoted for $m_{\tilde{\chi}^0} = 60$ GeV and degrade for low-mass $\tilde{\chi}^0_1$. For $\tilde{\nu}_e$, the direct (indirect) limits with $LL\bar{E}$ couplings are 89 (95) GeV and with $LQ\bar{D}$ they are 89 (88) GeV. For $\tilde{\nu}_{\mu,\tau}$ the direct (indirect) limits with $LL\bar{E}$ couplings are 79 (81) GeV and with $LQ\bar{D}$ they are 74 (no limit) GeV. Supersedes the results of ABBIENDI 00.

19 ABDALLAH 04H use data from LEP 1 and $\sqrt{s} = 192–208$ GeV. They re-use results or re-analyze the data from ABDALLAH 03M to put limits on the parameter space of anomaly-mediated supersymmetry breaking (AMSB), which is scanned in the region $1 < m_{\tilde{\chi}^0_{3/2}} < 50$ TeV, $0 < m_0 < 1000$ GeV, $1.5 < \tan\beta < 35$, both signs of μ. The constraints are obtained from the searches for mass degenerate chargino and neutralino, for SM-like and invisible Higgs, for leptonically decaying charginos and from the limit on non-SM Z width of 3.2 MeV. The limit is for $m_t = 174.3$ GeV (see Table 2 for other m_t values).

20 The limit improves to 114 GeV for $\mu < 0$.

21 ABDALLAH 04M use data from $\sqrt{s} = 189–208$ GeV. The results are valid for $\mu = -200$ GeV, $\tan\beta = 1.5$, $\Delta m > 5$ GeV and assuming a BR of 1 for the given decay. The limit quoted is for indirect decays using the neutralino constraint of 39.5 GeV, also derived in ABDALLAH 04M. For indirect decays the limit on $\tilde{\nu}_e$ decreases to 96 GeV if the constraint from the neutralino is not used and for direct decays it remains 96 GeV. For indirect decays the limit on $\tilde{\nu}_\mu$ decreases to 82 GeV if the constraint from the neutralino is not used and to 83 GeV for direct decays. For indirect decays the limit on $\tilde{\nu}_\tau$ decreases to 82 GeV if the constraint from the neutralino is not used and improves to 91 GeV for direct decays. Supersedes the results of ABREU 00u.

22 ABDALLAH 03F looked for events of the type $e^+ e^- \rightarrow \tilde{\nu} \rightarrow \tilde{\chi}^0_0 \nu$, $\tilde{\chi}^{\pm} \ell^\mp \bar{\nu}$ followed by R decays of the $\tilde{\chi}^0_1$ via λ^L_{j1j1} ($j = 2, 3$) couplings in the data at $\sqrt{s} = 183–208$ GeV. From a scan over the SUGRA parameters, they derive upper limits on the λ^L_{j1j1} couplings as a function of the sneutrino mass, see their Figs. 5–8.

23 ACOSTA 03E search for $e\mu$, $e\tau$ and $\mu\tau$ final states, and sets limits on the product of production cross-section and decay branching ratio for a $\tilde{\nu}$ in RPV models (see Fig. 3).
HEISTER 03G searches for the production of sneutrinos in the case of R prompt decays with LLE, LQD or UDD couplings at $\sqrt{s} = 189$–209 GeV. The search is performed for direct and indirect decays, assuming one coupling at a time to be non-zero. The limit holds for indirect $\tilde{\tau}$ decays via \tilde{UDD} couplings and $\Delta m > 10$ GeV. Stronger limits are reached for $(\tilde{\tau}_e, \tilde{\tau}_{\mu, \tau})$ for LLE direct (100,90) GeV or indirect (98,89) GeV and for LQD direct (-79) GeV or indirect (91,78) GeV couplings. For LLE indirect decays, use is made of the bound $m(\tilde{\chi}^0_2) > 23$ GeV from BARATE 98s. Supersedes the results from BARATE 01B.

ABAZOV 02H looked in 94 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV for events with at least 2 muons and 2 jets for s-channel production of $\tilde{\mu}$ or $\tilde{\nu}$ and subsequent decay via R couplings LQD. A scan over the MSUGRA parameters is performed to exclude regions of the $(m_0, m_{1/2})$ plane, examples being shown in Fig. 2.

ACHARD 02 searches for the associated production of sneutrinos in the case of R prompt decays with LLE or UDD couplings at $\sqrt{s} = 189$–208 GeV. The search is performed for direct and indirect decays, assuming one coupling at the time to be nonzero. The limit holds for direct decays via LLE couplings. Stronger limits are reached for ($\tilde{\nu}_e, \tilde{\nu}_{\mu, \tau}$) for LLE indirect (99,78) GeV and for UDD direct or indirect (99,70) GeV decays. The MSUGRA limit results from a scan over the MSSM parameter space with the assumption of gaugino and scalar mass unification at the GUT scale, imposing simultaneously the exclusions from neutralino, chargino, sleptons, and squarks analyses. The limit holds for UDD couplings and increases to 152.7 GeV for LLE couplings.

HEISTER 02F searched for single sneutrino production via $e\gamma \rightarrow \tilde{\nu}_j \ell_k$ mediated by R LLE couplings, decaying directly or indirectly via a $\tilde{\chi}^0_1$ and assuming a single coupling to be nonzero at a time. Final states with three leptons and possible E_T due to neutrinos were selected in the 189–209 GeV data. Limits on the couplings λ_{1jk} as function of the sneutrino mass are shown in Figs. 10–14. The couplings λ_{232} and λ_{233} are not accessible and λ_{121} and λ_{131} are measured with better accuracy in sneutrino resonant production. For all tested couplings, except λ_{133}, the limits are significantly improved compared to the low-energy limits.

ABBIENDI 00R studied the effect of s- and t-channel τ or μ sneutrino exchange in $e^+e^- \rightarrow e^+e^-$ at $\sqrt{s} = 130$–189 GeV, via the R-parity violating coupling $\lambda_{1j1} L_i L_j e_1$ ($i=2$ or 3). The limits quoted here hold for $\lambda_{1j1} > 0.13$, and supersede the results of ABBIENDI 99. See Fig. 11 for limits on $m_{\tilde{\nu}}$ versus coupling.

ABBIENDI 00R studied the effect of s-channel τ sneutrino exchange in $e^+e^- \rightarrow \mu^+\mu^-$ at $\sqrt{s} = 130$–189 GeV, in presence of the R-parity violating couplings $\lambda_{i3j} L_i L_j e_1$ ($i=1$ and 2), with $\lambda_{131} = \lambda_{332}$. The limits quoted here hold for $\lambda_{131} > 0.09$, and supersede the results of ABBIENDI 99. See Fig. 12 for limits on $m_{\tilde{\nu}}$ versus coupling.

ABREU 00s searches for anomalies in the production cross sections and forward-backward asymmetries of the $\ell^+\ell^- (\gamma)$ final states ($\ell = e, \mu, \tau$) from e^+e^- collisions at $\sqrt{s} = 130$–189 GeV. Limits are set on the s- and t-channel exchange of sneutrinos in the presence of R with LLE couplings. For points between the energies at which data were taken, information is obtained from events in which a photon was radiated. Exclusion limits in the $\lambda, m_{\tilde{\nu}}$ plane are given in Fig. 5. These limits include and update the results of ABREU 99A.

ACCIARRI 00P use the dilepton total cross sections and asymmetries at $\sqrt{s} = m_T$ and $\sqrt{s} = 130$–189 GeV data to set limits on the effect of R LLE couplings giving rise to μ or τ sneutrino exchange. See their Fig. 5 for limits on the sneutrino mass versus couplings.

BARATE 00i studied the effect of s-channel and t-channel τ or μ sneutrino exchange in $e^+e^- \rightarrow e^+e^-$ at $\sqrt{s} = 130$–183 GeV, via the R-parity violating coupling $\lambda_{i1i} L_i L_i e_1$ ($i=2$ or 3). The limits quoted here hold for $\lambda_{i1i} > 0.1$. See their Fig. 15 for limits as a function of the coupling. Superseded by SCHÄDEL 07A.

BARATE 00i studied the effect of s-channel τ sneutrino exchange in $e^+e^- \rightarrow \mu^+\mu^-$ at $\sqrt{s} = 130$–183 GeV, in presence of the R-parity violating coupling $\lambda_{i3j} L_i L_j e_j$ ($i=1$ and 2).
and 2). The limits quoted here hold for \(\sqrt{\lambda_{131}\lambda_{232}} < 0.2\). See their Fig. 16 for limits as a function of the coupling. Superseded by SCHAEL 07A.

34 ABBIENDI 99 studied the effect of t-channel electron sneutrino exchange in \(e^+e^- \rightarrow \tau^+\tau^-\) at \(\sqrt{s}=130-183\) GeV, in presence of the R-parity violating couplings \(\lambda_{131} L_1 L_3 e_1^c\).

The limits quoted here hold for \(\lambda_{131} > 0.6\).

35 ACCIARRI 97 studied the effect of the s-channel tau-sneutrino exchange in \(e^+e^- \rightarrow e^+e^-\) at \(\sqrt{s}=m_Z\) and \(\sqrt{s}=130-172\) GeV, via the R-parity violating coupling \(\lambda_{131} L_1 L_1 e_1^c\). The limits quoted here hold for \(\lambda_{131} > 0.05\). Similar limits were studied in \(e^+e^- \rightarrow \mu^+\mu^-\) together with \(\lambda_{232} L_2 L_2 e_2^c\) coupling.

36 CARENA 97 studied the constraints on chargino and sneutrino masses from muon g−2. The bound can be important for large \(\tan\beta\).

38 BECK 94 puts an upper bound on \(\tau_1\) if \(\nu_1\) is LSP by requiring its relic density does not overclose the Universe.

39 FALK 94 limit can be inferred from limit on Dirac neutrino using \(\sigma(\bar{\nu}) = 4\sigma(\nu)\). Also private communication with H.V. Klapdor-Kleingrothaus.

40 SA TO 91 search for high-energy neutrinos from the sun produced by annihilation of sneutrinos in the sun. Sneutrinos are assumed to be stable and to constitute dark matter in our galaxy. SA TO 91 follow the analysis of NG 87, OLIVE 88, and GAISSER 86.

CHARGED SLEPTONS

This section contains limits on charged scalar leptons (\(\tilde{\ell}\), with \(\ell=\text{e,} \mu, \tau\)). Studies of width and decays of the Z boson (use is made here of \(\Delta\Gamma_{\text{inv}} < 2.0\) MeV, LEP 00) conclusively rule out \(m_{\tilde{\ell}} < 40\) GeV (41 GeV for \(\tilde{\ell}_L\)), independently of decay modes, for each individual slepton. The limits improve to 43 GeV (43.5 GeV for \(\tilde{\ell}_L\)) assuming all 3 flavors to be degenerate. Limits on higher mass sleptons depend on model assumptions and on the mass splitting \(\Delta m = m_{\tilde{\ell}} - m_{\tilde{\chi}_1^0}\). The mass and composition of \(\tilde{\chi}_1^0\) may affect the selectron production rate in \(e^+e^-\) collisions through t-channel exchange diagrams. Production rates are also affected by the potentially large mixing angle of the lightest mass eigenstate \(\tilde{\ell}_1 = \tilde{\ell}_R \sin\theta_{\tilde{\ell}} + \tilde{\ell}_L \cos\theta_{\tilde{\ell}}\). It is generally assumed that only \(\tilde{\tau}\) may have significant mixing. The coupling to the Z vanishes for \(\theta_{\tilde{\ell}}=0.82\). In the high-energy limit of \(e^+e^-\) collisions the interference between \(\gamma\) and Z exchange leads to a minimal cross section for \(\theta_{\tilde{\ell}}=0.91\), a value which is sometimes used in the following entries relative to data taken at LEP2. When limits on \(m_{\tilde{\ell}_R}\) are quoted, it is understood that limits on \(m_{\tilde{\ell}_L}\) are usually at least as strong.

Possibly open decays involving gauginos other than \(\tilde{\chi}_1^0\) will affect the detection efficiencies. Unless otherwise stated, the limits presented here result from the study of \(e^+e^-\) production, with production rates and decay properties derived from the MSSM. Limits made obsolete by the recent analyses of \(e^+e^-\) collisions at high energies can be found in previous Editions of this Review.

For decays with final state gravitinos (\(\tilde{G}\)), \(m_{\tilde{G}}\) is assumed to be negligible relative to all other masses.
\(\tilde{\epsilon}\) (Selectron) MASS LIMIT

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>DOCUMENT ID</th>
<th>TECH</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 97.5</td>
<td>1 ABBIENDI 04 OPAL</td>
<td>(\tilde{\epsilon}_R, \Delta m > 11) GeV, (</td>
<td>\mu</td>
</tr>
<tr>
<td>> 94.4</td>
<td>2 ACHARD 04 L3</td>
<td>(\tilde{\epsilon}_R, \Delta m > 10) GeV, (</td>
<td>\mu</td>
</tr>
<tr>
<td>> 71.3</td>
<td>2 ACHARD 04 L3</td>
<td>(\tilde{\epsilon}_R, all \Delta m)</td>
<td></td>
</tr>
<tr>
<td>none 30–94</td>
<td>3 ABDALLAH 03M DLPH</td>
<td>(\Delta m > 15) GeV, (\tilde{\epsilon}_R, \tilde{\epsilon}_R)</td>
<td></td>
</tr>
<tr>
<td>> 94</td>
<td>4 ABDALLAH 03M DLPH</td>
<td>(\tilde{\epsilon}_R, 1 \leq \tan\beta \leq 40, \Delta m > 10) GeV</td>
<td></td>
</tr>
<tr>
<td>> 95</td>
<td>5 HEISTER 02E ALEP</td>
<td>(\Delta m > 15) GeV, (\tilde{\epsilon}_R, \tilde{\epsilon}_R)</td>
<td></td>
</tr>
<tr>
<td>> 73</td>
<td>6 HEISTER 02N ALEP</td>
<td>(\tilde{\epsilon}_R, any \Delta m)</td>
<td></td>
</tr>
<tr>
<td>> 107</td>
<td>6 HEISTER 02N ALEP</td>
<td>(\tilde{\epsilon}_L, any \Delta m)</td>
<td></td>
</tr>
</tbody>
</table>

* • • • We do not use the following data for averages, fits, limits, etc. • • • *

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>DOCUMENT ID</th>
<th>TECH</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 89</td>
<td>7 ABBIENDI 04F OPAL</td>
<td>(\tilde{\epsilon}_R, \tilde{\epsilon}_L)</td>
<td></td>
</tr>
<tr>
<td>> 92</td>
<td>8 ABDALLAH 04M DLPH</td>
<td>(\tilde{\epsilon}_R, any \Delta m)</td>
<td></td>
</tr>
<tr>
<td>> 93</td>
<td>9 HEISTER 03G ALEP</td>
<td>(\tilde{\epsilon}_R, any \Delta m)</td>
<td></td>
</tr>
<tr>
<td>> 69</td>
<td>10 ACHARD 02 L3</td>
<td>(\tilde{\epsilon}_R, any \Delta m)</td>
<td></td>
</tr>
<tr>
<td>> 92</td>
<td>11 BARATE 01 ALEP</td>
<td>(\Delta m > 10) GeV, (\tilde{\epsilon}_R, \tilde{\epsilon}_R)</td>
<td></td>
</tr>
<tr>
<td>> 77</td>
<td>12 ABBIENDI 00J OPAL</td>
<td>(\Delta m > 5) GeV, (\tilde{\epsilon}_R, \tilde{\epsilon}_R)</td>
<td></td>
</tr>
<tr>
<td>> 83</td>
<td>13 ABREU 00U DLPH</td>
<td>(\tilde{\epsilon}_R, any \Delta m)</td>
<td></td>
</tr>
<tr>
<td>> 67</td>
<td>14 ABREU 00V DLPH</td>
<td>(\tilde{\epsilon}_R, any \Delta m)</td>
<td></td>
</tr>
<tr>
<td>> 85</td>
<td>15 BARATE 00G ALEP</td>
<td>(\tilde{\epsilon}_R, any \Delta m)</td>
<td></td>
</tr>
<tr>
<td>> 29.5</td>
<td>16 ACCIARRI 99L L3</td>
<td>(\tilde{\epsilon}_R, any \Delta m)</td>
<td></td>
</tr>
<tr>
<td>> 56</td>
<td>17 ACCIARRI 98F L3</td>
<td>(\tilde{\epsilon}_R, any \Delta m)</td>
<td></td>
</tr>
<tr>
<td>> 77</td>
<td>18 BARATE 98K ALEP</td>
<td>(\tilde{\epsilon}_R, any \Delta m)</td>
<td></td>
</tr>
<tr>
<td>> 77</td>
<td>19 BREITWEG 98 ZEUS</td>
<td>(\tilde{\epsilon}_R, any \Delta m)</td>
<td></td>
</tr>
<tr>
<td>> 63</td>
<td>20 AID 96C H1</td>
<td>(\tilde{\epsilon}_R, any \Delta m)</td>
<td></td>
</tr>
</tbody>
</table>

1 ABBIENDI 04 search for \(\tilde{\epsilon}_R, \tilde{\epsilon}_R\) production in acoplanar dielectron final states in the 183–208 GeV data. See Fig. 13 for the dependence of the limits on \(m_{\tilde{\epsilon}_R}\) and for the limit at \(\tan\beta = 35\). This limit supersedes ABBIENDI 00G.

2 ACHARD 04 search for \(\tilde{\epsilon}_R, \tilde{\epsilon}_L\) and \(\tilde{\epsilon}_R, \tilde{\epsilon}_R\) production in single- and acoplanar dielectron final states in the 192–209 GeV data. Absolute limits on \(m_{\tilde{\epsilon}_R}\) are derived from a scan over the MSSM parameter space with universal GUT scale gaugino and scalar masses \(m_{1/2}\) and \(m_0\). \(1 \leq \tan\beta \leq 60\) and \(-2 \leq \mu \leq 2\) TeV. See Fig. 4 for the dependence of the limits on \(m_{\tilde{\epsilon}_R}\). This limit supersedes ACCIARRI 99W.

3 ABDALLAH 03M looked for acoplanar dielectron + \(\tilde{\epsilon}\) final states at \(\sqrt{s} = 189–208\) GeV. The limit assumes \(\mu = -200\) GeV and \(\tan\beta = 1.5\) in the calculation of the production cross section and \(\tilde{\epsilon} \rightarrow \tilde{\epsilon}_0\). See Fig. 15 for limits in the \(m_{\tilde{\epsilon}_R}, m_{\tilde{\epsilon}_0}\) plane. These limits include and update the results of ABREU 01.

4 ABDALLAH 03M uses data from \(\sqrt{s} = 192–208\) GeV to obtain limits in the framework of the MSSM with gaugino and sfermion mass universality at the GUT scale. An indirect limit on the mass is derived by constraining the MSSM parameter space by the results from direct searches for neutralinos (including cascade decays) and for sleptons. These
limits are valid for values of \(M_2 < 1 \text{ TeV}, |\mu| < 1 \text{ TeV} \) with the \(\tilde{\chi}_1^0 \) as LSP. The quoted limit is obtained when there is no mixing in the third family. See Fig. 43 for the mass limits as a function of \(\tan\beta \). These limits update the results of ABREU 00.

5. HEISTER 02E looked for acoplanar dielectron + \(\ell_T^\pm \) final states from \(e^+e^- \) interactions between 183 and 209 GeV. The mass limit assumes \(\mu < -200 \text{ GeV} \) and \(\tan\beta=2 \) for the production cross section and \(B(\tilde{e} \rightarrow e \tilde{\chi}_1^0)=1 \). See their Fig. 4 for the dependence of the limit on \(\Delta m \). These limits include and update the results of BARATE 01.

6. HEISTER 02N search for \(\tilde{e}_L \tilde{e}_L \) and \(\tilde{e}_R \tilde{e}_R \) production in single- and acoplanar di-electron final states in the 183–208 GeV data. Absolute limits on \(m_{\tilde{e}_R} \) are derived from a scan over the MSSM parameter space with universal GUT scale gaugino and scalar masses \(m_{1/2} \) and \(m_0 \), \(1 \leq \tan\beta \leq 50 \) and \(-10 \leq \mu \leq 10 \text{ TeV} \). The region of small \(|\mu| \), where cascade decays are important, is covered by a search for \(\tilde{\chi}_1^0 \tilde{\chi}_3^0 \) in final states with leptons and possibly photons. Limits on \(m_{\tilde{e}_L} \) are derived by exploiting the mass relation between the \(\tilde{e}_L \) and \(\tilde{e}_R \), based on universal \(m_0 \) and \(m_{1/2} \). When the constraint from the mass limit of the lightest Higgs from HEISTER 02 is included, the bounds improve to \(m_{\tilde{e}_R} > 77(75) \text{ GeV} \) and \(m_{\tilde{e}_L} > 115(115) \text{ GeV} \) for a top mass of 175(180) GeV. In the MSUGRA framework with radiative electroweak symmetry breaking, the limits improve further to \(m_{\tilde{e}_R} > 95 \text{ GeV} \) and \(m_{\tilde{e}_L} > 152 \text{ GeV} \), assuming a trilinear coupling \(A_0=0 \) at the GUT scale. See Figs. 4, 5, 7 for the dependence of the limits on \(\tan\beta \).

7. ABBIENDI 04F use data from \(\sqrt{s} = 189–209 \text{ GeV} \). They derive limits on sparticle masses under the assumption of \(R \) with \(LLE \) or \(LQD \) couplings. The results are valid for \(\tan\beta=1.5, \mu = -200 \text{ GeV} \), with, in addition, \(\Delta m \geq 5 \text{ GeV} \) for indirect decays via \(LQD \). The limit quoted applies to direct decays via \(LLE \) or \(LQD \) couplings. For indirect decays, the limits on the \(\tilde{e}_R \) mass are respectively 99 and 92 GeV for \(LLE \) and \(LQD \) couplings and \(m_{\tilde{e}_L} = 10 \text{ GeV} \) and degrade slightly for larger \(\tilde{\chi}_1^0 \) mass. Supersedes the results of ABBIENDI 00.

8. ABDALLAH 04M use data from \(\sqrt{s} = 192–208 \text{ GeV} \) to derive limits on sparticle masses under the assumption of \(R \) with \(LLE \) or \(UDD \) couplings. The results are valid for \(\mu = -200 \text{ GeV}, \tan\beta = 1.5 \), \(\Delta m \geq 5 \text{ GeV} \) and assuming a BR of 1 for the given decay. The limit quoted is for indirect \(UDD \) decays using the neutralino constraint of 39.5 GeV for \(LLE \) and of 38.0 GeV for \(UDD \) couplings, also derived in ABDALLAH 04M. For indirect decays via \(LLE \) the limit improves to 95 GeV if the constraint from the neutralino is used and to 94 GeV if it is not used. For indirect decays via \(UDD \) couplings it remains unchanged when the neutralino constraint is not used. Supersedes the result of ABREU 00U.

9. HEISTER 03G searches for the production of selectrons in the case of \(R \) prompt decays with \(LLE \) or \(UDD \) couplings at \(\sqrt{s} = 189–209 \text{ GeV} \). The search is performed for direct and indirect decays, assuming one coupling at a time to be non-zero. The limit holds for indirect decays mediated by \(LQD \) couplings with \(\Delta m > 10 \text{ GeV} \). Limits are also given for \(LLE \) direct (\(m_{\tilde{e},R} > 96 \text{ GeV} \)) and indirect decays (\(m_{\tilde{e},R} > 96 \text{ GeV} \)) for \(m_{\tilde{\chi}_1^0} > 23 \text{ GeV} \) from BARATE 98s) and for \(UDD \) indirect decays (\(m_{\tilde{e},R} > 94 \text{ GeV} \)) with \(\Delta m > 10 \text{ GeV} \)). Supersedes the results from BARATE 01B.

10. ACHARD 02 searches for the production of selectrons in the case of \(R \) prompt decays with \(LLE \) or \(UDD \) couplings at \(\sqrt{s} = 189–208 \text{ GeV} \). The search is performed for direct and indirect decays, assuming one coupling at the time to be nonzero. The limit holds for direct decays via \(LLE \) couplings. Stronger limits are reached for \(LLE \) indirect (79 GeV) and for \(UDD \) direct or indirect (96 GeV) decays.

11. BARATE 01 looked for acoplanar dielectron + \(\ell_T^+ \) final states at 189 to 202 GeV. The limit assumes \(\mu = -200 \text{ GeV} \) and \(\tan\beta=2 \) for the production cross section and 100% branching ratio for \(\tilde{e} \rightarrow e \tilde{\chi}_1^1 \). See their Fig. 1 for the dependence of the limit on \(\Delta m \). These limits include and update the results of BARATE 99Q.

12. ABBIENDI 00L looked for acoplanar dielectron + \(\ell_T^+ \) final states at \(\sqrt{s} = 161–183 \text{ GeV} \). The limit assumes \(\mu < -100 \text{ GeV} \) and \(\tan\beta=1.5 \) for the production cross section and
decay branching ratios, evaluated within the MSSM, and zero efficiency for decays other than $\tilde{e} \to e \tilde{\chi}_1^0$. See their Fig. 12 for the dependence of the limit on Δm and $\tan\beta$.

13 ABREU 00u studies decays induced by R-parity violating $LL\ell\ell$ couplings, using data from $\sqrt{s}=189$ GeV. They investigate topologies with multiple leptons, assuming one coupling at the time to be nonzero and giving rise to indirect decays. The limits assume a neutralino mass limit of 30 GeV, also derived in ABREU 00u. Updates ABREU 00i. Supersedes by ABDALLAH 04M.

14 ABREU 00v use data from $\sqrt{s}=130$–189 GeV to search for tracks with large impact parameter or visible decay vertices. Limits are obtained as a function of $m_{\tilde{G}}$, from a scan of the GMSB parameters space, after combining these results with the search for slepton pair production in the SUGRA framework from ABREU 01 to cover prompt decays and on stable particle searches from ABREU 00q. For limits at different $m_{\tilde{G}}$, see their Fig. 12.

15 BARATE 00G combines the search for acoplanar dileptons, leptons with large impact parameters, kinks, and stable heavy-charged tracks, assuming 3 flavors of degenerate sleptons, produced in the s-channel. Data collected at $\sqrt{s}=189$ GeV.

16 ACCIARRI 99i establish indirect limits on $m_{\tilde{F}_R}$ versus m_0 plane by their chargino and neutralino searches at $\sqrt{s}=130$–183 GeV. The situations where the $\tilde{\chi}_1^0$ is the LSP (indirect decays) and where a $\tilde{\ell}$ is the LSP (direct decays) were both considered. The weakest limit, quoted above, comes from direct decays with $UD\bar{D}$ couplings; $LL\ell\ell$ couplings or indirect decays lead to a stronger limit.

17 ACCIARRI 98f looked for acoplanar dielectron+E_T final states at $\sqrt{s}=130$–172 GeV. The limit assumes $\mu=-200$ GeV, and zero efficiency for decays other than $\tilde{e}_R \to e \tilde{\chi}_1^0$. See their Fig. 6 for the dependence of the limit on Δm.

18 BARATE 98k looked for $e^+e^-\gamma\gamma + E_T$ final states at $\sqrt{s}=161$–184 GeV. The limit assumes $\mu=-200$ GeV and $\tan\beta=2$ for the evaluation of the production cross section. See Fig. 4 for limits on the $(m_{\tilde{F}_R},m_{\tilde{\chi}_1^0})$ plane and for the effect of cascade decays.

19 BREITWEG 98 used positron+jet events with missing energy and momentum to look for $e^+ q \to \tilde{e} \tilde{q}$ via gaugino-like neutralino exchange with decays into $(e \tilde{\chi}_1^0)(q \tilde{\chi}_1^0)$. See paper for dependences in $m(q)$, $m(\tilde{\chi}_1^0)$.

20 AID 96c used positron+jet events with missing energy and momentum to look for $e^+ q \to \tilde{e} \tilde{q}$ via neutralino exchange with decays into $(e \tilde{\chi}_1^0)(q \tilde{\chi}_1^0)$. See the paper for dependences on $m(q)$, $m_{\tilde{\chi}_1^0}$.

$\tilde{\mu}$ (Smuon) MASS LIMIT

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>>91.0</td>
<td>1</td>
<td>ABBIENDI 04</td>
<td>OPAL</td>
<td>$\Delta m >3$ GeV, $\tilde{\mu}_R^+ \tilde{\mu}_R^-$. $</td>
</tr>
<tr>
<td>>96.7</td>
<td>2</td>
<td>ACHARD 04</td>
<td>L3</td>
<td>$\Delta m >10$ GeV, $\tilde{\mu}_R^+ \tilde{\mu}_R^-$. $</td>
</tr>
<tr>
<td>>94</td>
<td>3</td>
<td>ABDALLAH 03M</td>
<td>DLPH</td>
<td>$\Delta m >5$ GeV, $\tilde{\mu}_R^+ \tilde{\mu}_R^-$.</td>
</tr>
<tr>
<td>none 30–88</td>
<td>95</td>
<td>ABDALLAH 03M</td>
<td>DLPH</td>
<td>$\Delta m >15$ GeV, $\tilde{\mu}_R^+ \tilde{\mu}_R^-$.</td>
</tr>
<tr>
<td>>88</td>
<td>5</td>
<td>HEISTER 02E</td>
<td>ALEP</td>
<td>$\Delta m >10$ GeV, $\tilde{\mu}_R^+ \tilde{\mu}_R^-$.</td>
</tr>
</tbody>
</table>

* * * We do not use the following data for averages, fits, limits, etc. * * *

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>>74</td>
<td>6</td>
<td>ABAZOV 06i</td>
<td>D0</td>
</tr>
<tr>
<td>>87</td>
<td>7</td>
<td>ABBIENDI 04F</td>
<td>OPAL</td>
</tr>
<tr>
<td>>81</td>
<td>8</td>
<td>ABDALLAH 04M</td>
<td>DLPH</td>
</tr>
<tr>
<td>>81</td>
<td>9</td>
<td>HEISTER 03G</td>
<td>ALEP</td>
</tr>
<tr>
<td>>91.0</td>
<td>10</td>
<td>ABAZOV 02H</td>
<td>D0</td>
</tr>
</tbody>
</table>

HTTP://PDG.LBL.GOV Page 38 Created: 6/18/2012 15:10
limit at \(\tan\beta = 35\), the limit improves to 94.0 GeV for \(\Delta m > 4\) GeV. See Fig. 11 for the dependence of the limits on \(m_{\chi_1^0}\) at several values of the branching ratio. This limit supersedes ABBIENDI 00G.

2. ACHARD 04 search for \(\tilde{\mu}_R \tilde{\mu}_R\) production in acoplanar di-muon final states in the 192–209 GeV data. Limits on \(m_{\tilde{\mu}_R}\) are derived from a scan over the MSSM parameter space with universal GUT scale gaugino and scalar masses \(m_{1/2}\) and \(m_0\), \(2 \leq \tan\beta \leq 60\) and \(-2 \leq \mu \leq 2\) TeV. See Fig. 4 for the dependence of the limits on \(m_{\chi_1^0}\).

This limit supersedes ACCIARII 99W.

3. ABDALLAH 03M looked for acoplanar dimuon + \(E_T\) final states at \(\sqrt{s} = 189–208\) GeV. The limit assumes \(B(\tilde{\mu} \rightarrow \mu \chi_1^0) = 100\%\). See Fig. 16 for limits on the \((m_{\tilde{\mu}_R}, m_{\chi_1^0})\) plane. These limits include and update the results of ABREU 01.

4. ABDALLAH 03M uses data from \(\sqrt{s} = 192–208\) GeV to obtain limits in the framework of the MSSM with gaugino and sfermion mass universality at the GUT scale. An indirect limit on the mass is derived by constraining the MSSM parameter space by the results from direct searches for neutralinos (including cascade decays) and for sleptons. These limits are valid for values of \(M_2 < 1\) TeV, \(|\mu| < 1\) TeV with the \(\chi_1^0\) as LSP. The quoted limit is obtained when there is no mixing in the third family. See Fig. 43 for the mass limits as a function of \(\tan\beta\). These limits update the results of ABREU 00W.

5. HEISTER 02E looked for acoplanar dimuon + \(E_T\) final states from \(e^+ e^-\) interactions between 183 and 209 GeV. The mass limit assumes \(B(\tilde{\mu} \rightarrow \mu \chi_1^0) = 1\). See their Fig. 4 for the dependence of the limit on \(\Delta m\). These limits include and update the results of BARATE 01.

6. ABAZOV 06I looked in 380 pb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV for events with at least 2 muons and 2 jets for s-channel production of \(\tilde{\mu}\) or \(\tilde{\nu}\) and subsequent decay via \(R\) couplings \(LQD\). The data are in agreement with the SM expectation. They set limits on resonant slepton production and derive exclusion contours on \(\lambda_{211}^\mu\) in the mass plane of \(\tilde{\mu}\) versus \(\chi_1^0\), assuming a MSUGRA model with \(\tan\beta = 5, \mu < 0\) and \(A_0 = 0\), see their Fig. 3. For \(\lambda_{211}^\mu > 0.09\) slepton masses up to 358 GeV are excluded. Supersedes the results of ABAZOV 02H.

7. ABBIENDI 04F use data from \(\sqrt{s} = 189–208\) GeV. They derive limits on sparticle masses under the assumption of \(R\) with \(LLE\) or \(LQD\) couplings. The results are valid for \(\tan\beta = 1.5, \mu = -200\) GeV, with, in addition, \(\Delta m > 5\) GeV for indirect decays via \(LQD\). The limit quoted applies to direct decays with \(LLE\) couplings and improves to 75 GeV for \(LQD\) couplings. The limits on the \(m_{\tilde{\mu}_R}\) mass for indirect decays are respectively 94 and 87 GeV for \(LLE\) and \(LQD\) couplings and \(m_{\chi_1^0} = 10\) GeV. Supersedes the results of ABBIENDI 00.

8. ABDALLAH 04M use data from \(\sqrt{s} = 192–208\) GeV to derive limits on sparticle masses under the assumption of \(R\) with \(LLE\) or \(UDD\) couplings. The results are valid for \(\mu = -200\) GeV, \(\tan\beta = 1.5, \Delta m > 5\) GeV and assuming a BR of 1 for the given decay. The limit quoted is for indirect \(UDD\) decays using the neutralino constraint of 39.5 GeV for \(LLE\) and of 38.0 GeV for \(UDD\) couplings, also derived in ABDALLAH 04M. For indirect decays via \(LLE\) the limit improves to 90 GeV if the constraint from the neutralino is
used and remains at 87 GeV if it is not used. For indirect decays via $UD\bar{D}$ couplings it degrades to 85 GeV when the neutralino constraint is not used. Supersedes the result of ABREU 00u.

HEISTER 03G searches for the production of smuons in the case of $\tilde{\tau}$ prompt decays with LLE, $LQ\bar{D}$ or $UD\bar{D}$ couplings at $\sqrt{s} = 189–209$ GeV. The search is performed for direct and indirect decays, assuming one coupling at a time to be non-zero. The limit holds for direct decays mediated by $\tilde{\tau} LQ\bar{D}$ couplings and improves to 90 GeV for indirect decays (for $\Delta m > 10$ GeV). Limits are also given for LLE direct ($m_{\tilde{\mu}R} > 87$ GeV) and indirect decays ($m_{\tilde{\mu}R} > 96$ GeV for $m(\tilde{\chi}^0_1) > 23$ GeV from BARATE 98s) and for $UD\bar{D}$ indirect decays ($m_{\tilde{\mu}R} > 85$ GeV for $\Delta m > 10$ GeV). Supersedes the results from BARATE 01b.

ABAZOV 02H looked in 94 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s}=1.8$ TeV for events with at least 2 muons and 2 jets for s-channel production of $\tilde{\mu}$ or $\tilde{\nu}$ and subsequent decay via $\tilde{\mu}$ couplings $LQ\bar{D}$. A scan over the MSUGRA parameters is performed to exclude regions of the $(m_0, m_{1/2})$ plane, examples being shown in Fig. 2.

ACHARD 02 searches for the production of smuons in the case of $\tilde{\tau}$ prompt decays with LLE or $UD\bar{D}$ couplings at $\sqrt{s} = 189–208$ GeV. The search is performed for direct and indirect decays, assuming one coupling at the time to be nonzero. The limit holds for direct decays via LLE couplings. Stronger limits are reached for LLE indirect (87 GeV) and for $UD\bar{D}$ direct or indirect (86 GeV) decays.

BARATE 01 looked for acoplanar dimuon + E_T final states at 189 to 202 GeV. The limit assumes 100% branching ratio for $\tilde{\mu} \rightarrow \mu \tilde{\chi}^0_1$. See their Fig. 1 for the dependence of the limit on Δm. These limits include and update the results of BARATE 99Q.

ABBIENDI 00i looked for acoplanar dimuon + E_T final states at $\sqrt{s} = 161–183$ GeV. The limit assumes $\mathcal{B}(\tilde{\mu} \rightarrow \mu \tilde{\chi}^0_1)$=1. Using decay branching ratios derived from the MSSM, a lower limit of 65 GeV is obtained for $m < -100$ GeV and $\tan\beta$=1.5. See their Figs. 10 and 13 for the dependence of the limit on the branching ratio and on Δm.

ABREU 00v use data from $\sqrt{s}=130–189$ GeV to search for tracks with large impact parameter or visible decay vertices. Limits are obtained as function of $m_{\tilde{\tau}}^\tau$, after combining these results with the search for slepton pair production in the SUGRA framework from ABREU 01 to cover prompt decays and on stable particle searches from ABREU 00Q. For limits at different $m_{\tilde{\tau}}^\tau$, see their Fig. 12.

BARATE 98K looked for $\mu^+ \tilde{\mu} \gamma + E_T$ final states at $\sqrt{s}=161–184$ GeV. See Fig. 4 for limits on the $(m_{\tilde{\mu}R}, m_{\tilde{\chi}^0_1})$ plane and for the effect of cascade decays.

$\bar{\tau}$ (Stau) MASS LIMIT

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>>85.2</td>
<td>1</td>
<td>ABBIENDI 04</td>
<td>OPAL</td>
<td>$\Delta m > 6$ GeV, $\theta_{\tilde{\tau}=\pi/2}$, $</td>
</tr>
<tr>
<td>>78.3</td>
<td>2</td>
<td>ACHARD 04</td>
<td>L3</td>
<td>$\Delta m > 15$ GeV, $\theta_{\tilde{\tau}=\pi/2}$, $</td>
</tr>
<tr>
<td>>81.9</td>
<td>95</td>
<td>ABDALLAH 03M</td>
<td>DLPH</td>
<td>$\Delta m > 15$ GeV, all $\theta_{\tilde{\tau}}$</td>
</tr>
<tr>
<td>none $m_{\tilde{\tau}} - 26.3$</td>
<td>95</td>
<td>ABDALLAH 03M</td>
<td>DLPH</td>
<td>$\Delta m > m_{\tilde{\tau}}$, all $\theta_{\tilde{\tau}}$</td>
</tr>
<tr>
<td>>79</td>
<td>95</td>
<td>HEISTER 02E</td>
<td>ALEP</td>
<td>$\Delta m > 15$ GeV, $\theta_{\tilde{\tau}}=\pi/2$</td>
</tr>
<tr>
<td>>76</td>
<td>95</td>
<td>HEISTER 02E</td>
<td>ALEP</td>
<td>$\Delta m > 15$ GeV, $\theta_{\tilde{\tau}}=0.91$</td>
</tr>
</tbody>
</table>

- We do not use the following data for averages, fits, limits, etc.

>87.4	95	ABBIENDI 06B	OPAL	$\tau_{\tilde{R}} \rightarrow \tau \tilde{G}$, all $\tau(\tilde{\tau}_{\tilde{R}})$
>74	95	ABBIENDI 04F	OPAL	$\mathcal{R}, \mathcal{\tilde{R}}_L$
>68	95	ABBIENDI 04H	OPAL	$\mathcal{R}, \mathcal{\tilde{R}}_L$
>90	95	ABDALLAH 04M	DLPH	$\mathcal{R}, \mathcal{\tilde{R}}_L$, indirect, $\Delta m > 5$ GeV
>82.5	10	ABDALLAH 03D	DLPH	$\mathcal{\tilde{R}} \rightarrow \tau \tilde{G}$, all $\tau(\tilde{\tau}_{\tilde{R}})$
>70	95	HEISTER 03G	ALEP	$\mathcal{\tilde{R}}_L$, \mathcal{R} decay

HTTP://PDG.LBL.GOV
universal GUT scale gaugino and scalar masses $m_{\tilde{\chi}^0}$.

The results of ABBIENDI 00.7 ABDALLAH 04

A dedicated search was made for low mass $\tilde{\tau}$ decoupling from the Z^0. The limit assumes $B(\tilde{\tau} \rightarrow \tilde{\tau} \tilde{\chi}^0_1) = 100\%$. See Fig. 20 for limits on the $(m_{\tilde{\tau}}, m_{\tilde{\chi}^0_1})$ plane and as function of the $\tilde{\chi}^0_1$ mass and of the branching ratio. The limit in the low-mass region improves to 29.6 and 31.1 GeV for $m_{\tilde{\tau}}$ and $m_{\tilde{\chi}^0_1}$, respectively, at $\Delta m > m_{\tilde{\tau}}$. The limit in the high-mass region improves to 84.7 GeV for $m_{\tilde{\tau}}$ and $\Delta m > 15$ GeV. These limits include and update the results of ABREU 01.

4. HEISTER 02E looked for acoplanar ditaus $+ \ell e^-$ final states from $e^+ e^-$ interactions between 183 and 209 GeV. The mass limit assumes $B(\tilde{\tau} \rightarrow \tau \tilde{\chi}^0_1) = 100\%$. See their Fig. 4 for the dependence of the limit on Δm. These limits include and update the results of BARATE 01.

5. ABDALLAH 06B use 600 pb$^{-1}$ of data from $\sqrt{s} = 189-209$ GeV. They look for events from pair-produced staus in a GMSB scenario with $\tilde{\tau}$ NLSP including prompt $\tilde{\tau}$ decays to ditaus $+ \ell e^-$ final states, large impact parameters, kinked tracks and heavy stable charged particles. Limits on the cross-section are computed as a function of $m(\tilde{\tau})$ and the lifetime, see their Fig. 7. The limit is compared to the $\sigma \cdot BR^2$ from a scan over the GMSB parameter space.

6. ABDALLAH 04F use data from $\sqrt{s} = 189-209$ GeV. They derive limits on sparticle masses under the assumption of R with $LL\bar{E}$ or $LQ\bar{D}$ couplings. The results are valid for $\tan \beta = 1.5, \mu = -200$ GeV, with, in addition, $\Delta m > 5$ GeV for indirect decays via $LQ\bar{D}$. The limit quoted applies to direct decays with $LL\bar{E}$ couplings and improves to 75 GeV for $LQ\bar{D}$ couplings. The limit on the $m_{\tilde{\tau}}$ mass for indirect decays is 92 GeV for $LL\bar{E}$ couplings at $m_{\tilde{\chi}^0_1} = 10$ GeV and no exclusion is obtained for $LQ\bar{D}$ couplings. Supersedes the results of ABDALLAH 00.

7. ABDALLAH 04H use data from LEP 1 and $\sqrt{s} = 192-208$ GeV. They re-use results or re-analyze the data from ABDALLAH 03M to put limits on the parameter space of anomaly-mediated supersymmetry breaking (AMSB), which is scanned in the region $< m_{\tilde{\chi}^0_1} < 50$ TeV, $< m_{\tilde{\tau}} < 1000$ GeV, $1.5 < \tan \beta < 35$, both signs of μ. The constraints are obtained from the searches for mass degenerate chargino and neutralino, for SM-like and invisible Higgs, for leptonically decaying charginos and from the limit on non-SM Z width of 3.2 MeV. The limit is for $m_{\tilde{\tau}} = 174.3$ GeV (see Table 2 for other $m_{\tilde{\tau}}$ values).
The limit improves to 75 GeV for $\mu < 0$.

ABDALLAH 04M use data from $\sqrt{s} = 192–208$ GeV to derive limits on sparticle masses under the assumption of \tilde{t} with $L\bar{L}$ couplings. The results are valid for $\mu = -200$ GeV, $\tan\beta = 1.5$, $\Delta m > 5$ GeV and assuming a BR of 1 for the given decay. The limit quoted is for indirect decays using the neutralino constraint of 39.5 GeV, also derived in ABDALLAH 04M. For indirect decays via $L\bar{L}$ the limit decreases to 86 GeV if the constraint from the neutralino is not used. Supersedes the result of ABREU 00U.

ABDALLAH 03D use data from $\sqrt{s} = 130–208$ GeV to search for tracks with large impact parameter or visible decay vertices and for heavy charged stable particles. Limits are obtained as function of $m(\tilde{G})$, after combining these results with the search for slepton pair production in the SUGRA framework from ABDALLAH 03M to cover prompt decays. The above limit is reached for the stau decaying promptly, $m(\tilde{G}) < 6$ eV, and is computed for stau mixing yielding the minimal cross section. Stronger limits are obtained for longer lifetimes, See their Fig. 9. Supersedes the results of ABREU 01G.

HEISTER 03G searches for the production of stau in the case of \tilde{t} prompt decays with $L\bar{L}$, LQD or UDD couplings at $\sqrt{s} = 189–209$ GeV. The search is performed for direct and indirect decays, assuming one coupling at a time to be non-zero. The limit holds for indirect decays mediated by \tilde{R} UDD couplings with $\Delta m > 10$ GeV. Limits are also given for $L\bar{L}$ direct ($m_{\tilde{\tau}_R} > 87$ GeV) and indirect decays ($m_{\tilde{\tau}_R} > 95$ GeV for $m(\tilde{\chi}^0_1) > 23$ GeV from BARATE 98S) and for LQD indirect decays ($m_{\tilde{\tau}_R} > 76$ GeV). Supersedes the results from BARATE 01B.

ACHARD 02 searches for the production of staus in the case of \tilde{t} prompt decays with $L\bar{L}$ or UDD couplings at \sqrt{s}=189–208 GeV. The search is performed for direct and indirect decays, assuming one coupling at the time to be nonzero. The limit holds for direct decays via $L\bar{L}$ couplings. Stronger limits are reached for $L\bar{L}$ indirect (86 GeV) and for UDD direct or indirect (75 GeV) decays.

HEISTER 02R search for signals of GMSB in the 189–209 GeV data. For the $\tilde{\chi}^0_1$ NLSP scenario, they looked for topologies consisting of $\gamma\gamma\ell\ell$ or a single γ not pointing to the interaction vertex. For the ℓ NLSP case, the topologies consist of $\ell\ell\ell$, including leptons with large impact parameters, kinks, or stable particles. Limits are derived from a scan over the GMSB parameters (see their Table for the ranges). The limit remains valid whichever is the NLSP. The absolute mass bound on the $\tilde{\chi}^0_1$ for any lifetime includes indirect limits from the slepton search HEISTER 02E preformed within the MSUGRA framework. A bound for any NLSP and any lifetime of 77 GeV has also been derived by using the constraints from the neutral Higgs search in HEISTER 02. In the co-NLSP scenario, limits $m_{\tilde{E}_R} > 83$ GeV (neglecting t-channel exchange) and $m_{\tilde{\mu}_R} > 88$ GeV are obtained independent of the lifetime. Supersedes the results from BARATE 00G.

BARATE 01 looked for acoplanar ditau + E_T final states at 189 to 202 GeV. A slight excess (with 1.2% probability) of events is observed relative to the expected SM background. The limit assumes 100% branching ratio for $\tilde{\tau} \rightarrow \tau \tilde{\chi}^0_1$. See their Fig. 1 for the dependence of the limit on Δm. These limits include and update the results of BARATE 99Q.

ABBIENDI 00J looked for acoplanar ditau + E_T final states at \sqrt{s}= 161–183 GeV. The limit assumes $B(\tilde{\tau} \rightarrow \tau \tilde{\chi}^0_1)=1$. Using decay branching ratios derived from the MSSM, a lower limit of 60 GeV at $\Delta m > 9$ GeV is obtained for $\mu < -100$ GeV and $\tan\beta=1.5$. See their Figs. 11 and 14 for the dependence of the limit on the branching ratio and on Δm.

ABREU 00V use data from $\sqrt{s} =$ 130–189 GeV to search for tracks with large impact parameter or visible decay vertices. Limits are obtained as function of $m_{\tilde{G}}$, after combining these results with the search for slepton pair production in the SUGRA framework from ABREU 01 to cover prompt decays and on stable particle searches from ABREU 00Q. The above limit assumes the degeneracy of stau and smuon. For limits at different $m_{\tilde{G}}$, see their Fig. 12.
Degenerate Charged Sleptons

Unless stated otherwise in the comment lines or in the footnotes, the following limits assume 3 families of degenerate charged sleptons.

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>>93</td>
<td>95</td>
<td>1 BARATE 01 ALEP</td>
<td>∆m > 10 GeV, (\tilde{\tau}_R^+ \tilde{\tau}_R^-)</td>
<td></td>
</tr>
<tr>
<td>>70</td>
<td>95</td>
<td>1 BARATE 01 ALEP</td>
<td>all ∆m, (\tilde{\tau}_R^+ \tilde{\tau}_R^-)</td>
<td></td>
</tr>
</tbody>
</table>

We do not use the following data for averages, fits, limits, etc. • • •

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>>91.9</td>
<td>95</td>
<td>2 ABBIENDI 06B</td>
<td>OPAL</td>
<td>(\tilde{\ell}_R \rightarrow \ell \tilde{\chi}_1^0), all (\ell (\tilde{\ell}_R))</td>
</tr>
<tr>
<td>>88</td>
<td>95</td>
<td>3 ABDALLAH 03D</td>
<td>DLPH</td>
<td>(\tilde{\ell}_R \rightarrow \ell \tilde{\chi}_1^0), all (\ell (\tilde{\ell}_R))</td>
</tr>
<tr>
<td>>82.7</td>
<td>95</td>
<td>4 ACHARD 02</td>
<td>L3</td>
<td>(\tilde{\ell}_R), (\tilde{\chi}_1^0), (\ell \tilde{\chi}_1^0) decay, MSUGRA</td>
</tr>
<tr>
<td>>83</td>
<td>95</td>
<td>5 ABBIENDI 06B</td>
<td>OPAL</td>
<td>(e^+ e^- \rightarrow \ell_1 \bar{\ell}_1), GMSB, tan(\beta = 2)</td>
</tr>
<tr>
<td>>68.8</td>
<td>95</td>
<td>6 ABREU 01</td>
<td>DLPH</td>
<td>(\tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0), all (\ell (\tilde{\ell}_R))</td>
</tr>
<tr>
<td>>84</td>
<td>95</td>
<td>7 ACCIARRI 03D</td>
<td>L3</td>
<td>(\tilde{\ell}_R \rightarrow R(0.7 \leq \tan \beta \leq 40))</td>
</tr>
<tr>
<td>>162</td>
<td>95</td>
<td>8 ABREU 00V</td>
<td>DLPH</td>
<td>(\tilde{\ell}_R \rightarrow \ell \tilde{\chi}_1^0), all (\ell (\tilde{\ell}_R))</td>
</tr>
</tbody>
</table>

1 BARATE 01 looked for acoplanar dilepton + \(\not{E}_T \) and single electron (for \(e_R \tilde{\ell}_L \)) final states at 189 to 202 GeV. The limit assumes \(\mu = -200 \) GeV and \(\tan \beta = 2 \) for the production cross section and decay branching ratios, evaluated within the MSSM, and zero efficiency for decays other than \(\tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0 \). The sleptons masses are determined from the GUT relations without tau mixing. See their Fig. 1 for the dependence of the limit on \(\Delta m \).

2 ABBIENDI 06B use 600 pb\(^{-1} \) of data from \(\sqrt{s} = 189-209 \) GeV. They look for events from pair-produced staus in a GMSB scenario with \(\tilde{\ell} \) co-NLSP including prompt \(\tilde{\tau}_R \) decays to dileptons + \(\not{E}_T \) final states, large impact parameters, kinked tracks and heavy stable charged particles. Limits on the cross-section are computed as a function of \(m(\tilde{\ell}) \) and the lifetime, see their Fig. 7. The limit is compared to the \(\sigma \cdot BR^2 \) from a scan over the GMSB parameter space. The highest mass limit is reached for \(\tilde{\ell}_R \rightarrow \ell \tilde{\chi}_1^0 \), from which the quoted mass limit is derived by subtracting \(m_{\tilde{\tau}_R} \).

3 ABDALLAH 03D use data from \(\sqrt{s} = 130-208 \) GeV to search for tracks with large impact parameter or visible decay vertices and for heavy charged stable particles. Limits are obtained as function of \(m(\tilde{\chi}_1^0) \), after combining these results with the search for slepton pair production in the SUGRA framework from ABDALLAH 03M to cover prompt decays. The above limit is reached for prompt decays and assumes the degeneracy of the sleptons. For limits at different \(m(\tilde{\chi}_1^0) \), see their Fig. 9. Supersedes the results of ABREU 01G.

4 ACHARD 02 searches for the production of sparticles in the case of \(\tilde{\tau} \) prompt decays with LLE or UDD couplings at \(\sqrt{s} = 189-208 \) GeV. The search is performed for direct and indirect decays, assuming one coupling at the time to be nonzero. The MSUGRA limit results from a scan over the MSSM parameter space with the assumption of gaugino and scalar mass unification at the GUT scale and no mixing in the slepton sector, imposing...
simultaneously the exclusions from neutralino, chargino, sleptons, and squarks analyses. The limit holds for $ll\ell\bar{\ell}$ couplings and increases to 88.7 GeV for μDD couplings. For L3 limits from $QD\bar{D}$ couplings, see ACCIARRI 01.

5 ABBIENDI 01 looked for final states with $\gamma\gamma', \ell\ell', $ with possibly additional activity and four leptons + E_T to search for prompt decays of $\tilde{\chi}_1^0$ or $\tilde{\ell}_1$ in GMSB. They derive limits in the plane ($m_{\tilde{\chi}_1^0}, m_{\tilde{\ell}_1}$), see Fig. 6, allowing either the $\tilde{\chi}_1^0$ or a $\tilde{\ell}_1$ to be the NLSP.

Two scenarios are considered: \tan\beta=2 with the 3 sleptons degenerate in mass and \tan\beta=20 where the $\tilde{\tau}_1$ is lighter than the other sleptons. Data taken at $\sqrt{s}=189$ GeV. For \tan\beta=20, the obtained limits are $m_{\tilde{\chi}_1^0} > 69$ GeV and $m_{\tilde{\ell}_1, \tilde{\mu}_1} > 88$ GeV.

5 ABREU 01 looked for acoplanar dilepton + diphoton + E_T final states from $\tilde{\ell}$ cascade decays at $\sqrt{s}=130-189$ GeV. See Fig. 9 for limits on the (μ, M_2) plane for $m_{\tilde{\ell}}=80$ GeV, $\tan\beta=1.0$, and assuming degeneracy of $\tilde{\mu}$ and $\tilde{\ell}$.

6 ACCIARRI 01 searches for multi-lepton and/or multi-jet final states from R prompt decays with $ll\ell\bar{\ell}$, $LQ\bar{D}$, or UDD couplings at $\sqrt{s}=189$ GeV. The search is performed for direct and indirect decays of neutralinos, charginos, and scalar leptons, with the $\tilde{\chi}_1^0$ or a $\tilde{\ell}$ as LSP and assuming one coupling to be nonzero at a time. Mass limits are derived using simultaneously the constraints from the neutralino, chargino, and slepton analyses; and the Z^0 width measurements from ACCIARRI 00c in a scan of the parameter space assuming MSUGRA with gaugino and scalar mass universality. Updates and supersedes the results from ACCIARRI 99.

7 ABREU 00v use data from $\sqrt{s}=130-189$ GeV to search for tracks with large impact parameter or visible decay vertices. Limits are obtained as function of m_G, after combining these results with the search for slepton pair production in the SUGRA framework from ABREU 01 to cover prompt decays and on stable particle searches from ABREU 00q. For limits at different m_G, see their Fig. 12.

9 The above limit assumes the degeneracy of stau and smuon.

Long-lived $\tilde{\ell}$ (Slepton) MASS LIMIT

Limits on scalar leptons which leave detector before decaying. Limits from Z decays are independent of lepton flavor. Limits from continuum e^+e^- annihilation are also independent of flavor for smuons and staus. Selectron limits from e^+e^- collisions in the continuum depend on MSSM parameters because of the additional neutralino exchange contribution.

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 98</td>
<td>95</td>
<td>1 ABBIENDI 03L</td>
<td>OPAL</td>
<td>$\tilde{\mu}_R$, $\tilde{\tau}_R$</td>
</tr>
<tr>
<td>none 2–87.5</td>
<td>95</td>
<td>2 ABREU 00Q</td>
<td>DLPH</td>
<td>$\tilde{\mu}_R$, $\tilde{\tau}_R$</td>
</tr>
<tr>
<td>> 81.2</td>
<td>95</td>
<td>3 ACCIARRI 99H</td>
<td>L3</td>
<td>$\tilde{\mu}_R$, $\tilde{\tau}_R$</td>
</tr>
<tr>
<td>> 81</td>
<td>95</td>
<td>4 BARATE 98K</td>
<td>ALEP</td>
<td>$\tilde{\mu}_R$, $\tilde{\tau}_R$</td>
</tr>
</tbody>
</table>

- We do not use the following data for averages, fits, limits, etc.

1 ABBIENDI 03L used e^+e^- data at $\sqrt{s} = 130–209$ GeV to select events with two high momentum tracks with anomalous dE/dx. The excluded cross section is compared to the theoretical expectation as a function of the heavy particle mass in their Fig. 3. The limit improves to 98.5 GeV for $\tilde{\mu}_L$ and $\tilde{\tau}_L$. The bounds are valid for colorless spin 0 particles with lifetimes longer than 10^{-6} s. Supersedes the results from ACKERSTAFF 98p.

2 ABREU 00q searches for the production of pairs of heavy, charged stable particles in e^+e^- annihilation at $\sqrt{s}=130–189$ GeV. The upper bound improves to 88 GeV for $\tilde{\mu}_L$, $\tilde{\tau}_L$. These limits include and update the results of ABREU 98p.

3 ACCIARRI 99h searched for production of pairs of back-to-back heavy charged particles at $\sqrt{s}=130–183$ GeV. The upper bound improves to 82.2 GeV for $\tilde{\mu}_L$, $\tilde{\tau}_L$.

Citation: J. Beringer et al. (Particle Data Group), Phys. Rev. D**86**, 010001 (2012) (URL: http://pdg.lbl.gov)
The BARATE 98k mass limit improves to 82 GeV for $\tilde{\mu}_L\tilde{\tau}_L$. Data collected at $\sqrt{s}=161-184$ GeV.

AAD 11P looked in 37 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 7$ TeV for events with two heavy stable particles, reconstructed in the Inner tracker and the Muon System and identified by their time of flight in the Muon System. No evidence for an excess over the SM expectation is observed. Limits on the mass are derived, see Fig. 3, for $\tilde{\tau}$ in a GMSB scenario and for sleptons produced by electroweak processes only, in which case the limit degrades to 110 GeV.

\bar{q} (Squark) MASS LIMIT

For $m_{\bar{q}} > 60-70$ GeV, it is expected that squarks would undergo a cascade decay via a number of neutralinos and/or charginos rather than undergo a direct decay to photinos as assumed by some papers. Limits obtained when direct decay is assumed are usually higher than limits when cascade decays are included.

Limits from e^+e^- collisions depend on the mixing angle of the lightest mass eigenstate $q_1 = \tilde{q}_R \sin \theta_q + \tilde{q}_L \cos \theta_q$. It is usually assumed that only the sbottom and stop squarks have non-trivial mixing angles (see the stop and sbottom sections). Here, unless otherwise noted, squarks are always taken to be either left/right degenerate, or purely of left or right type. Data from Z decays have set squark mass limits above 40 GeV, in the case of $\bar{q} \rightarrow q \tilde{\chi}_1$ decays if $\Delta m = m_{\bar{q}} - m_{\tilde{\chi}_1} > 5$ GeV. For smaller values of Δm, current constraints on the invisible width of the Z ($\Delta \Gamma_{\text{inv}} < 2.0$ MeV, LEP 00) exclude $m_{\tilde{u}_{L,R}} < 44$ GeV, $m_{\tilde{d}_{R}} < 33$ GeV, $m_{\tilde{d}_{L}} < 44$ GeV and, assuming all squarks degenerate, $m_{\tilde{q}} < 45$ GeV.

Limits made obsolete by the most recent analyses of e^+e^-, $p\bar{p}$, and $e p$ collisions can be found in previous Editions of this Review.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>>1100</td>
<td>95</td>
<td>5 CHATRCHYAN 11w CMS</td>
<td>jets + E_T, CMSSM</td>
<td></td>
</tr>
<tr>
<td>392</td>
<td>95</td>
<td>6 AALTONEN 09s CDF</td>
<td>jets+E_T, $m_q^2=m_{\tilde{g}}^2$</td>
<td></td>
</tr>
<tr>
<td>379</td>
<td>95</td>
<td>7 ABAZOV 08g D0</td>
<td>jets+E_T, $\tan\beta=3$, $\mu<0$, $A_0=0$, any $m_{\tilde{g}}$</td>
<td></td>
</tr>
<tr>
<td>99.5</td>
<td>95</td>
<td>8 ACHARD 04 L3</td>
<td>$\Delta m > 10$ GeV, $e^+e^- \rightarrow q_Rq_R\bar{q}_L\bar{q}_L$</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>95</td>
<td>8 ACHARD 04 L3</td>
<td>$\Delta m > 10$ GeV, $e^+e^- \rightarrow q_Rq_R\bar{q}_L\bar{q}_L$</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>95</td>
<td>9 ABBOTT 01D D0</td>
<td>$\ell\ell+$jets+E_T, $\tan\beta < 10$, $m_0 < 300$ GeV, $\mu < 0$, $A_0=0$</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>95</td>
<td>9 ABBOTT 01D D0</td>
<td>$\tan\beta=2$, $m_{\tilde{g}}=m_{\tilde{q}}$, $\mu<0$, $A_0=0$, $\ell\ell+$jets+E_T</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>95</td>
<td>10 BARATE 01 ALEP</td>
<td>$e^+e^- \rightarrow \tilde{q}\tilde{q}$, $\Delta m > 6$ GeV</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>95</td>
<td>11 ABE 96D CDF</td>
<td>$m_{\tilde{g}} \leq m_{\tilde{q}}$; with cascade decays, $\ell\ell+$jets+E_T</td>
<td></td>
</tr>
</tbody>
</table>

We do not use the following data for averages, fits, limits, etc.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12 CHATRCHYAN 12 CMS</td>
<td>e, μ, jets, razor, CMSSM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 AAD 11AE ATLAS</td>
<td>$\ell^+\ell^\pm$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 AAD 11AF ATLAS</td>
<td>≥ 6 jets + E_T, CMSSM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>95</td>
<td>15 AARON 11 H1</td>
<td>$e^-p \rightarrow d_R, R, LQ\bar{D}, \lambda^2=0.3$</td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>95</td>
<td>16 AARON 11 H1</td>
<td>$e^+p \rightarrow \tilde{u}_L, R, LQ\bar{D}, \lambda^2=0.3$</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>95</td>
<td>17 CHATRCHYAN 11AC CMS</td>
<td>jets + E_T, CMSSM</td>
<td></td>
</tr>
<tr>
<td>18 CHATRCHYAN 11c CMS</td>
<td>$\tilde{q} \rightarrow X\tilde{\chi}^0_2 \rightarrow X\ell^+\ell^-\tilde{\chi}^0_1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 CHATRCHYAN 11g CMS</td>
<td>$\tilde{\chi}^0_2 \rightarrow \gamma\tilde{G}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 CHATRCHYAN 11q CMS</td>
<td>$\ell +$ jets + E_T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 CHATRCHYAN 11v CMS</td>
<td>GMSB scenario, \tilde{t} co-NLSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 CHATRCHYAN 11w CMS</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 KHACHATRYAN...11i CMS</td>
<td>jets + E_T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 ABAZOV 09s D0</td>
<td>$\ell\ell+\tau+E_T$, $\tan\beta=15$, $\mu<0$, $A_0=-2m_0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 SCHAEF 07A ALEP</td>
<td>$d_R, R, \lambda=0.3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>95</td>
<td>26 CHEKANOV 05a ZEUS</td>
<td>$\tilde{q} \rightarrow \mu q, R, LQ\bar{D}, \lambda=0.3$</td>
<td></td>
</tr>
<tr>
<td>544</td>
<td>95</td>
<td>26 CHEKANOV 05a ZEUS</td>
<td>$\tilde{q} \rightarrow \tau q, R, LQ\bar{D}, \lambda=0.3$</td>
<td></td>
</tr>
<tr>
<td>273</td>
<td>95</td>
<td>27 AKTAS 04D H1</td>
<td>$e^+p \rightarrow \tilde{u}_L, R, LQ\bar{D}$</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>95</td>
<td>27 AKTAS 04D H1</td>
<td>$e^+p \rightarrow \tilde{d}_R, R, LQ\bar{D}$</td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>95</td>
<td>28 ADLOFF 03 H1</td>
<td>$e^+p \rightarrow \tilde{q}, R, LQ\bar{D}$</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>95</td>
<td>29 CHEKANOV 03b ZEUS</td>
<td>$d \rightarrow e^\pm u, \nu, d, R, LQ\bar{D}, \lambda > 0.1$</td>
<td></td>
</tr>
<tr>
<td>276</td>
<td>95</td>
<td>29 CHEKANOV 03b ZEUS</td>
<td>$u \rightarrow e^\pm d, R, LQ\bar{D}, \lambda > 0.1$</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>95</td>
<td>30 HEISTER 03G ALEP</td>
<td>\tilde{u}_R, R decay</td>
<td></td>
</tr>
<tr>
<td>82.5</td>
<td>95</td>
<td>30 HEISTER 03G ALEP</td>
<td>\tilde{d}_R, R decay</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>95</td>
<td>31 ABAZOV 02F D0</td>
<td>$\tilde{q}, R \lambda^{2j}{2j}$ indirect decays, $\tan\beta=2$, any $m{\tilde{g}}$</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>95</td>
<td>31 ABAZOV 02F D0</td>
<td>$\tilde{q}, R \lambda^{2j}{2j}$ indirect decays, $\tan\beta=2$, $m{\tilde{q}}=m_{\tilde{g}}$</td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>95</td>
<td>31 ABAZOV 02F D0</td>
<td>$\rho \rightarrow \tilde{g}\tilde{g}, \tilde{g}\tilde{q}$</td>
<td></td>
</tr>
</tbody>
</table>

HTTP://PDG.LBL.GOV Page 46 Created: 6/18/2012 15:10
none 80–121
33 ABBIENDI 02 OPAL $e^\gamma \to \bar{u}_L, R LQ\overline{D}$, $\lambda=0.3$
none 80–158
33 ABBIENDI 02 OPAL $e^\gamma \to d_R, R LQ\overline{D}$, $\lambda=0.3$
none 80–185
34 ABBIENDI 02b OPAL $e^\gamma \to \bar{u}_L, R LQ\overline{D}$, $\lambda=0.3$
none 80–196
34 ABBIENDI 02b OPAL $e^\gamma \to d_R, R LQ\overline{D}$, $\lambda=0.3$
> 79
35 ACHARD 02 L3 \bar{u}_R, R decays
> 55
36 ACHARD 02 L3 d_R, R decays
> 263
36 CHEKANOV 02 ZEUS $\bar{u}_L \to \mu q, R, LQ\overline{D}$, $\lambda=0.3$
> 258
36 CHEKANOV 02 ZEUS $\bar{u}_L \to \tau q, R, LQ\overline{D}$, $\lambda=0.3$
> 82
37 BARATE 01b ALEP \bar{u}_R, R decays
> 68
37 BARATE 01b ALEP d_R, R decays
none 150–204
38 BREITWEG 01 ZEUS $e^+ p \to d_R, R LQ\overline{D}$, $\lambda=0.3$
> 200
39 ABBOTT 00c D0 $\bar{u}_L, R, \lambda'_{2jk}$ decays
> 180
39 ABBOTT 00c D0 $\bar{d}_R, R, \lambda'_{2jk}$ decays
> 390
40 ACCHIARRI 00p L3 $e^+ e^- \to q\overline{q}, R$, $\lambda=0.3$
> 148
41 AFFOLDER 00k CDF $\bar{d}_L, R \lambda'_{ij3}$ decays
none 200
42 BARATE 00i ALEP $e^+ e^- \to q\overline{q}, R$, $\lambda=0.3$
none 150–269
43 BREITWEG 00e ZEUS $e^+ p \to \bar{u}_L, R, LQ\overline{D}$, $\lambda=0.3$
> 240
44 ABBOTT 99 D0 $\tilde{q} \to \tilde{\chi}^0_2 \chi^+ \chi^0, m_{\tilde{\chi}^0_2} - m_{\chi^0} > 20$ GeV
> 320
44 ABBOTT 99 D0 $\tilde{q} \to \chi^0_1 \chi^0_1 \gamma, m_{\chi^0_1} - m_{\chi^0} > 20$ GeV
> 243
45 ABBOTT 99k D0 any $m_{\tilde{g}}, R$, $\tan\beta=2$, $\mu < 0$
> 250
46 ABBOTT 99l D0 $\tan\beta=2, \mu < 0, A=0$, jets+$E_T$
> 200
47 ABE 99m CDF $p\overline{p} \to \tilde{q} \overline{q}, R$
none 80–134
48 ABREU 99g DLP $e^+ \to u_L, R LQ\overline{D}$, $\lambda=0.3$
none 80–161
48 ABREU 99g DLP $e^+ \to d_R, R LQ\overline{D}$, $\lambda=0.3$
> 225
49 ABBOTT 98e D0 $\bar{u}_L, R, \lambda'_{1jk}$ decays
> 204
49 ABBOTT 98e D0 $\bar{d}_R, R, \lambda'_{1jk}$ decays
> 79
49 ABBOTT 98e D0 d_L, R, λ'_{ij3} decays
> 202
50 ABBOTT 98s CDF $\tilde{u}_L, R \lambda'_{2jk}$ decays
> 160
50 ABE 98s CDF $\tilde{d}_R, R \lambda'_{2jk}$ decays
> 140
51 ACKERSTAFF 98v OPAL $e^+ e^- \to q\overline{q}, R$, $\lambda=0.3$
> 77
52 BREITWEG 98 ZEUS $m_{\tilde{q}}=m_{\tilde{e}^\prime}, m(\tilde{\chi}^0_1) = 40$ GeV
53 DATTA 97 THEO $\tilde{\chi}^0_1$'s lighter than $\tilde{\chi}^0_1 > \tilde{\chi}^0_2 > \tilde{\chi}^0_1$
> 216
54 DERRICK 97 THEO $e^+ p \to q, \overline{q}, \mu_j, \tilde{q}, R$
none 130–573
55 HEWETT 97 THEO $q\overline{q} \to q^* \bar{q}, \tilde{q} \to q \bar{g}$, with a light gluino
none 190–650
56 TEREKHOV 97 THEO $q\overline{g} \to q\bar{g}, \tilde{g} \to q \bar{g}$, with a light gluino
> 63
57 AID 96c H1 $m_{\tilde{q}}=m_{\tilde{e}^\prime}, m_{\tilde{\chi}^0_1} = 35$ GeV
none 330–400
58 TEREKHOV 96 THEO $u\overline{g} \to \bar{u}g, \bar{u} \to u\overline{g}$ with a light gluino
> 176
59 ABACHI 95c D0 Any $m_{\tilde{g}} < 300$ GeV; with cascade decays
> 90
60 ABE 95t CDF $\tilde{q} \to \tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 \gamma$
> 90
61 ABE 92l CDF $\tilde{q} \to \tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 \gamma$
1 AAD 11B looked in 35 pb\(^{-1}\) of \(pp\) collisions at \(\sqrt{s} = 7\) TeV for events with same or opposite charge dileptons (\(e\) or \(\mu\)) and \(\not{E}_T\) from the production of squarks and gluinos with leptonic decays from \(\tilde{\chi}_1^\pm\) or \(\tilde{\chi}_2^0\). No evidence for an excess over the SM expectation is observed, and limits are derived in the CMSSM \((m_0, m_{1/2})\) plane (see Fig. 2) and in the \((m_{\tilde{g}}, m_{\tilde{q}})\) plane under the assumptions \(\tan\beta = 4, \mu = 1.5\) M, \(m_{\tilde{\chi}_2^0} = M - 100\) GeV, \(m_{\tilde{\chi}_L^0} = M/2, m_{\tilde{\chi}_R^0} = 100\) GeV, where \(M = \min(m_{\tilde{g}}, m_{\tilde{q}})\) (see Fig. 3). The exclusion limit for a compressed spectrum is 590 GeV for the same charge and 450 GeV for the opposite charge events.

2 AAD 11C looked in 35 pb\(^{-1}\) of \(pp\) collisions at \(\sqrt{s} = 7\) TeV for events with jets, same flavor opposite charge dileptons (\(e\) or \(\mu\)) and \(\not{E}_T\) from the production of squarks and gluinos with decays \(\tilde{q} \rightarrow q \tilde{\chi}_2^0\) and \(\tilde{\chi}_2^0 \rightarrow \ell^+ \ell^- \tilde{\chi}_1^0\). No evidence for an excess over the SM expectation is observed, and a limit is derived in the \((m_{\tilde{g}}, m_{\tilde{q}})\) plane under the assumptions \(\tan\beta = 4, \mu = 1.5\) M, \(m_{\tilde{\chi}_2^0} = M - 100\) GeV, \(m_{\tilde{\chi}_L^0} = M/2, m_{\tilde{\chi}_R^0} = 100\) GeV, where \(M = \min(m_{\tilde{g}}, m_{\tilde{q}})\). The excluded mass region is shown in a plane of \((m_{\tilde{g}}, m_{\tilde{q}})\) (see Fig. 3). The exclusion limit for a compressed spectrum is 503 GeV.

3 AAD 11G looked in 35 pb\(^{-1}\) of \(pp\) collisions at \(\sqrt{s} = 7\) TeV for events with a single lepton (\(e\) or \(\mu\)), jets and \(\not{E}_T\) from the production of squarks and gluinos. No evidence for an excess over the SM expectation is observed, and a limit is derived in the CMSSM \((m_0, m_{1/2})\) plane for \(\tan\beta = 3\), see Fig. 2.

4 AAD 11N looked in 35 pb\(^{-1}\) of \(pp\) collisions at \(\sqrt{s} = 7\) TeV for events with \(\geq 2\) jets and \(\not{E}_T\). Four signal regions were defined, and the background model was found to be in good agreement with the data. Limits are derived in the \((m_{\tilde{g}}, m_{\tilde{q}})\) plane (see Fig. 2) for a simplified model where degenerate masses of the squarks of the first two generations are assumed, \(m_{\tilde{\chi}_1^0} = 0\), and all other masses including third generation squarks are set to 5 TeV. Limits are also derived in the CMSSM \((m_0, m_{1/2})\) plane (see Fig. 3) for \(\tan\beta = 3\).

5 CHATRCHYAN 11W looked in 1.14 fb\(^{-1}\) of \(pp\) collisions at \(\sqrt{s} = 7\) TeV for events with \(\geq 2\) jets, large total jet energy, and \(\not{E}_T\). After combining multi-jet events into two pseudo-jets signal events are selected by a cut on \(\alpha_T = E_T^2/M_T\), the transverse energy of the less energetic jet over the transverse mass. Given the lack of an excess over the SM backgrounds, limits are derived in the CMSSM \((m_0, m_{1/2})\) plane (see Fig. 4) for \(\tan\beta = 10\). The limits are only weakly dependent on \(\tan\beta\) and \(\Lambda_0\).

6 AALTONEN 09S searched in 2 fb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV for events with at least 2 jets and \(\not{E}_T\). No evidence for a signal is observed. A limit is derived for a mSUGRA scenario in the \(m_{\tilde{g}}\) versus \(m_{\tilde{q}}\) plane, see their Fig. 2. For \(m_{\tilde{g}} < 340\) GeV the bound increases to 400 GeV.

7 ABAZOV 08G looked in 2.1 fb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV for events with acoplanar jets or multijets with large \(\not{E}_T\). No significant excess was found compared to the background expectation. A limit is derived on the masses of squarks and gluinos for specific MSUGRA parameter values, see Figure 3. Similar results would be obtained for a large class of parameter sets. Supersedes the results of ABAZOV 06C.

8 ACHARD 04 search for the production of \(q\bar{q}\) of the first two generations in acoplanar di-jet final states in the 192–209 GeV data. Degeneracy of the squark masses is assumed either for both left and right squarks or for right squarks only, as well as \(B(q \rightarrow q \tilde{\chi}_1^0) = 1\). See Fig. 7 for the dependence of the limits on \(m_{\tilde{\chi}_1^0}\). This limit supersedes ACCHARI 99V.

9 ABBOTT 01D looked in \(\sim 108\) pb\(^{-1}\) of \(p\bar{p}\) collisions at \(1.8\) TeV for events with \(e\), \(\mu\), or \(e\mu\) accompanied by at least 2 jets and \(\not{E}_T\). Excluded regions are obtained in the
MSUGRA framework from a scan over the parameters $0 < m_0 < 300$ GeV, $10 < m_1/2 < 110$ GeV, and $1.2 < \tan\beta < 10$.

10 BARATE 01 looked for acoplanar dijets + E_T final states at 189 to 202 GeV. The limit assumes $B(q \rightarrow q' \chi^0_1) = 1$, with $\Delta m = m_{\tilde{q}} - m_{\chi^0_1}$. It applies to $\tan\beta = 4$, $\mu = -400$ GeV. See their Fig. 2 for the exclusion in the $(m_{\tilde{q}}, m_{\tilde{g}})$ plane. These limits include and update the results of BARATE 99.

11 ABE 96 searched for production of gluinos and five degenerate squarks in final states containing a pair of leptons, two jets, and missing E_T. The two leptons arise from the semileptonic decays of charginos produced in the cascade decays. The limit is derived for fixed $\tan\beta = 4.0$, $\mu = -400$ GeV, and $m_{H^+} = 500$ GeV, and with the cascade decays of the squarks and gluinos calculated within the framework of the Minimal Supergravity scenario.

12 CHATRCHYAN 12 looked in 35 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with e and/or μ and/or jets, a large total transverse energy, and E_T. The event selection is based on the dimensionless razor variable R, related to the E_T and M_R, an indicator of the heavy particle mass scale. No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM $(m_0, m_{1/2})$ plane for $\tan\beta = 3, 10$ and 50 (see Figs. 7 and 8). Limits are also obtained for Simplified Model Spectra.

13 AAD 11A looked in 34 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 2 same charge isolated leptons (e, μ) and ≥ 1 jet. They are assumed to come from $q\bar{q}$ production, where the q decays to χ^+_1 or χ^0_2 with equal branching ratios, followed by the decays $\tilde{\chi}^{\pm}_1 \rightarrow W^\pm \tilde{\chi}^0_1$ and $\tilde{\chi}^0_2 \rightarrow Z^0 \tilde{\chi}^0_1$. No evidence for an excess over the expected background is observed. Limits are derived on the cross sections as a function of the masses of the $\tilde{q}, \tilde{\chi}^+_1/\tilde{\chi}^0_2$ and $\tilde{\chi}^0_1$ (see Fig. 9 and 10).

14 AAD 11F looked in 1.34 fb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with 6 up to 8 jets and E_T. No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM $(m_0, m_{1/2})$ plane for $\tan\beta = 10$ (see Fig. 5). The limit improves to $m_{\tilde{g}} > 680$ GeV for $m_{\tilde{q}} = 2 m_{\tilde{g}}$.

15 AARON 11 looked in 255 pb$^{-1}$ of e^+p and 183 pb$^{-1}$ of e^-p collisions at $\sqrt{s} = 319$ GeV for events with at least 1 lepton and jets from R_P violation with LQD couplings, assuming dominance of a single λ^0_{ijk} coupling. No evidence for an excess over the SM expectation is observed, and limits are derived in the $(\lambda^0, m_{\tilde{q}})$ plane for the MSSM with $\tan\beta = 6$, see their Figs. 7 and 8. Limits are also derived in a CMSSM-type scenario.

16 AARON 11C looked in 281 pb$^{-1}$ of e^+p and 165 pb$^{-1}$ of e^-p collisions at $\sqrt{s} = 319$ GeV and $\sqrt{s} = 301$ GeV for contact interactions measured from deviations of the $d\sigma/dQ^2$ of neutral current events. They are interpreted in the framework of R-parity violation with LQD couplings. No evidence for an excess over the SM expectation is observed, and limits are derived for $m_{\tilde{q}}/\lambda^0$, see Table 4.

17 CHATRCHYAN 11AC looked in 36 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 3 jets, a large total transverse energy, and E_T. No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM $(m_0, m_{1/2})$ plane and the $(m_{\tilde{g}}, m_{\tilde{q}})$ plane for $\tan\beta = 10$ (see Fig. 10). Limits are also obtained for Simplified Model Spectra.

18 CHATRCHYAN 11C looked in 34 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with opposite charge isolated dileptons (e or μ), jets and E_T from pair production of g and \tilde{q}. No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM $(m_0, m_{1/2})$ plane for $\tan\beta = 3$ (see Fig. 4).
19. CHATRCHYAN 11G looked in $36 \, \text{pb}^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 2 isolated photons, ≥ 1 jet and E_T, which may arise in a generalized gauge mediated model of the decay of a $\tilde{\chi}_1^0$ NLSP. No evidence for an excess over the expected background is observed. Limits are derived in the plane of squark versus gluino mass (see Fig. 4) for several values of $m_\chi^0 - m_{\tilde{t}_1}$. No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM ($m_0, m_{1/2}$) plane for $\tan\beta = 10$ (see Fig. 7).

20. CHATRCHYAN 11G looked in $36 \, \text{pb}^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 3 isolated leptons (e, μ, τ), with or without jets and E_T. Multi-lepton final states originate from $q \to \tilde{\chi}^0 + X$, followed by $\tilde{\chi}^0 \to \ell \pm \ell' \mp$ and $\ell \to \ell' G$. No evidence for an excess over the expected background is observed. Limits are derived (see Fig. 4) for a GMSB-type scenario with mass-degenerate right-handed sleptons (slepton co-NLSP scenario).

21. CHATRCHYAN 11G looked in $35 \, \text{pb}^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 3 isolated leptons (e, μ, τ), where or without jets and E_T. No evidence for an excess over the expected background is observed. Limits are derived in the R framework (see Fig. 4) in the $(m_\tilde{q}, m_{\tilde{q}'})$ plane assuming the dominance of a λ_{122} or λ_{123} coupling. $m_\chi^0 = 300$ GeV, $m_{\tilde{t}} = 1000$ GeV, and decoupled wino and Higgsino.

22. CHATRCHYAN 11G looked in $35 \, \text{pb}^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 2 jets and E_T. After combining multi-jet events into two pseudo-jets signal events are selected by a cut on $\alpha_T = E_T^{\text{jett1}}/M_T$, the transverse energy of the less energetic jet over the transverse mass. No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM ($m_0, m_{1/2}$) plane (see Fig. 5) for $\tan\beta = 3$. Supersedes by CHATRCHYAN 11w.

23. KHAHCATRYAN 11G looked in $35 \, \text{pb}^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 2 jets and E_T. No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM ($m_0, m_{1/2}$) plane (see Fig. 5) for $\tan\beta = 3$. Supersedes by CHATRCHYAN 11w.

24. ABAZOV 09S looked in $0.96 \, \text{fb}^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV for events with at least 2 jets, a tau decaying hadronically and E_T from the production $q\bar{q} \to \ell R$ with the taut originating from the decay of a $\tilde{\chi}_2^0$ or $\tilde{\chi}_1^\pm$. The results were combined with ABAZOV 08G which searched for events with jets and E_T without requiring taus. No evidence for an excess over the SM expectation is observed. The excluded region is shown for an mSUGRA model in a plane of m_0, $m_{\tilde{q}}$, and $m_{\tilde{g}}$ with or without jets and E_T. The results of this analysis are combined with BARATE 001.
9, from a scan over the parameters \(70 < M_2 < 350 \, \text{GeV} \), \(-300 < \mu < 300 \, \text{GeV} \), \(\tan\beta = 6 \), for a fixed mass of 90 GeV for degenerate sleptons and an LSP mass > 30 GeV. The quoted limits refer to \(\lambda'_{ij} \approx 0.3 \), with \(U = u, c, t \) and \(D = d, s, b \). Supersedes the results of ADLOFF 01b. Supersedes by AARON 11.

ADLOFF 03 looked for the s-channel production of squarks via \(R L Q \bar{D} \) couplings in 117.2 pb\(^{-1}\) of \(e^+ p \) data at \(\sqrt{s} = 301 \) and 319 GeV and of \(e^- p \) data at \(\sqrt{s} = 319 \) GeV. The comparison of the data with the SM differential cross section allows limits to be set on couplings for processes mediated through contact interactions. They obtain lower bounds on the value of \(m_{\tilde{q}/\lambda'} \) of 710 GeV for the process \(e^+ \pi \rightarrow \tilde{d}^k \) (and charge conjugate), mediated by \(\lambda'_{1jk} \), and of 430 GeV for the process \(e^+ d \rightarrow \tilde{u}^j \) (and charge conjugate), mediated by \(\lambda'_{1j1} \). Supersedes by AARON 11c.

CHEKANOV 03 used 131.5 pb\(^{-1}\) of \(e^+ p \) and \(e^- p \) data taken at 300 and 318 GeV to look for narrow resonances in the \(e q \) or \(\nu q \) final states. Such final states may originate from \(LQ\bar{D} \) couplings with non-zero \(\lambda'_{1jk} \) (leading to \(\tilde{u}_j \)) or \(\lambda'_{11k} \) (leading to \(\tilde{d}_k \)). See their Fig. 8 and explanations in the text for limits. The quoted mass bound assumes that only direct squark decays contribute.

HEISER 03c searches for the production of squarks in the case of \(R \) prompt decays with \(UDD \) direct couplings at \(\sqrt{s} = 189–209 \, \text{GeV} \).

ABAZOV 02F looked in 77.5 pb\(^{-1}\) of \(p\bar{p} \) collisions at 1.8 TeV for events with \(\geq 2 \mu^+ \geq 4 \) jets, originating from associated production of squarks followed by an indirect \(R \) decay (of the \(\lambda'_{ij} \)) via \(LQ\bar{D} \) couplings of the type \(\lambda'_{2jk} \) where \(j = 1,2 \) and \(k = 1,2,3 \). Bounds are obtained in the MSUGRA scenario by a scan in the range \(0 \leq M_0 < 400 \, \text{GeV} \), \(60 \leq m_{1/2} \leq 120 \, \text{GeV} \) for fixed values \(A_0 = 0, \mu < 0 \), and \(\tan\beta = 2 \) or 6. The bounds are weaker for \(\tan\beta = 6 \). See Figs. 2,3 for the exclusion contours in \(m_{1/2} \) versus \(m_0 \) for \(\tan\beta = 2 \) and 6, respectively.

ABAZOV 02G search for associated production of gluinos and squarks in 92.7 pb\(^{-1}\) of \(p\bar{p} \) collisions at \(\sqrt{s} = 1.8 \, \text{TeV} \), using events with one electron, \(\geq 4 \) jets, and large \(E_T \). The results are compared to a MSUGRA scenario with \(\mu < 0, A_0 = 0 \), and \(\tan\beta = 3 \) and allow to exclude a region of the \((m_0, m_{1/2}) \) shown in Fig. 11.

ABBIENDI 02 looked for events with an electron or neutrino and a jet in \(e^+ e^- \) at 189 GeV. Squarks (or leptoquarks) could originate from a \(LQ\bar{D} \) coupling of an electron with a quark from the fluctuation of a virtual photon. Limits on the couplings \(\lambda'_{1jk} \) as a function of the squark mass are shown in Figs. 8–9, assuming that only direct squark decays contribute. Squarks (or leptoquarks) could originate from a \(LQ\bar{D} \) coupling of an electron with a quark from the fluctuation of a virtual photon. Limits on the couplings \(\lambda'_{1jk} \) as a function of the squark mass are shown in Fig. 4, assuming that only direct squark decays contribute. The quoted limits are read off from Fig. 4. Supersedes the results of ABIENDIO 02.

ACHARD 02 searches for the production of squarks in the case of \(R \) prompt decays with \(UDD \) couplings at \(\sqrt{s} = 189–208 \, \text{GeV} \). The search is performed for direct and indirect decays, assuming one coupling at the time to be nonzero. The limit holds for indirect decays. Stronger limits are reached for \((\tilde{u}_R, \tilde{d}_R) \) direct (80,56) GeV and \((\tilde{u}_L, \tilde{d}_L) \) direct or indirect (87,86) GeV decays.

CHEKANOV 02 search for lepton flavor violating processes \(e^+ p \rightarrow \ell X \), where \(\ell = \mu \) or \(\tau \) with high \(p_T \), in 47.7 pb\(^{-1}\) of \(e^+ p \) collisions at 300 GeV. Such final states may originate from \(LQ\bar{D} \) couplings with simultaneously nonzero \(\lambda'_{1jk} \) and \(\lambda'_{ijk} \) \((i=2 \text{ or } 3) \). The quoted mass bound assumes that only direct squark decays contribute.

BARATE 01b searches for the production of squarks in the case of \(R \) prompt decays with \(L \ell \) indirect or \(UDD \) direct couplings at \(\sqrt{s} = 189–202 \, \text{GeV} \). The limit holds for direct
decays mediated by R UDD couplings. Limits are also given for LLE indirect decays ($m_{\bar{u}R} > 90$ GeV and $m_{\bar{d}R} > 89$ GeV). Supersedes the results from BARATE 00H.

38 BREITWEG 01 searches for squark production in 47.7 pb$^{-1}$ of $e^+\mu$ collisions, mediated by R couplings $LQ\overline{D}$ and leading to final states with ν and ≥ 1 jet, complementing the e^+X final states of BREITWEG 00L. Limits are derived on $\lambda^\nu / \sqrt{\beta}$, where β is the branching fraction of the squarks into $e^+q+\overline{\tau}q$, as function of the squark mass, see their Fig. 15. The quoted mass limit assumes that only direct squark decays contribute.

39 ABBOTT 00C searched in ~ 94 pb$^{-1}$ of $p\overline{p}$ collisions for events with $\mu\mu$+jets, originating from associated production of leptoquarks. The results can be interpreted as limits on production of squarks followed by direct R decay via $\lambda^\nu_{2jk} L_2 Q_j \overline{d_k}$ couplings. Bounds are obtained on the cross section for branching ratios of 1 and of 1/2, see their Fig. 4. The former yields the limit on the d_L. The latter is combined with the bound of ABBOTT 99J from the $\nu\nu$+jets channel and of ABBOTT 98E and ABBOTT 98J from the $\nu\nu$+jets channel to yield the limit on d_R.

40 ACCIARRI 00A studied the effect on hadronic cross sections of t-channel down-type squark exchange via R-parity violating coupling $\lambda^D_{1jk} L_1 Q_j \overline{d_k}$. The case j=1,2, and holds for λ^D_{1jk}=0.3. Data collected at \sqrt{s}=130–189 GeV, superseding the results of ACCIARRI 98J.

41 AFFOLDER 00K searched in ~ 88 pb$^{-1}$ of $p\overline{p}$ collisions for events with 2–3 jets, at least one being b-tagged, large E_T and no high p_T leptons. Such $\nu\nu+b$-jets events would originate from associated production of squarks followed by direct R decay via $\lambda^D_{1j3} L_1 Q_j \overline{d_k}$ couplings. Bounds are obtained on the production cross section assuming zero branching ratio to charged leptons.

42 BARATE 00I studied the effect on hadronic cross sections and charge asymmetries of t-channel down-type squark exchange via R-parity violating coupling $\lambda^D_{1jk} L_1 Q_j \overline{d_k}$. The limit here refers to the case j=1,2, and holds for λ^D_{1jk}=0.3. A 50 GeV limit is found for up-type squarks with k=3. Data collected at \sqrt{s}=130–183 GeV. Superseded by SCHAEL 07A.

43 BREITWEG 00E searches for squark exchange in $e^+\mu$ collisions, mediated by R couplings $LQ\overline{D}$ and leading to final states with an identified e^+ and ≥ 1 jet. The limit applies to up-type squarks of all generations, and assumes $B(\overline{q} \rightarrow q e)=1$.

44 ABBOTT 99 searched for $\gamma E_T + \geq 2$ jet final states, and set limits on $\sigma(p\overline{p} \rightarrow \overline{q}+X)\cdot B(\overline{q} \rightarrow \gamma E_T X)$. The quoted limits correspond to $m_{\overline{q}} > m_{\overline{q}}$, with $B(\chi^0_1 \rightarrow \lambda^D_{1jk} \overline{\gamma})=1$ and $B(\chi^0_1 \rightarrow \chi^0_2 \overline{\gamma})=1$, respectively. They improve to 310 GeV (360 GeV in the case of $\gamma \overline{\gamma}$ decay) for $m_{\overline{q}}=m_{\overline{q}}$.

45 ABBOTT 99K uses events with an electron pair and four jets to search for the decay of the χ^0_1 LSP via R $LQ\overline{D}$ couplings. The particle spectrum and decay branching ratios are taken in the framework of minimal supergravity. An excluded region at 95% CL is obtained in the $(m_0, m_{1/2})$ plane under the assumption that $A_0=0$, $\mu < 0$, $\tan \beta=2$ and any one of the couplings $\lambda^D_{1jk} > 10^{-3}$ (j=1,2 and k=1,2,3) and from which the above limit is computed. For equal mass squarks and gluinos, the corresponding limit is 277 GeV. The results are essentially independent of A_0, but the limit deteriorates rapidly with increasing $\tan \beta$ or μ.

46 ABBOTT 99L consider events with three or more jets and large E_T. Spectra and decay rates are evaluated in the framework of minimal Supergravity, assuming five flavors of degenerate squarks, and scanning the space of the universal gaugino $(m_{1/2})$ and scalar (m_0) masses. See their Figs. 2–3 for the dependence of the limit on the relative value of $m_{\overline{q}}$ and $m_{\overline{q}}$.
ABE 99M looked in 107 pb$^{-1}$ of $p\overline{p}$ collisions at $\sqrt{s}=1.8$ TeV for events with like sign dielectrons and two or more jets from the sequential decays $q\rightarrow q\tilde{\chi}_{1}^{0}$ and $\tilde{\chi}_{1}^{0} \rightarrow e q^{\prime}$. Assuming R coupling $L_{1}Q_{j}\overline{D}_{k}^{c}$, with $j=2,3$ and $k=1,2,3$. They assume five degenerate squark flavors, $B(q\rightarrow q\tilde{\chi}_{1}^{0})=1$, $B(\tilde{\chi}_{1}^{0} \rightarrow e q^{\prime})=0.25$ for both e^{+} and e^{-}, and $m_{\tilde{g}} \geq 200$ GeV. The limit is obtained for $m_{\tilde{g}} \geq m_{q}/2$ and improves for heavier gluinos or heavier $\tilde{\chi}_{1}^{0}$.

ABREU 99G looked for events with an electron or neutrino and a jet in $e^{+}e^{-}$ at 183 GeV. Squarks (or leptoquarks) could originate from a $LQ\overline{D}$ coupling of an electron with a quark from the fluctuation of a virtual photon. Limits on the couplings $\lambda_{1,j}^{'}$ as a function of the squark mass are shown in Fig. 4, assuming that only direct squark decays contribute.

ABBOTT 98E searched in ~ 115 pb$^{-1}$ of $p\overline{p}$ collisions for events with $e\nu+\text{jets}$, originating from associated production of squarks followed by direct R decay via $\lambda_{1,j}^{'}L_{1}Q_{j}\overline{d}_{k}^{c}$ couplings. Bounds are obtained by combining these results with the previous bound of ABBOTT 97a from the $e\nu+\text{jets}$ channel and with a reinterpretation of ABACHI 96b $\nu\nu+\text{jets}$ channel.

ABE 98S looked in ~ 110 pb$^{-1}$ of $p\overline{p}$ collisions at $\sqrt{s}=1.8$ TeV for events with $\mu\mu+\text{jets}$ originating from associated production of squarks followed by direct R decay via $\lambda_{1,j}^{'}L_{2}Q_{j}\overline{d}_{k}^{c}$ couplings. Bounds are obtained on the production cross section times branching ratio equal to 1 for \tilde{u}_{L} and 1/2 for \tilde{d}_{R}.

ACKERSTAFF 98V and ACCIARRI 98J studied the interference of t-channel squark (\tilde{d}_{R}) exchange via R-parity violating $\lambda_{1,j}^{'}L_{1}Q_{j}\overline{d}_{k}^{c}$ coupling in $e^{+}e^{-} \rightarrow q\overline{q}$. The limit is for $\lambda_{1,j}^{'}=0.3$. See paper for related limits on \tilde{u}_{L} exchange. Data collected at $\sqrt{s}=130-172$ GeV.

BREITWEG 98 used positron+jet events with missing energy and momentum to look for $e^{+}q \rightarrow \tilde{e}q$ via gaugino-like neutralino exchange with decays into $(e\tilde{\chi}_{1}^{0})(q\tilde{\chi}_{1}^{0})$. See paper for dependences in $m_{\tilde{e}}, m_{\tilde{\chi}_{1}^{0}}$.

DATTA 97 argues that the squark mass bound by ABACHI 95C can be weakened by 10–20 GeV if one relaxes the assumption of the universal scalar mass at the GUT-scale so that the $\tilde{\chi}_{1}^{+}, \tilde{\chi}_{1}^{-}$ in the squark cascade decays have dominant and invisible decays to $\tilde{\nu}$.

DERRICK 97 looked for lepton-number violating final states via R-parity violating couplings $\lambda_{1,j}^{'}L_{1}Q_{j}\overline{d}_{k}^{c}$. When $\lambda_{1,j}^{'} \neq 0$, the process $e\nu \rightarrow \tilde{e}q$ is possible. When $\lambda_{1,j}^{'} \neq 0$, the process $e\overline{d} \rightarrow \tilde{u}_{j}^{+} \rightarrow \ell_{j}\overline{q}$ is possible. 100% branching fraction $q \rightarrow \ell_{j}$ is assumed. The limit quoted here corresponds to $\tilde{t} \rightarrow \tau q$ decay, with $\lambda_{1}^{'}=0.3$. For different channels, limits are slightly better. See Table 6 in their paper.

HEWETT 97 reanalyzed the limits on possible resonances in di-jet mode ($q \rightarrow q\tilde{g}$) from ALITTI 93 quoted in "Limits for Excited q (q^{*}) from Single Production," ABE 96 in "SCALE LIMITS for Contact Interactions: $\Lambda(qq\overline{q})$," and unpublished CDF, DØ bounds. The bound applies to the gluino mass of 5 GeV, and improves for lighter gluino. The analysis has gluinos in parton distribution function.

TEREKHOV 97 improved the analysis of TEREKHOV 96 by including di-jet angular distributions in the analysis.

AID 96C used positron+jet events with missing energy and momentum to look for $e^{+}q \rightarrow \tilde{e}q$ via neutralino exchange with decays into $(e\tilde{\chi}_{1}^{0})(q\tilde{\chi}_{1}^{0})$. See the paper for dependences on $m_{\tilde{e}}, m_{\tilde{\chi}_{1}^{0}}$.

HTTP://PDG.LBL.GOV Page 53 Created: 6/18/2012 15:10
58 TEREKHOV 96 reanalyzed the limits on possible resonances in di-jet mode ($\bar{u} \rightarrow u \tilde{g}$) from ABE 95n quoted in “MASS LIMITS for g_A (axigluon).” The bound applies only to the case with a light gluino.

59 ABACHI 95c assume five degenerate squark flavors with $m_{\tilde{q}_L} = m_{\tilde{q}_R}$. Sleptons are assumed to be heavier than squarks. The limits are derived for fixed $\tan\beta = 2.0$, $\mu = -250$ GeV, and $m_{H^+} = 500$ GeV, and with the cascade decays of the squarks and gluinos calculated within the framework of the Minimal Supergravity scenario. The bounds are weakly sensitive to the three fixed parameters for a large fraction of parameter space. No limit is given for $m_{\tilde{g}} > 547$ GeV.

60 ABE 95T looked for a cascade decay of five degenerate squarks into $\tilde{\chi}_0^0$ which further decays into $\tilde{\chi}_1^0$ and a photon. No signal is observed. Limits vary widely depending on the choice of parameters. For $\theta = -40$ GeV, $\tan\beta = 1$, $\mu < 50$ GeV (but other experiments rule out that region). Limits are 10–20 GeV higher if $B(\tilde{q} \rightarrow q \tilde{\chi}_1^0) = 1$. Limit assumes GUT relations between gaugino masses and the gauge coupling; in particular that $|\mu| < m_{\tilde{g}}/6$. This last relation implies that as $m_{\tilde{g}}$ increases, the mass of $\tilde{\chi}_1^0$ will eventually exceed $m_{\tilde{q}}$ so that no decay is possible. Even before that occurs, the signal will disappear; in particular no bounds can be obtained for $m_{\tilde{g}} > 410$ GeV. $m_{H^+} = 500$ GeV.

61 ABREU 98T assume five degenerate squark flavors and $m_{\tilde{q}_L} = m_{\tilde{q}_R}$. ABREU 98T includes the effect of cascade decay, for a particular choice of parameters, $\mu = -250$ GeV, $\tan\beta = 2$. Results are weakly sensitive to these parameters over much of parameter space. No limit for $m_{\tilde{q}} \leq 50$ GeV (but other experiments rule out that region). Limits are 10–20 GeV higher if $B(\tilde{q} \rightarrow q \tilde{\chi}_1^0) = 1$. Limit assumes GUT relations between gaugino masses and the gauge coupling; in particular that for $|\mu| < m_{\tilde{g}}/6$. This last relation implies that as $m_{\tilde{g}}$ increases, the mass of $\tilde{\chi}_1^0$ will eventually exceed $m_{\tilde{q}}$ so that no decay is possible. Even before that occurs, the signal will disappear; in particular no bounds can be obtained for $m_{\tilde{g}} > 410$ GeV. $m_{H^+} = 500$ GeV.

62 ROY 92 reanalyzed CDF limits on di-lepton events to obtain limits on squark production in R-parity violating models. The 100% decay $\tilde{q} \rightarrow q \tilde{\chi}_1^0$ where $\tilde{\chi}_1^0$ is the LSP, and the LSP decays either into ℓq or $\ell \ell \pi$ is assumed.

63 NOJIRI 91 argues that a heavy squark should be nearly degenerate with the gluino in minimal supergravity not to overclose the universe.

Long-lived \tilde{q} (Squark) MASS LIMIT

The following are bounds on long-lived scalar quarks, assumed to hadronise into hadrons with lifetime long enough to escape the detector prior to a possible decay. Limits may depend on the mixing angle of mass eigenstates: $\tilde{q}_1 = \tilde{q}_L \cos\theta_q + \tilde{q}_R \sin\theta_q$.

The coupling to the Z^0 boson vanishes for up-type squarks when $\theta_u = 0.98$, and for down type squarks when $\theta_d = 1.17$.

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 249</td>
<td>95</td>
<td>1 AALTONEN</td>
<td>CDF</td>
<td>\bar{t}</td>
</tr>
<tr>
<td>> 95</td>
<td>95</td>
<td>2 HEISTER</td>
<td>ALEP</td>
<td>\bar{u}</td>
</tr>
<tr>
<td>> 92</td>
<td>95</td>
<td>3 ABREU</td>
<td>DLPH</td>
<td>\bar{d}L</td>
</tr>
<tr>
<td>none 2–85</td>
<td>95</td>
<td>3 ABREU</td>
<td>DLPH</td>
<td>\bar{d}R</td>
</tr>
<tr>
<td>none 2–81</td>
<td>95</td>
<td>3 ABREU</td>
<td>DLPH</td>
<td>\bar{d}, $\theta_u = 0.98$</td>
</tr>
<tr>
<td>none 2–80</td>
<td>95</td>
<td>3 ABREU</td>
<td>DLPH</td>
<td>\bar{d}L</td>
</tr>
<tr>
<td>none 2–83</td>
<td>95</td>
<td>3 ABREU</td>
<td>DLPH</td>
<td>\bar{d}R</td>
</tr>
<tr>
<td>none 5–40</td>
<td>95</td>
<td>3 ABREU</td>
<td>DLPH</td>
<td>\bar{d}, $\theta_d = 1.17$</td>
</tr>
</tbody>
</table>
\(\tilde{b}\) (Sbottom) MASS LIMIT

Limits in \(e^+e^-\) depend on the mixing angle of the mass eigenstate \(\tilde{b}_1 = \tilde{b}_L \cos \theta_b + \tilde{b}_R \sin \theta_b\). Coupling to the \(Z\) vanishes for \(\theta_b \sim 1.17\). As a consequence, no absolute constraint in the mass region \(\lesssim 40\) GeV is available in the literature at this time from \(e^+e^-\) collisions. In the Listings below, we use \(\Delta m = m_{\tilde{b}_1} - m_{\tilde{\chi}_1^0}\).

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>>230</td>
<td>95</td>
<td>1 AALTONEN</td>
<td>10R</td>
<td>CDF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b_1 \rightarrow b\tilde{\chi}1^0, m{\tilde{\chi}_1^0} < 70) GeV</td>
</tr>
<tr>
<td>>247</td>
<td>95</td>
<td>2 ABAZOV</td>
<td>10L</td>
<td>D0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b_1 \rightarrow b\tilde{\chi}1^0, m{\tilde{\chi}_1^0} = 0) GeV</td>
</tr>
<tr>
<td>>220</td>
<td>95</td>
<td>3 ABULENCIA</td>
<td>06i</td>
<td>CDF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(g \rightarrow b\tilde{b}, \Delta m > 6) GeV, (\tilde{b}_1 \rightarrow b\tilde{\chi}1^0, m{\tilde{\chi}_1^0} < 270) GeV</td>
</tr>
<tr>
<td>> 95</td>
<td>4</td>
<td>ACHARD</td>
<td>04</td>
<td>L3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b \rightarrow b\tilde{\chi}_1^0, \theta_b = 0, \Delta m > 15-25) GeV</td>
</tr>
<tr>
<td>> 81</td>
<td>4</td>
<td>ACHARD</td>
<td>04</td>
<td>L3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b \rightarrow b\tilde{\chi}_1^0, \theta_b, \Delta m > 15-25) GeV</td>
</tr>
<tr>
<td>> 7.5</td>
<td>5</td>
<td>JANOT</td>
<td>04</td>
<td>THEO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>unstable (b_1), (e^+e^- \rightarrow) hadrons</td>
</tr>
<tr>
<td>> 93</td>
<td>6</td>
<td>ABDALLAH</td>
<td>03M</td>
<td>DLPH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b \rightarrow b\tilde{\chi}_1^0, \theta_b = 0, \Delta m > 7) GeV</td>
</tr>
<tr>
<td>> 76</td>
<td>6</td>
<td>ABDALLAH</td>
<td>03M</td>
<td>DLPH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b \rightarrow b\tilde{\chi}_1^0, \theta_b, \Delta m > 7) GeV</td>
</tr>
<tr>
<td>> 85.1</td>
<td>7</td>
<td>ABBIENDI</td>
<td>02H</td>
<td>OPAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b \rightarrow b\tilde{\chi}_1^0, \theta_b, \Delta m > 10) GeV, CDF</td>
</tr>
<tr>
<td>> 89</td>
<td>8</td>
<td>HEISTER</td>
<td>02K</td>
<td>ALEP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b \rightarrow b\tilde{\chi}_1^0, \theta_b, \Delta m > 8) GeV, CDF</td>
</tr>
<tr>
<td>none 3.5–4.5</td>
<td>9</td>
<td>SAVINOVA</td>
<td>01</td>
<td>CLEO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\tilde{b}) meson</td>
</tr>
<tr>
<td>none 80–145</td>
<td>10</td>
<td>AFFOLDER</td>
<td>00D</td>
<td>CDF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\tilde{b} \rightarrow b\tilde{\chi}1^0, m{\tilde{\chi}_1^0} < 50) GeV</td>
</tr>
</tbody>
</table>

\(\tilde{b}\) search at \(\sqrt{s} = 1.96\) TeV does not set a bound on the production cross section, and the result is compared with the pair production cross section of stable stops as a function of the \(\tilde{t}\) mass, see their Fig. 2.

\(\tilde{b}\) search at \(\sqrt{s} = 130–183\) GeV.

\(\tilde{b}\) search at \(\sqrt{s} = 130–183\) GeV.
none 52–115 95

1 AALTONEN 10R searched in 2.65 fb$^{-1}$ of $p \bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV for events with E_T and exactly two jets, at least one of which is b-tagged. The results are in agreement with the SM prediction, and a limit on the cross section of 0.1 pb is obtained for the range of masses $80 < m_{\tilde{b}_1} < 280$ GeV assuming that the sbottom decays exclusively to $b\chi^0_1$. The excluded mass region in the framework of conserved R_p is shown in a plane of $(m_{\tilde{b}_1}, m_{\chi^0_1})$, see their Fig.2.

2 ABAZOV 10L looked in 5.2 fb$^{-1}$ of $p \bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV for events with at least 2 b-jets and E_T from the production of $b\tilde{1}$. No evidence for an excess over the SM expectation is observed, and a limit on the cross section is derived under the assumption of 100% branching ratio. The excluded mass region in the framework of conserved R_p is shown in a plane of $(m_{\tilde{b}_1}, m_{\chi^0_1})$, see their Fig. 3b. The exclusion also extends to $m_{\chi^0_1} = 110$ GeV for $160 < m_{\tilde{b}_1} < 200$ GeV.

3 ABULENCIA 06i searched in 156 pb$^{-1}$ of $p \bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV for multijet events with large E_T. They request at least 2 b-tagged jets and no isolated leptons. They investigate the production of gluinos decaying into $\tilde{b}_1 b$ followed by $\tilde{b}_1 \rightarrow b\chi^0_1$. Both branching fractions are assumed to be 100% and the LSP mass to be 60 GeV. No significant excess was found compared to the background expectation. Upper limits on the cross-section are extracted and a limit is derived on the masses of sbottom and gluinos, see their Fig.3.

4 ACHARD 04 search for the production of $\tilde{b}\tilde{b}$ in acoplanar b-tagged di-jet final states in the 192–209 GeV data. See Fig. 6 for the dependence of the limits on $m_{\chi^0_1}$. This limit supersedes ACCIARRI 99v.

5 JANOT 04 reanalyzes $e^+ e^- \rightarrow$ hadrons total cross section data with $\sqrt{s} = 20–209$ GeV from PEP, PETRA, TRISTAN, SLC, and LEP and constrains the mass of \tilde{b}_1 assuming it decays quickly to hadrons.

6 ABDALLAH 03M looked for \tilde{b} pair production in events with acoplanar jets and E_T at $\sqrt{s} = 189–208$ GeV. The limit improves to 87 (98) GeV for all $\theta_{b_\tilde{1}}$ ($\theta_{b_\tilde{1}} = 0$) for $\Delta m > 10$ GeV. See Fig. 24 and Table 11 for other choices of Δm. These limits include and update the results of ABREU,P 00d.

7 ABBIDI1 02H search for events with two acoplanar jets and p_T in the 161–209 GeV data. The limit assumes 100% branching ratio and uses the exclusion at large Δm from CDF (AFFOLDER 00d). For $\theta_{b_\tilde{1}} = 0$, the bound improves to > 96.9 GeV. See Fig. 4 and Table 6 for the more general dependence on the limits on Δm. These results supersede ABBIDI1 99M.

8 HEISTER 02K search for bottom squarks in final states with acoplanar jets with b tagging, using 183–209 GeV data. The mass bound uses the CDF results from AFFOLDER 00d. See Fig. 5 for the more general dependence of the limits on Δm. Updates BARATE 01.

9 SAVINOV 01 use data taken at \sqrt{s}=10.52 GeV, below the $B \bar{B}$ threshold. They look for events with a pair of leptons with opposite charge and a fully reconstructed hadronic D or D^* decay. These could originate from production of a light-sbottom hadron followed...
by $\tilde{B} \to D^{(*)} \ell^- \tilde{\nu}$, in case the $\tilde{\nu}$ is the LSP, or $\tilde{B} \to D^{(*)} \pi \ell^-$, in case of R. The mass range $3.5 < M(\tilde{B}) < 4.5$ GeV was explored, assuming 100% branching ratio for either of the decays. In the $\tilde{\nu}$ LSP scenario, the limit holds only for $M(\tilde{\nu})$ less than about 1 GeV and for the D^* decays it is reduced to the range $3.9-4.5$ GeV. For the R decay, the whole range is excluded.

10 AFFOLDER 00D search for final states with 2 or 3 jets and E_T, one jet with a b tag. See their Fig. 3 for the mass exclusion in the $m_{\tilde{t}_1}, m_{\tilde{\chi}^0_1}$ plane.

11 AAD 11K looked in 34 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with heavy stable particles, identified by their anomalous dE/dx in the tracker or time of flight in the tile calorimeter, from pair production of \tilde{b}. No evidence for an excess over the SM expectation is observed and limits on the mass are derived for pair production of sbottom, see Fig. 4.

12 AAD 11O looked in 35 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with jets, of which at least one is a b-jet, and E_T. No excess above the Standard Model was found. Limits are derived in the $(m_{\tilde{g}}, m_{\tilde{b}_1})$ plane (see Fig. 2) under the assumption of 100% branching ratios and \tilde{b}_1 being the lightest squark. The quoted limit is valid for $m_{\tilde{b}_1} < 500$ GeV. A similar approach for \tilde{t}_1 as the lightest squark with $\tilde{g} \to \tilde{t}_1 t$ and $\tilde{t}_1 \to b \chi^\pm_1$ with 100% branching ratios leads to a gluino mass limit of 520 GeV for $130 < m_{\tilde{t}_1} < 300$ GeV. Limits are also derived in the CMSSM ($m_0, m_{1/2}$) plane for $\tan \beta = 40$, see Fig. 4, and in scenarios based on the gauge group SO(10).

13 CHATRCHYAN 11D looked in 35 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 2 jets, at least one of which is b-tagged, and E_T, where the b-jets are decay products of \tilde{t} or \tilde{b}. No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM ($m_0, m_{1/2}$) plane for $\tan \beta = 50$ (see Fig. 2).

14 AALTONEN 09R searched in 2.5 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV for events with at least 2 b-tagged jets and E_T, originating from the decay $\tilde{g} \to b\tilde{b}$ followed by $b \to b\chi^0_1$. Both decays are assumed to have 100% branching ratio. No significant deviation from the SM prediction is observed. An upper limit on the gluino pair production cross section is calculated as a function of the gluino mass, see their Fig. 2. A limit is derived in the $m_{\tilde{b}}$ versus $m_{\tilde{g}}$ plane which improves the results of previous searches, see their Fig. 3.

15 AALTONEN 07E searched in 295 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV for multijet events with large E_T. They request at least one heavy flavor-tagged jet and no identified leptons. The branching ratio $\tilde{b}_1 \to b\chi^0_1$ is assumed to be 100%. No significant excess was found compared to the background expectation. Upper limits on the cross-section are extracted and a limit is derived on the masses of sbottom versus χ^0_1, see their Fig. 5. Superseded by AALTONEN 10R.

16 ABAZOV 06R looked in 310 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV for events with 2 or 3 jets and large E_T with at least 1 b-tagged jet and a veto against isolated leptons. No excess is observed relative to the SM background expectations. Limits are set on the sbottom pair production cross-section under the assumption that the only decay mode is into $b\chi^0_1$. Exclusion contours are derived in the plane of sbottom versus neutralino masses, shown in their Fig. 2. The observed limit is more constraining than the expected one due to a lack of events corresponding to large sbottom masses. Superseded by AALTONEN 10L.

17 ABDALLAH 04M use data from $\sqrt{s} = 192-208$ GeV to derive limits on sparticle masses under the assumption of \tilde{t} with $\tilde{U} \tilde{D} \tilde{D}$ couplings. The results are valid for $\mu = -200$ GeV, $\tan \beta = 1.5$, $\Delta m > 5$ GeV and assuming a BR of 1 for the given decay. The limit quoted is for indirect $\tilde{U} \tilde{D} \tilde{D}$ decays using the neutralino constraint of 38.0 GeV, also derived in ABDALLAH 04M, and assumes no mixing. For indirect decays it remains at 78 GeV when the neutralino constraint is not used. Supersedes the result of ABREU 01D.
ABDALLAH 02c looked for events of the type $q\bar{q} R^{\pm} R^{\mp}$, $q\bar{q} R^{\pm} R^{0}$, or $q\bar{q} R^{0} R^{0}$ in $e^{+} e^{-}$ interactions at $\sqrt{s} = 189–208$ GeV. The R^{\pm} bound states are identified by anomalous dE/dx in the tracking chambers and the R^{0} by missing energy due to their reduced energy loss in the calorimeters. Excluded mass regions in the $(m(\bar{b}), m(\tilde{g}))$ plane for $m(\tilde{g}) > 2$ GeV are obtained for several values of the probability for the gluino to fragment into R^{\pm} or R^{0}, as shown in their Fig. 19. The limit improves to 94 GeV for $\theta_{t_{1}} = 0$.

BERGER 03 studies the constraints on a \tilde{b}_{1} with mass in the 2.2–5.5 GeV region coming from radiative decays of $\Upsilon(nS)$ into sbottomonium. The constraints apply only if \tilde{b}_{1} lives long enough to permit formation of the sbottomonium bound state. A small region of mass in the $m_{\tilde{b}_{1}} - m_{\tilde{g}}$ plane survives current experimental constraints from CLEO.

HEISTER 03G searches for the production of \tilde{b} pairs in the case of R prompt decays with $\Upsilon(1S) L\bar{E}$, $LQ D$ or $U D\bar{D}$ couplings at $\sqrt{s} = 189–209$ GeV. The limit holds for indirect decays mediated by R $U D\bar{D}$ couplings. It improves to 90 GeV for indirect decays mediated by R $L\bar{E}$ couplings and to 80 GeV for indirect decays mediated by R $L Q D$ couplings. Supersedes the results from BARATE 01B.

HEISTER 03H use their results on bounds on stable squarks, on stable gluinos and on squarks decaying to a stable gluino from the same paper to derive a mass limit on \tilde{b}, see their Fig. 13. The limit for a long-lived \tilde{b}_{1} is 92 GeV.

ACHARD 02 searches for the production of \tilde{b} pairs in the case of R prompt decays with $U D\bar{D}$ couplings at $\sqrt{s}=189–208$ GeV. The search is performed for direct and indirect decays, assuming one coupling to be nonzero. The limit is computed for the minimal cross section and holds for indirect decays and reaches 55 GeV for direct decays.

BAEK 02 studies the constraints on a \tilde{b}_{1} with mass in the 2.2–5.5 GeV region coming from precision measurements of Z^{0} decays. It is noted that CP-violating couplings in the MSSM parameters relax the strong constraints otherwise derived from CP conservation.

BECHE 02 studies the constraints on a \tilde{b}_{1} with mass in the 2.2–5.5 GeV region coming from radiative B meson decays, and sets limits on the off-diagonal flavor-changing couplings $q b \tilde{g}$ ($q = d,s$).

CHEUNG 02B studies the constraints on a \tilde{b}_{1} with mass in the 2.2–5.5 GeV region and a gluino in the mass range 12–16 GeV, using precision measurements of Z^{0} decays and $e^{+} e^{-}$ annihilations at LEP2. Few detectable events are predicted in the LEP2 data for the model proposed by BERGER 01.

CHO 02 studies the constraints on a \tilde{b}_{1} with mass in the 2.2–5.5 GeV region coming from precision measurements of Z^{0} decays. Strong constraints are obtained for CP-conserving MSSM couplings.

BERGER 01 reanalyzed interpretation of Tevatron data on bottom-quark production. Argues that pair production of light gluinos ($m_{\tilde{g}} \sim 12–16$ GeV) with subsequent 2-body decay into a light sbottom ($m_{\tilde{b}_{1}} \sim 2–5.5$ GeV) and bottom can reconcile Tevatron data with predictions of perturbative QCD for the bottom production rate. The sbottom must either decay hadronically via a R-parity- and B-violating interaction, or be long-lived. Constraints on the mass spectrum are derived from the measurements of time-averaged $B^{0} \rightarrow \mu^{+} \mu^{-}$ mixing.

ABBOTT 99F looked for events with two jets, with or without an associated muon from b decay, and E_{T}. See Fig. 2 for the dependence of the limit on $m_{\chi_{1}^{0}}$. No limit for $m_{\chi_{1}^{0}} > 47$ GeV. Supersedes by ABAZOV 06R.

\tilde{t} (Stop) MASS LIMIT

Limits depend on the decay mode. In $e^{+} e^{-}$ collisions they also depend on the mixing angle of the mass eigenstate $\tilde{t}_{1} = \tilde{t}_{L} \cos \theta_{t} + \tilde{t}_{R} \sin \theta_{t}$. The coupling to the Z vanishes.
when $\theta_t = 0.98$. In the Listings below, we use $\Delta m \equiv m_{\tilde{t}_1} - m_{\chi_1^0}$ or $\Delta m \equiv m_{\tilde{t}_1} - m_{\tilde{\nu}}$, depending on relevant decay mode. See also bounds in “\tilde{q} (Squark) MASS LIMIT.” Limits made obsolete by the most recent analyses of e^+e^- and $p\bar{p}$ collisions can be found in previous Editions of this Review.

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>>210</td>
<td>95</td>
<td>1 ABAZOV</td>
<td>11N</td>
<td>D0</td>
</tr>
<tr>
<td>none 60–180</td>
<td>95</td>
<td>2 AALTONEN</td>
<td>10Y</td>
<td>CDF</td>
</tr>
<tr>
<td>none 95–150</td>
<td>95</td>
<td>3 ABAZOV</td>
<td>08Z</td>
<td>D0</td>
</tr>
<tr>
<td>none 80–120</td>
<td>95</td>
<td>4 ABAZOV</td>
<td>04</td>
<td>D0</td>
</tr>
<tr>
<td>> 90</td>
<td>95</td>
<td>5 ACHARD</td>
<td>04</td>
<td>L3</td>
</tr>
<tr>
<td>> 93</td>
<td>95</td>
<td>5 ACHARD</td>
<td>04</td>
<td>L3</td>
</tr>
<tr>
<td>> 88</td>
<td>95</td>
<td>6 ABDALLAH</td>
<td>03M</td>
<td>DLPb</td>
</tr>
<tr>
<td>> 75</td>
<td>95</td>
<td>7 ABDALLAH</td>
<td>03M</td>
<td>DLPb</td>
</tr>
<tr>
<td>> 71</td>
<td>95</td>
<td>7 ABDALLAH</td>
<td>03M</td>
<td>DLPb</td>
</tr>
<tr>
<td>> 96</td>
<td>95</td>
<td>7 ABDALLAH</td>
<td>03M</td>
<td>DLPb</td>
</tr>
<tr>
<td>> 92</td>
<td>95</td>
<td>6 ABDALLAH</td>
<td>03M</td>
<td>DLPb</td>
</tr>
<tr>
<td>> 95.7</td>
<td>95</td>
<td>7 ABDALLAH</td>
<td>03M</td>
<td>DLPb</td>
</tr>
<tr>
<td>> 92.6</td>
<td>95</td>
<td>7 ABDALLAH</td>
<td>03M</td>
<td>DLPb</td>
</tr>
<tr>
<td>> 91.5</td>
<td>95</td>
<td>7 ABDALLAH</td>
<td>03M</td>
<td>DLPb</td>
</tr>
<tr>
<td>> 92</td>
<td>95</td>
<td>8 HEISTER</td>
<td>02K</td>
<td>ALEp</td>
</tr>
<tr>
<td>> 97</td>
<td>95</td>
<td>8 HEISTER</td>
<td>02K</td>
<td>ALEp</td>
</tr>
<tr>
<td>> 75</td>
<td>95</td>
<td>8 HEISTER</td>
<td>02K</td>
<td>ALEp</td>
</tr>
<tr>
<td>> 78</td>
<td>95</td>
<td>8 HEISTER</td>
<td>02K</td>
<td>ALEp</td>
</tr>
</tbody>
</table>

We do not use the following data for averages, fits, limits, etc.

>309	95	9 AAD	11K	ATLS	stable \tilde{t}
>202	95	10 KHACHATRYAN...11C	CMS	ATLS	stable \tilde{t}
none 128–135	95	11 AALTONEN	100	CDF	
>153	95	12 ABAZOV	09N	D0	
>185	95	13 ABAZOV	09O	D0	
>132	95	14 AALTONEN	08Z	CDF	
>77	95	15 ABAZOV	08	D0	
>77	95	16 AALTONEN	07E	CDF	
none 80–134	95	17 ABAZOV	07B	D0	
>185	95	18 CHEKANOV	07	ZEUS	
>77	95	19 ABDALLAH	04M	DLPb	
>77	95	20 ABDALLAH	04M	DLPb	

HTTP://PDG.LBL.GOV Page 59 Created: 6/18/2012 15:10
For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

In the ℓ-ν_ℓ channel, we observe a clear excess above the SM expectation. The significance of this excess is 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

We have also searched for the decay of the stop into a ℓ-ν pair, and we observe a clear excess above the SM expectation. The significance of this excess is 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

We have also searched for the decay of the stop into a ℓ-ν pair, and we observe a clear excess above the SM expectation. The significance of this excess is 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.

For the analysis of ℓ-ν pairs, see our recent results. A clear excess is observed in the ℓ-ν_ℓ channel, with a significance of 3.5σ. The mass of the $\tilde{\chi}_1^0$ is found to be 45.2 ± 1.8 GeV.
observed compared to the Standard Model expectation and limits are derived on the mass of \tilde{t}_1 for the 3- and 4-body decays in the $(m_{\tilde{t}}, m_{\tilde{\chi}_1^0})$ plane, see their Figure 4.

5 ACHARD 04 search in the 192–209 GeV data for the production of $\tilde{t}\tilde{t}$ in acoplanar di-jet final states and, in case of $b\ell\bar{\nu}$ ($b\tau\bar{\nu}$) final states, two leptons (taus). The limits for $\theta_t=0$ improve to 95, 96 and 93 GeV, respectively. All limits assume 100% branching ratio for the respective decay modes. See Fig. 6 for the dependence of the limits on $m_{\tilde{\chi}_1^0}$.

These limits supersede ACCIARI 99v.

6 ABDALLAH 03M looked for \tilde{t} pair production in events with acoplanar jets and E_T at $\sqrt{s}=189$–208 GeV. See Fig. 23 and Table 11 for other choices of Δm. These limits include and update the results of ABREU,P 00d.

7 ABBIENDI 02H looked for events with two acoplanar jets, p_T, and, in the case of $b\ell\bar{\nu}$ final states, two leptons, in the 161–209 GeV data. The bound for $c \tilde{\chi}_1^0$ applies to the region where $\Delta m < m_W + m_B$, else the decay $\tilde{t}_1 \rightarrow b\tilde{\chi}_1^0W^+$ becomes dominant. The limit for $b\ell\bar{\nu}$ assumes equal branching ratios for the three lepton flavors and for $b\tau\bar{\nu}$ 100% for this channel. For $\theta_t=0$, the bounds improve to > 97.6 GeV ($c \tilde{\chi}_1^0$), > 96.0 GeV ($b\ell\bar{\nu}$), and > 95.5 ($b\tau\bar{\nu}$). See Figs. 5–6 and Table 5 for the more general dependence of the limits on Δm. These results supersede ABBIENDI 99M.

8 HEISTER 02K search for top squarks in final states with jets (with/without b tagging or leptons) or long-lived hadrons, using 183–209 GeV data. The absolute mass bound is obtained by varying the branching ratio of $\tilde{t} \rightarrow c\tilde{\chi}_1^0$ and the lepton fraction in $\tilde{t} \rightarrow b\tilde{\chi}_1^0\tau\ell'$ decays. The mass bound for $\tilde{t} \rightarrow c\tilde{\chi}_1^0$ uses the CDF results from AFFOLDER 00d and for $\tilde{t} \rightarrow b\ell\bar{\nu}$ the DØ results from ABAZOV 02c. See Figs. 2–5 for the more general dependence of the limits on Δm. Updates BARATTE 01 and BARATTE 00p.

9 AAD 11K looked in 34 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with heavy stable particles, identified by their anomalous dE/dx in the tracker or time of flight in the tile calorimeter, from pair production of \tilde{t}. No evidence for an excess over the SM expectation is observed and limits on the mass are derived for pair production of stop, see Fig. 4.

10 KHACHATRYAN 11c looked in 3.1 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with heavy stable particles, identified by their anomalous dE/dx in the tracker or time of flight in the muon chambers, from pair production of \tilde{t}_1. No evidence for an excess over the expected background is observed. Limits are derived for pair production of stop as a function of mass, see Fig. 3, and compared to the production cross section in a benchmark scenario.

11 AALTONEN 10b searched in 2.7 fb$^{-1}$ of pp collisions at $\sqrt{s} = 1.96$ TeV for events with a charged lepton pair (e or μ), E_T and at least two jets. A fit of the data is made to the $\tilde{t}_1\tilde{t}_1$ hypothesis. Assuming a 100% branching ratio of $\tilde{t}_1 \rightarrow b\tilde{\chi}_1^\pm$ the exclusion is independent of the value of the $\tilde{\chi}_1^\pm \rightarrow \ell \tilde{\chi}_1^0\nu$ branching ratio.

12 ABAZOV 09N looked in 0.9 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV for events with ≥ 3 jets, at least one being b-tagged, one electron or muon and E_T originating from associated production $t\bar{t}$, with one \tilde{t} decaying leptonically, the other hadronically. The branching ratios for $\tilde{t}_1 \rightarrow b\tilde{\chi}_1^\pm$ and $\tilde{\chi}_1^\pm \rightarrow \tilde{\chi}_1^0W^\pm$ are assumed to be 100%. The separation from the dominant $t\bar{t}$ background is based on a multivariate likelihood discriminant analysis. The tested mass range is $130 \text{ GeV} \leq m_{\tilde{t}} \leq 190 \text{ GeV}$, $90 \text{ GeV} \leq m_{\tilde{\chi}_1^0} \leq 150 \text{ GeV}$ and $m_{\tilde{\chi}_1} = 50 \text{ GeV}$. The excluded cross section is a factor 2–13 larger than the theoretical expectation in the considered MSSM scenarios, see their Fig. 3.

13 ABAZOV 09o looked in 1 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV for events with two electrons or one electron and one muon and E_T originating from associated production $t\bar{t}$, followed by the three-body decays $\tilde{t} \rightarrow b\ell\bar{\nu}$. No evidence for an excess over the SM expectation is observed. The excluded region is shown in a plane of m_ν versus $m_{\tilde{t}}$, see
their Fig. 3. The largest excluded \(t \) mass is 175 GeV for a \(\tilde{\nu} \) mass of 45 GeV, and the largest excluded \(\tilde{\nu} \) mass is 96 GeV for a \(\tilde{t} \) mass of 140 GeV. Superseded by ABAZOV 11N.

14 AALTONEN 08Z searched in 322 pb\(^{-1}\) of \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \) TeV for dijet events with a lepton (\(e \) or \(\mu \)) and a hadronic \(\tau \) decay produced via \(R \)-parity violating couplings \(LQ\bar{D} \). No heavy flavour-tagged jets are requested. No significant excess was found compared to the background expectation. Upper limits on the cross-section times the square of the branching ratio \(B(\tilde{t}_1 \rightarrow b\tau) \) are extracted, and a limit is derived on the stop mass assuming \(B(\tilde{t}_1 \rightarrow b\tau) = 1 \), see their Fig. 2. Supersedes the results of ACOSTA 04B.

15 ABAZOV 08 looked at approximately 400 pb\(^{-1}\) of \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \) TeV for events with a pair of acoplanar heavy-flavor jets with \(E_T \). They request at least one heavy flavor-tagged jet and no identified leptons. The branching ratio \(\tilde{t}_1 \rightarrow c\chi_1^0 \) is assumed to be 100%. No significant excess was found compared to the background expectation. Upper limits on the cross-section are extracted and a limit is derived on the masses of stop versus \(\chi_1^0 \), see their Fig. 3. Supersedes by ABAZOV 090.

16 AALTONEN 07E searched in 295 pb\(^{-1}\) of \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \) TeV for multijet events with large \(E_T \). They request at least one heavy flavor-tagged jet and no identified leptons. The branching ratio \(\tilde{t}_1 \rightarrow c\chi_1^0 \) is assumed to be 100%. No significant excess was found compared to the background expectation. Upper limits on the cross-section are extracted and a limit is derived on the masses of stop versus \(\chi_1^0 \), see their Fig. 4.

17 ABAZOV 07B looked in 360 pb\(^{-1}\) of \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \) TeV for events with a pair of acoplanar heavy-flavor jets with \(E_T \). No excess is observed relative to the SM background expectations. Limits are set on the production of \(\tilde{t}_1 \) under the assumption that the only decay mode is into \(c\chi_1^0 \), see their Fig. 4 for the limit in the \((m_{\tilde{t}_1}, m_{\chi_1^0}) \) plane. No limit can be obtained for \(m_{\chi_1^0} > 54 \) GeV. Supersedes the results of ABAZOV 04B.

18 CHEKANOV 07 search for the \(LQ\bar{D} \) \(R \)-parity violating process \(e^+ p \rightarrow \tilde{t}_1 \) in 65 pb\(^{-1}\) at 318 GeV. Final states may originate from \(LQ\bar{D} \) couplings \(\tilde{t} \rightarrow e^+ d \) and from the \(R \)-parity conserving decay \(\tilde{t} \rightarrow \tilde{\chi}_1^0 b \), giving rise to \(e^+ \) jet, \(e^+ \) + multi-jet, and \(\nu \) + multi-jet. The excluded region in an MSSM scenario is presented for \(\lambda'_{13} \) as a function of the stop mass in Fig. 6. Other excluded regions in a more restricted mSUGRA model are shown in Fig. 7 and 8.

19 ABBINDI 04R use data from \(\sqrt{s} = 189\nobreakdash-209 \) GeV. They derive limits on the stop mass under the assumption of \(R \) with \(LQ\bar{D} \) or \(UDD \) couplings. The limit quoted applies to direct decays with \(UDD \) couplings when the stop decouples from the \(Z^0 \) and improves to 88 GeV for \(\theta_t = 0 \). For \(LQ\bar{D} \) couplings, the limit improves to 98 (100) GeV for \(\lambda_{13k}^0 \) or \(\lambda_{33k}^0 \) couplings and all \(\theta_t \) \((\theta_t = 0) \). For \(\lambda_{33k}^0 \) couplings it is 96 (98) GeV for all \(\theta_t \) \((\theta_t = 0) \). Supersedes the results of ABBINDI 00.

20 ABDALLAH 04M use data from \(\sqrt{s} = 192\nobreakdash-208 \) GeV to derive limits on sparticle masses under the assumption of \(R \) with \(LLE \) or \(UDD \) couplings. The results are valid for \(\mu = -200 \) GeV, \(\tan \beta = 1.5 \), \(\Delta m > 5 \) GeV and assuming a BR of 1 for the given decay. The limit quoted is for decaying of the stop from the \(Z^0 \) and indirect \(UDD \) decays using the neutralino constraint of 39.5 GeV for \(LLE \) and of 38.0 GeV for \(UDD \) couplings, also derived in ABDALLAH 04M. For no mixing (decoupling) and indirect decays via \(LLE \) the limit improves to 92 (87) GeV if the constraint from the neutralino is used and to 88 (81) GeV if it is not used. For indirect decays via \(UDD \) couplings it improves to 87 GeV for no mixing and using the constraint from the neutralino, whereas it becomes 81 GeV (67) GeV for no mixing (decoupling) if the neutralino constraint is not used. Supersedes the result of ABREU 01D.

21 AKTAS 04B looked in 106 pb\(^{-1}\) of \(e^\pm p \) collisions at \(\sqrt{s} = 319 \) GeV and 301 GeV for resonant production of \(\tilde{t}_1 \) by \(R \)-parity violating \(LQ\bar{D} \) couplings with \(\lambda'_{131} \), others being zero. They consider the decays \(\tilde{t}_1 \rightarrow e^+ d \) and \(\tilde{t}_1 \rightarrow Wb \) followed by

HTTP://PDG.LBL.GOV Page 62 Created: 6/18/2012 15:10
\[\bar{b} \rightarrow \nu e d \] and assume gauginos too heavy to participate in the decays. They combine the channels \(j q \nu T, j \mu \nu T, jj \nu T \) to derive limits in the plane \((m_{\tilde{t}}, \lambda'_{131})\), see their Fig. 5.

22 DAS 04 reanalyzes AFFOLDER 00c data and obtains constraints on \(m_{\tilde{t}_1}\) as a function of \(B(\tilde{t} \rightarrow b \ell \nu \chi) \times B(\tilde{t} \rightarrow b \bar{q} q' \chi')\), \(B(\tilde{t} \rightarrow c \chi)\) and \(m_{\chi_0}\). Bound weakens for larger \(B(\tilde{t} \rightarrow c \chi)\) and \(m_{\chi_0}\).

23 ABDALLAH 03c looked for events of the type \(q \bar{q} R^\pm R^\pm, q \bar{q} R^\pm R^0, q \bar{q} R^0 R^0\) in \(e^+ e^-\) interactions at \(\sqrt{s} = 189-208\) GeV. The \(R^\pm\) bound states are identified by anomalous \(dE/dx\) in the tracking chambers and the \(R^0\) by missing energy, due to their reduced energy loss in the calorimeters. Excluded mass regions in the \((m(\tilde{t}), m(\tilde{g}))\) plane for \(m(\tilde{g}) > 2\) GeV are obtained for several values of the probability for the gluino to fragment into \(R^\pm\) or \(R^0\), as shown in their Fig. 18. The limit improves to 90 GeV for \(\theta_t = 0\).

24 ACOSTA 03c searched in 107 pb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV for pair production of \(\tilde{t}\) followed by the decay \(\tilde{t} \rightarrow b \ell \nu\). They looked for events with two isolated leptons (\(e\) or \(\mu\)), at least one jet and \(E_T\). The excluded mass range is reduced for larger \(m_{\tilde{g}}\), and no limit is set for \(m_{\tilde{g}} > 88.4\) GeV (see Fig. 2). Superseded by AALTONEN 10\(^\gamma\).

25 Theoretical analysis of \(e^+ e^- + 2\) jet final states from the RPV decay of \(\tilde{t}\) pairs produced in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV. 95\%CL limits of 220 (165) GeV are derived for \(B(t \rightarrow e q) = 1(0.5)\).

26 HEISTER 03c searches for the production of \(\tilde{t}\) pairs in the case of \(R\) prompt decays with \(LL\), \(LQD\) or \(UDD\) couplings at \(\sqrt{s} = 189-209\) GeV. The limit holds for indirect decays mediated by \(R\ UDD\) couplings. It improves to 91 GeV for indirect decays mediated by \(R\ LL\) couplings, to 97 GeV for direct (assuming \(B(\tilde{t} \rightarrow q\tau) = 100\%\)) and to 85 GeV for indirect decays mediated by \(R\ LQD\) couplings. Supersedes the results from BARATE 01\(B\).

27 HEISTER 03H use \(e^+ e^-\) data from 183–208 GeV to look for the production of stop decaying into a c quark and a stable gluino hadronizing into charged or neutral R-hadrons. Combining these results with bounds on stable squarks and on a stable gluino LSP from the same paper yields the quoted limit. See their Fig. 13 for the dependence of the mass limit on the gluino mass and on \(\theta_t\).

28 ABRAZOV 02c looked in 108.3 pb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV for events with \(e\mu E_T\), originating from associated production \(\tilde{t}\tilde{t}\). Branching ratios are assumed to be 100\%. The bound for the \(b \bar{b} \nu\) decay weakens for large \(\tilde{b}\) mass (see Fig. 3), and no limit is set when \(m_{\tilde{g}} > 85\) GeV. See Fig. 4 for the limits in case of decays to a real \(\tilde{\chi}_1^\pm\), followed by \(\tilde{\chi}_1^\pm \rightarrow \ell \nu\), as a function of \(m_{\tilde{\chi}_1^\pm}\).

29 ACHARD 02 searches for the production of squarks in the case of \(R\) prompt decays with \(UDD\) couplings at \(\sqrt{s} = 189-208\) GeV. The search is performed for direct and indirect decays, assuming one coupling at the time to be nonzero. The limit is computed for the minimal cross section and holds for both direct and indirect decays.

30 AFFOLDER 01\(B\) searches for decays of the top quark into stop and LSP, in \(t\bar{t}\) events. Limits on the stop mass as a function of the LSP mass and of the decay branching ratio are shown in Fig. 3. They exclude branching ratios in excess of 45\% for SLP masses up to 40 GeV.

31 ABREU 00\(i\) searches for the production of stop in the case of \(R\)-parity violation with \(LL\) couplings, for which only indirect decays are allowed. They investigate topologies with jets plus leptons in data from \(\sqrt{s} = 183\) GeV. The lower bound on the stop mass assumes a neutralino mass limit of 27 GeV, also derived in ABREU 00\(i\).

32 AFFOLDER 00\(d\) search for final states with 2 or 3 jets and \(E_T\), one jet with a c tag. See their Fig. 2 for the mass exclusion in the \((m_{\tilde{t}}, m_{\tilde{\chi}_1})\) plane. The maximum excluded \(m_{\tilde{t}}\) value is 119 GeV, for \(m_{\tilde{\chi}_1} = 40\) GeV.
AFFOLDEN 00G searches for $\tilde{t}_1 \tilde{t}_1^*$ production, with $\tilde{t}_1 \to b\ell\bar{\nu}$, leading to topologies with ≥ 1 isolated lepton (e or μ), E_T, and ≥ 2 jets with ≥ 1 tagged as b quark by a secondary vertex. See Fig. 4 for the excluded mass range as a function of $m_{\tilde{t}_1}$. Cross-section limits for $\tilde{t}_1 \tilde{t}_1^*$, with $\tilde{t}_1 \to b\chi_1^\pm (\chi_1^\pm \to \ell^\pm \nu\chi_1^0)$, are given in Fig. 2.

Superseded by AALTONEN 10Y.

ABE 99M looked in 107 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s}=1.8$ TeV for events with like sign dielectrons and two or more jets from the sequential decays $\tilde{q} \to q\chi_1^0$ and $\chi_1^0 \to e\bar{q}'q'$. Assuming R coupling $L_1Q_jD_1$ with $j=2,3$ and $k=1,2,3$. They assume $B(\tilde{t}_1 \to c\chi_1^0)=1$, $B(\chi_1^0 \to e\bar{q}'q')=0.25$ for both e^+ and e^-, and $m_{\chi_1^0} \geq m_{\tilde{t}_1}/2$. The limit improves for heavier χ_1^0.

AID 96 considers photoproduction of $\tilde{t}\tilde{t}$ pairs, with 100% R-parity violating decays of \tilde{t} to $e\bar{q}$, with $q=d, s$, or b quarks.

AID 96 considers production and decay of \tilde{t} via the R-parity violating coupling $\lambda'_L L_1 Q_3 d_1$.

CHO 96 studied the consistency among the $\tilde{B}\tilde{B}$ mixing, ϵ in $K^0\bar{K}^0$ mixing, and the measurements of V_{cb}, V_{ub}/V_{cb}. For the range 25.5 GeV$<m_{\tilde{t}_1}<m_{Z}/2$ left by AKERS 94K for $\theta_K = 0.98$, and within the allowed range in $M_2-\mu$ parameter space from chargino, neutralino searches by ACCIARII 95E, they found the scalar top contribution to $B^0\bar{B}^0$ mixing and ϵ to be too large if $\tan\beta<2$. For more on their assumptions, see the paper and their reference 10.

BUSKULIC 95E looked for $Z \to \tilde{t}\tilde{t}$, where $\tilde{t} \to c\chi_1^0$ and χ_1^0 decays via R-parity violating interactions into two leptons and a neutrino.

SHIRAI 94 bound assumes the cross section without the s-channel Z-exchange and the QCD correction, underestimating the cross section up to 20% and 30%, respectively. They assume $m_c=1.5$ GeV.

Heavy \tilde{g} (Gluino) MASS LIMIT

For $m_{\tilde{g}} > 60$–70 GeV, it is expected that gluinos would undergo a cascade decay via a number of neutralinos and/or charginos rather than undergo a direct decay to photinos as assumed by some papers. Limits obtained when direct decay is assumed are usually higher than limits when cascade decays are included. Limits made obsolete by the most recent analyses of $p\bar{p}$ collisions can be found in previous Editions of this Review.

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 520</td>
<td>95</td>
<td>1 AAD</td>
<td>11AF ATLS</td>
<td>≥ 6 jets + E_T, CMSSM</td>
</tr>
<tr>
<td>> 700</td>
<td>95</td>
<td>2 AAD</td>
<td>11G ATLS</td>
<td>ℓ+jets+E_T, $\tan\beta=3$, $A_0=0$, $\mu>0$, $m_{\tilde{g}}=m_{\tilde{q}}$</td>
</tr>
<tr>
<td>> 500</td>
<td>95</td>
<td>3 AAD</td>
<td>11N ATLS</td>
<td>jets+E_T, degenerate $m_{\tilde{q}}$ of first two generations, $m_{\chi_1^0}=0$, all other supersymmetric particles heavy, any $m_{\tilde{q}}$</td>
</tr>
<tr>
<td>> 870</td>
<td>95</td>
<td>3 AAD</td>
<td>11N ATLS</td>
<td>jets+E_T, degenerate $m_{\tilde{q}}$ of first two generations, $m_{\chi_1^0}=0$, all other supersymmetric particles heavy, $m_{\tilde{q}}=m_{\tilde{g}}$</td>
</tr>
<tr>
<td>> 775</td>
<td>95</td>
<td>3 AAD</td>
<td>11N ATLS</td>
<td>jets+E_T, CMSSM, $m_{\tilde{q}}=m_{\tilde{g}}$</td>
</tr>
</tbody>
</table>
We do not use the following data for averages, fits, limits, etc.

\[\text{\ldots} \]

- \[\ell \ell +\text{jets} + E_T, \tan \beta < 10, \quad m_0 < 300 \text{ GeV}, \mu < 0, \quad A_0 = 0 \]
- \[\ell \ell +\text{jets} + E_T, \tan \beta = 2, \text{ large} \quad m_0, \mu < 0, \quad A_0 = 0 \]
- \[\ell \ell +\text{jets} + E_T, \tan \beta = 2, \quad m_\tilde{g} - m_\tilde{q}, \mu < 0, \quad A_0 = 0 \]
- \[\ell \ell +\text{jets} + E_T, \tan \beta = 2, \quad \mu = -800 \text{ GeV}, m_\tilde{q} \gg m_\tilde{g} \]
- \[\ell \ell +\text{jets} + E_T, \tan \beta = 2, \quad \mu = -800 \text{ GeV}, m_\tilde{g} - m_\tilde{q} \]
- \[\text{Jets} + E_T, \tan \beta = 2, \mu < 0, \quad A = 0 \]
- \[\text{Jets} + E_T, m_\tilde{g} = m_\tilde{q} \]

\[\text{\ldots} \]
\[\tilde{g} \rightarrow \tilde{\chi}_2^0 X \rightarrow \chi_2^0 \gamma X, \]
\[\chi_2^0 - \chi_1^0 > 20 \text{ GeV} \]

<table>
<thead>
<tr>
<th>Mass</th>
<th>Year</th>
<th>Author</th>
<th>Experiment</th>
<th>Reference</th>
</tr>
</thead>
</table>
| 240 | 95 | 26 ABBOTT | D0 | \[\tilde{g} \rightarrow \tilde{\chi}_2^0 X \rightarrow \chi_2^0 \gamma X, \]
| 320 | 95 | 26 ABBOTT | D0 | any \(m_{\tilde{q}}, R \), \(\tan \beta = 2, \mu < 0 \) |
| 227 | 95 | 27 ABBOTT | D0 | \(m_{\tilde{g}} \geq m_{\tilde{q}} \); cascade decays |
| 212 | 95 | 28 ABACHI | D0 | \(m_{\tilde{q}} \); cascade decays |
| 144 | 95 | 28 ABACHI | D0 | \(m_{\tilde{q}} \); cascade decays |
| 218 | 90 | 29 ABE | CDF | \(\tilde{g} \rightarrow \tilde{\chi}_2^0 \rightarrow \chi_2^0 \gamma \) |
| 100 | 92 | ROY | RVUE | \(p \bar{p} \rightarrow \tilde{g} \tilde{g} ; R \) |
| none | 90 | 32 ROY | RVUE | \(m_{\tilde{q}} \geq 100 \text{ GeV} \) |
| none | 90 | 33 NOJIRI | COSM | \(m_{\tilde{q}} \geq 100 \text{ GeV} \) |

1 AAD 11AF looked in 1.34 fb\(^{-1}\) of pp collisions at \(\sqrt{s} = 7 \) TeV for events with 6 up to 8 jets and \(\ell^+\ell^- \). No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM (\(m_0, m_{1/2} \)) plane for \(\tan \beta = 10 \) (see Fig. 5). The limit improves to \(m_{\tilde{g}} > 680 \text{ GeV} \) for \(m_{\tilde{q}} = 2 \) \(m_{\tilde{g}} \).

2 AAD 11G looked in 35 pb\(^{-1}\) of pp collisions at \(\sqrt{s} = 7 \) TeV for events with a single lepton (e or \(\mu \)), jets and \(\ell^+\ell^- \) from the production of squarks and gluinos. No evidence for an excess over the SM expectation is observed, and a limit is derived in the CMSSM (\(m_0, m_{1/2} \)) plane for \(\tan \beta = 3 \), see Fig. 2.

3 AAD 11N looked in 35 pb\(^{-1}\) of pp collisions at \(\sqrt{s} = 7 \) TeV for events with \(\geq 2 \) jets and \(\ell^+\ell^- \). Four signal regions were defined, and the background model was found to be in good agreement with the data. Limits are derived in the (\(m_{\tilde{g}}, m_{\tilde{q}} \)) plane (see Fig. 2) for a simplified model where degenerate masses of the squarks of the first two generations are assumed, \(m_{\tilde{\chi}_1^0} = 0 \), and all other masses including third generation squarks are set to 5 TeV. Limits are also derived in the CMSSM (\(m_0, m_{1/2} \)) plane (see Fig. 3) for \(\tan \beta = 3 \).

4 AAD 10O looked in 35 pb\(^{-1}\) of pp collisions at \(\sqrt{s} = 7 \) TeV for events with jets, of which at least one is a b-jet, and \(\ell^+\ell^- \). No excess above the Standard Model was found. Limits are derived in the (\(m_{\tilde{g}}, m_{\tilde{b}_1} \)) plane (see Fig. 2) under the assumption of 100% branching ratios and \(\tilde{b}_1 \) being the lightest squark. The quoted limit is valid for \(m_{\tilde{b}_1} < 500 \text{ GeV} \). A similar approach for \(\tilde{t}_1 \) as the lightest squark with \(\tilde{g} \rightarrow \tilde{\chi}^+_1 t \) and \(\tilde{t}_1 \rightarrow b\tilde{\chi}^-_1 \) with 100% branching ratios leads to a gluino mass limit of 520 GeV for \(130 < m_{\tilde{t}_1} < 300 \text{ GeV} \). Limits are also derived in the CMSSM (\(m_0, m_{1/2} \)) plane for \(\tan \beta = 40 \), see Fig. 4, and in scenarios based on the gauge group SO(10).

5 CHATRCHYAN 11AC looked in 36 pb\(^{-1}\) of pp collisions at \(\sqrt{s} = 7 \) TeV for events with \(\geq 3 \) jets, a large total transverse energy, and \(\ell^+\ell^- \). No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM (\(m_0, m_{1/2} \)) plane and the (\(m_{\tilde{g}}, m_{\tilde{q}} \)) plane for \(\tan \beta = 10 \) (see Fig. 10). Limits are also obtained for Simplified Model Spectra.

6 AALTONEN 09S searched in 2 fb\(^{-1}\) of pp collisions at \(\sqrt{s} = 1.96 \) TeV for events with at least 2 jets and \(\ell^+\ell^- \). No evidence for a signal is observed. A limit is derived for a mSUGRA scenario in the \(m_{\tilde{\chi}^0_1} \) versus \(m_{\tilde{\chi}^0_1} \) plane, see their Fig. 2.
7 ABAZOV 08C looked in 2.1 fb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\) TeV for events with acoplanar jets or multijets with large \(E_T\). No significant excess was found compared to the background expectation. A limit is derived on the masses of squarks and gluinos for specific MSUGRA parameter values, see Figure 3. Similar results would be obtained for a large class of parameter sets. Supersedes the results of ABAZOV 06C.

8 ABULENCIA 06 searched in 156 pb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\) TeV for multijet events with large \(E_T\). They request at least 2 \(b\)-tagged jets and no isolated leptons. They investigate the production of gluinos decaying into \(\tilde{b}_1\) \(b\) followed by \(\tilde{b}_1 \rightarrow b\tilde{\chi}_1^0\). Both branching fractions are assumed to be 100% and the LSP mass to be 60 GeV. No significant excess was found compared to the background expectation. Upper limits on the cross-section are extracted and a limit is derived on the masses of sbottom and gluinos, see their Fig.3.

9 AFFOLDER 02 searched in \(\sim 84\) pb\(^{-1}\) of \(p\bar{p}\) collisions for events with \(\geq 3\) jets and \(E_T\), arising from the production of gluinos and/or squarks. Limits are derived by scanning the parameter space, for \(m_{\tilde{q}} \geq m_\tilde{g}\) in the framework of minimal Supergravity, assuming five flavors of degenerate squarks, and for \(m_{\tilde{q}} < m_\tilde{g}\) in the framework of constrained MSSM, assuming conservatively four flavors of degenerate squarks. See Fig. 3 for the variation of the limit as function of the squark mass. Supersedes the results of ABE 97c.

10 ABBOTT 01D looked in \(\sim 108\) pb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s}=1.8\) TeV for events with \(e e, \mu\mu, \) or \(e\mu\) accompanied by at least \(2\) jets and \(E_T\). Excluded regions are obtained in the MSUGRA framework from a scan over the parameters \(0 < m_0 < 300\) GeV, \(10 < m_{1/2} < 110\) GeV, and \(1.2 < \tan\beta < 10\). AFFOLDER 01J searched in \(\sim 106\) pb\(^{-1}\) of \(p\bar{p}\) collisions for events with \(2\) like-sign leptons (\(e\) or \(\mu\)), \(\geq 2\) jets and \(E_T\), expected to arise from the production of gluinos and/or squarks with cascade decays into \(\tilde{\chi}_\pm\) or \(\tilde{\chi}_0^0\). Spectra and decay rates are evaluated in the framework of minimal Supergravity, assuming five flavors of degenerate squarks and a pseudoscalar Higgs mass \(m_A=500\) GeV. The limits are derived for \(\tan\beta=2, \mu=-800\) GeV, and scanning over \(m_{\tilde{g}}\) and \(m_{\tilde{q}}\). See Fig. 2 for the variation of the limit as function of the squark mass. These limits supersede the results of ABE 96b.

11 ABBOTT 99l consider events with three or more jets and large \(E_T\). Spectra and decay rates are evaluated in the framework of minimal Supergravity, assuming five flavors of degenerate squarks, and scanning the space of the universal gaugino \((m_{1/2})\) and scalar \((m_0)\) masses. See their Figs. 2–3 for the dependence of the limit on the relative value of \(m_{\tilde{q}}\) and \(m_\tilde{g}\).

12 CHATRCHYAN 12 looked in 35 pb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s}=7\) TeV for events with \(e\) and/or \(\mu\) and/or jets, a large total transverse energy, and \(E_T\). The event selection is based on the dimensionless razor variable \(R\), related to the \(E_T\) and \(M_R\), an indicator of the heavy particle mass scale. No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM \((m_0, m_{1/2})\) plane for \(\tan\beta = 3, 10\) and 50 (see Fig. 7 and 8). Limits are also obtained for Simplified Model Spectra.

13 AAD 11x looked in 36 pb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s}=7\) TeV for events with \(\geq 2\) photons and \(E_T\) from the pair production of gluinos with cascade decays to \(\tilde{\chi}_1^0\) followed by \(\tilde{\chi}_1^0 \rightarrow \gamma\tilde{G}\) prompt decay. No evidence for an excess over the SM expectation is observed, and a limit on the number of new physics events is set. Limits are derived in a Generalized Gauge Mediated model in the \((m_{\tilde{g}}, m_{\tilde{q}})\) plane (see Fig. 5) under the assumptions \(\tan\beta = 2\) and all sparticle masses at 1.5 TeV, except the \(\tilde{g}, \tilde{\chi}_1^0\), and \(\tilde{G}\).

15 AALTONEN 11a searched in 3.2 fb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\) TeV for events with at least 6 jets from the pair production of gluinos and squarks with the subsequent decays \(\tilde{g} \rightarrow 3\) jets in the MSSM framework with \(R\). No statistically significant bumps in the 3-jet systems are observed over the SM background. Limits on the cross section times branching ratio are derived as a function of the gluino mass, displayed in Fig. 3. For decoupled squarks in the range \(0.5 < m_{\tilde{q}} < 0.7\) TeV gluinos are excluded below 144 GeV. The quoted limit is for near degeneracy of squark and gluino masses.
16 CHATRCHYAN 11AB looked in 35 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 2 same charge isolated leptons (e, μ or τ), jets and E_T. Such events might be produced from $g\tilde{g}$ or $\tilde{g}\tilde{q}$ decaying via charginos into leptons. No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM ($m_0, m_{1/2}$) plane for $\tan\beta = 3$ (see Fig. 10).

17 CHATRCHYAN 11G looked in 36 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 2 isolated photons, ≥ 1 jet and E_T, which may arise in a generalized gauge mediated model from the decay of a $\tilde{\chi}^0_1$ NLSP. No evidence for an excess over the expected background is observed. Limits are derived in the plane of squark versus gluino mass (see Fig. 4) for several values of $m_{\tilde{\chi}^0_1}$.

18 CHATRCHYAN 11Q looked in 36 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with a single isolated lepton (e or μ), ≥ 4 jets and E_T. No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM ($m_0, m_{1/2}$) plane for $\tan\beta = 10$ (see Fig. 7).

19 CHATRCHYAN 11V looked in 35 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 3 isolated leptons (e, μ or τ), with or without jets and E_T. Multi-lepton final states originate from $q \rightarrow \tilde{\chi}^0 + X$, followed by $\tilde{\chi}^0 \rightarrow \tilde{\ell}^\pm \ell^\mp$ and $\tilde{\ell} \rightarrow \ell G$. No evidence for an excess over the expected background is observed. Limits are derived (see Fig. 4) for a GMSB-type scenario with mass-degenerate right-handed sleptons (slepton co-NLSP scenario).

20 CHATRCHYAN 11W looked in 1.14 fb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 2 jets, large total jet energy, and E_T. After combining multi-jet events into two pseudo-jets signal events are selected by a cut on $\alpha_T = E_T^j / M_T$, the transverse energy of the less energetic jet over the transverse mass. Given the lack of an excess over the SM backgrounds, limits are derived in the CMSSM ($m_0, m_{1/2}$) plane (see Fig. 4) for $\tan\beta = 10$. The limits are only weakly dependent on $\tan\beta$ and A_0.

21 KHACHATRYAN 11I looked in 35 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 2 jets and E_T. After combining multi-jet events into two pseudo-jets signal events are selected by a cut on $\alpha_T = E_T^j / M_T$, the transverse energy of the less energetic jet over the transverse mass. No evidence for an excess over the expected background is observed. Limits are derived in the CMSSM ($m_0, m_{1/2}$) plane (see Fig. 5) for $\tan\beta = 3$. Superseded by CHATRCHYAN 11W.

22 ABAZOV 02F looked in 77.5 pb$^{-1}$ of $p\bar{p}$ collisions at 1.8 TeV for events with $\geq 2\mu^+ \geq 4$jets, originating from associated production of squarks followed by an indirect R decay (of the $\tilde{\chi}^0_1$) via LQD couplings of the type λ^{jk}_{ij} where $j=1,2$ and $k=1,2,3$. Bounds are obtained in the MSUGRA scenario by a scan in the range $0 \leq M_0 \leq 400$ GeV, $60 \leq m_{1/2} \leq 120$ GeV for fixed values $A_0=0$, $\mu < 0$, and $\tan\beta=2$ or 6. The bounds are weaker for $\tan\beta=6$. See Figs. 2, 3 for the exclusion contours in $m_{1/2}$ versus m_0 for $\tan\beta=2$ and 6, respectively.

23 ABAZOV 02G search for associated production of gluinos and squarks in 92.7 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s}=1.8$ TeV, using events with one electron, ≥ 4 jets, and large E_T. The results are compared to a MSUGRA scenario with $\mu < 0$, $A_0=0$, and $\tan\beta=3$ and allow to exclude a region of the $(m_0,m_{1/2})$ shown in Fig. 11.

24 CHEUNG 02B studies the constraints on a \tilde{b}_1 with mass in the 2.2–5.5 GeV region and a gluino in the mass range 12–16 GeV, using precision measurements of Z^0 decays and e^+e^- annihilations at LEP2. Few detectable events are predicted in the LEP2 data for the model proposed by BERGER 01.

25 BERGER 01 reanalyzed interpretation of Tevatron data on bottom-quark production. Argues that pair production of light gluinos ($m \sim 12$–16 GeV) with subsequent 2-body decay into a light sbottom ($m \sim 2$–5.5 GeV) and bottom can reconcile Tevatron data
with predictions of perturbative QCD for the bottom production rate. The bottom must either decay hadronically via a R-parity- and B-violating interaction, or be long-lived.

26 ABBOTT 99 searched for $\gamma E_T + \geq 2$ jet final states, and set limits on $\sigma(p\bar{p} \rightarrow \tilde{g} + \text{X})B(\tilde{g} \rightarrow \gamma E_T \text{X})$. The quoted limits correspond to $m_{\tilde{q}} \geq m_{\tilde{g}}$, with $B(\tilde{\chi}^0_2 \rightarrow \gamma \tilde{\chi}^0_1) = 1$ and $B(\tilde{\chi}^0_1 \rightarrow \tilde{g} \gamma) = 1$, respectively. They improve to 310 GeV (360 GeV in the case of $\tilde{g} \rightarrow \tilde{\chi}^0_1$ decay) for $m_{\tilde{g}} = m_{\tilde{q}}$.

27 ABBOTT 99K uses events with an electron pair and four jets to search for the decay of the $\tilde{\chi}^0_1$ LSP via R LQD couplings. The particle spectrum and decay branching ratios are taken in the framework of minimal supergravity. An excluded region at 95% CL is obtained in the $(m_0, m_{1/2})$ plane under the assumption that $A_0=0$, $\mu < 0$, $\tan\beta=2$ and any one of the couplings $\lambda_{ij}^{' \prime} > 10^{-3}$ ($j=1,2$ and $k=1,2,3$) and from which the above limit is computed. For equal mass squarks and gluinos, the corresponding limit is 277 GeV. The results are essentially independent of A_0, but the limit deteriorates rapidly with increasing $\tan\beta$ or $\mu > 0$.

28 ABACHI 95 assume five degenerate squark flavors with with $m_{\tilde{q}_L} = m_{\tilde{q}_R}$. Sleptons are assumed to be heavier than squarks. The limits are derived for fixed $\tan\beta = 2.0$, $\mu = -250$ GeV, and $m_{\tilde{H}^\pm} = 500$ GeV, and with the cascade decays of the squarks and gluinos calculated within the framework of the Minimal Supergravity scenario. The bounds are weakly sensitive to the three fixed parameters for a large fraction of parameter space.

29 ABE 95T looked for a cascade decay of gluino into $\tilde{\chi}^0_2$ which further decays into $\tilde{\chi}^0_1$ and a photon. No signal is observed. Limits vary widely depending on the choice of parameters. For $\mu = -40$ GeV, $\tan\beta = 1.5$, and heavy squarks, the range $50 < m_{\tilde{g}}$ (GeV) < 140 is excluded at 90% CL. See the paper for details.

30 HEBBEKER 93 combined jet analyses at various $e^+ e^-$ colliders. The 4-jet analyses at TRISTAN/LEP and the measured α_s at PEP/PETRA/TRISTAN/LEP are used. A constraint on effective number of quarks $N=6.3 \pm 1.1$ is obtained, which is compared to that with a light gluino, $N=8$.

31 ABE 92L bounds are based on similar assumptions as ABACHI 95C. Not sensitive to $m_{\text{gluino}} < 40$ GeV (but other experiments rule out that region).

32 ROY 92 reanalyzed CDF limits on di-lepton events to obtain limits on gluino production in R-parity violating models. The 100% decay $\tilde{g} \rightarrow q\bar{q}\tilde{\chi}$ where $\tilde{\chi}$ is the LSP, and the LSP decays either into $\ell\tilde{\ell}$ or $\ell\ell\tilde{\tau}$ is assumed.

33 NOJIRI 91 argues that a heavy gluino should be nearly degenerate with squarks in minimal supergravity not to overclose the universe.

34 The limits of ALBAJAR 87D are from $p\bar{p} \rightarrow \tilde{g}\bar{g}\text{X}$ ($\tilde{g} \rightarrow q\bar{q}\tilde{\chi}$) and assume $m_{\tilde{q}} > m_{\tilde{g}}$. These limits apply for $m_{\tilde{g}} \lesssim 20$ GeV and $\tau(\tilde{g}) < 10^{-10}$ s.

35 The limit of ANSARI 87D assumes $m_{\tilde{q}} > m_{\tilde{g}}$ and $m_{\tilde{g}} \approx 0$.

Long-lived/light \tilde{g} (Gluino) MASS LIMIT

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>>586</td>
<td>95</td>
<td>1 AAD</td>
<td>11K</td>
<td>ATLS</td>
</tr>
<tr>
<td>>544</td>
<td>95</td>
<td>2 AAD</td>
<td>11P</td>
<td>ATLS</td>
</tr>
<tr>
<td>>370</td>
<td>95</td>
<td>3 KHACHATRY...11</td>
<td>CMS</td>
<td>CMS</td>
</tr>
<tr>
<td>>398</td>
<td>95</td>
<td>4 KHACHATRY...11</td>
<td>CMS</td>
<td>CMS</td>
</tr>
<tr>
<td>>15</td>
<td>90</td>
<td>5 BERGER</td>
<td>10</td>
<td>THEO</td>
</tr>
<tr>
<td>Reference</td>
<td>Year</td>
<td>Institution</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>6 KAPLAN</td>
<td>95</td>
<td>THEO</td>
<td>event shapes at LEP</td>
<td></td>
</tr>
<tr>
<td>7 ABAZOV</td>
<td>97L</td>
<td>D0</td>
<td>long-lived \tilde{g}</td>
<td></td>
</tr>
<tr>
<td>8 BERGER</td>
<td>95</td>
<td>THEO</td>
<td>hadron scattering data</td>
<td></td>
</tr>
<tr>
<td>9 ABDALLAH</td>
<td>93C</td>
<td>DLPH</td>
<td>$e^+ e^- \rightarrow q\bar{q}\tilde{g}\tilde{g}$, stable \tilde{g}</td>
<td></td>
</tr>
<tr>
<td>10 ABDALLAH</td>
<td>93G</td>
<td>DLPH</td>
<td>QCD beta function</td>
<td></td>
</tr>
<tr>
<td>11 HEISTER</td>
<td>03H</td>
<td>ALEP</td>
<td>Color factors</td>
<td></td>
</tr>
<tr>
<td>12 HEISTER</td>
<td>03H</td>
<td>ALEP</td>
<td>Color factors</td>
<td></td>
</tr>
<tr>
<td>13 JANOT</td>
<td>95</td>
<td>RVUE</td>
<td>$\Delta \Gamma_{\text{had}} < 3.9$ MeV</td>
<td></td>
</tr>
<tr>
<td>14 MAFI</td>
<td>00</td>
<td>THEO</td>
<td>$pp \rightarrow$ jets + p_T^*</td>
<td></td>
</tr>
<tr>
<td>15 ALAVI-HARATI</td>
<td>99E</td>
<td>KTEV</td>
<td>$pN \rightarrow R^0$, with $R^0 \rightarrow \rho^0 \tilde{\gamma}$ and $R^0 \rightarrow \pi^0 \tilde{\gamma}$</td>
<td></td>
</tr>
<tr>
<td>16 BAER</td>
<td>99</td>
<td>RVUE</td>
<td>Stable \tilde{g} hadrons</td>
<td></td>
</tr>
<tr>
<td>17 FANTI</td>
<td>99</td>
<td>NA48</td>
<td>$p\bar{e} \rightarrow R^0 \rightarrow \eta \tilde{\gamma}$</td>
<td></td>
</tr>
<tr>
<td>18 ACKERSTAFF</td>
<td>98V</td>
<td>OPAL</td>
<td>$e^+ e^- \rightarrow \chi^+_1 \chi^-_1$</td>
<td></td>
</tr>
<tr>
<td>19 ADAMS</td>
<td>97B</td>
<td>KTEV</td>
<td>$pN \rightarrow R^0 \rightarrow \rho^0 \tilde{\gamma}$</td>
<td></td>
</tr>
<tr>
<td>20 ALBUQUERQUE</td>
<td>97E</td>
<td>E761</td>
<td>$R^+(uud\tilde{g}) \rightarrow S^0(uds\tilde{g})\pi^+, X^- (ssd\tilde{g}) \rightarrow S^0 \pi^-$</td>
<td></td>
</tr>
<tr>
<td>21 BARATE</td>
<td>97L</td>
<td>ALEP</td>
<td>Color factors</td>
<td></td>
</tr>
<tr>
<td>22 CSIKOR</td>
<td>97</td>
<td>RVUE</td>
<td>β function, $Z \rightarrow$ jets</td>
<td></td>
</tr>
<tr>
<td>23 DEGUVE</td>
<td>97</td>
<td>THEO</td>
<td>$Z \rightarrow jjjj$</td>
<td></td>
</tr>
<tr>
<td>24 FARRAR</td>
<td>96</td>
<td>RVUE</td>
<td>$R^0 \rightarrow \pi^0 \tilde{\gamma}$</td>
<td></td>
</tr>
<tr>
<td>25 AKERS</td>
<td>95R</td>
<td>OPAL</td>
<td>Z decay into a long-lived</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$(\tilde{g} q\bar{q})^\pm$</td>
<td></td>
</tr>
<tr>
<td>< 0.7</td>
<td></td>
<td></td>
<td>quarkonia</td>
<td></td>
</tr>
<tr>
<td>26 CLAVELLI</td>
<td>95</td>
<td>RVUE</td>
<td>$\Upsilon(1S) \rightarrow \gamma+\text{gluinonium}$</td>
<td></td>
</tr>
<tr>
<td>27 CAKIR</td>
<td>94</td>
<td>RVUE</td>
<td>$\Upsilon(1S) \rightarrow \gamma+\text{gluinonium}$</td>
<td></td>
</tr>
<tr>
<td>28 LOPEZ</td>
<td>93C</td>
<td>RVUE</td>
<td>LEP</td>
<td></td>
</tr>
<tr>
<td>29 CLAVELLI</td>
<td>92</td>
<td>RVUE</td>
<td>α_s running</td>
<td></td>
</tr>
<tr>
<td>30 ANTONIADIS</td>
<td>91</td>
<td>RVUE</td>
<td>α_s running</td>
<td></td>
</tr>
<tr>
<td>31 ANTONIADIS</td>
<td>91</td>
<td>RVUE</td>
<td>$pN \rightarrow$ missing energy</td>
<td></td>
</tr>
<tr>
<td>32 NAKAMURA</td>
<td>89</td>
<td>SPEC</td>
<td>$R-\Delta^{++}$</td>
<td></td>
</tr>
<tr>
<td>33 ARNOLD</td>
<td>87</td>
<td>EMUL</td>
<td>$\pi^- (350$ GeV). $\sigma \sim A_1^3$</td>
<td></td>
</tr>
<tr>
<td>34 TUTS</td>
<td>87</td>
<td>CUSB</td>
<td>$\Upsilon(1S) \rightarrow \gamma+\text{gluinonium}$</td>
<td></td>
</tr>
<tr>
<td>35 ALBRECHT</td>
<td>86C</td>
<td>ARG</td>
<td>$1 \times 10^{-11} \lesssim \tau \lesssim 1 \times 10^{-9}$</td>
<td></td>
</tr>
<tr>
<td>36 BADIER</td>
<td>86</td>
<td>BDMP</td>
<td>$1 \times 10^{-10} < \tau < 1 \times 10^{-7}$</td>
<td></td>
</tr>
<tr>
<td>37 BARNETT</td>
<td>86</td>
<td>RVUE</td>
<td>$p\bar{p} \rightarrow \text{gluino gluino gluon}$</td>
<td></td>
</tr>
<tr>
<td>38 VOLOSHIN</td>
<td>86</td>
<td>RVUE</td>
<td>If (quasi) stable: $\tilde{g} u u d$</td>
<td></td>
</tr>
<tr>
<td>39 COOPER--...</td>
<td>85B</td>
<td>BDMP</td>
<td>For $m_{\tilde{g}}=300$ GeV</td>
<td></td>
</tr>
<tr>
<td>40 DAWSON</td>
<td>85</td>
<td>RVUE</td>
<td>$\tau > 10^{-7}$ s</td>
<td></td>
</tr>
<tr>
<td>41 FARRAR</td>
<td>85</td>
<td>RVUE</td>
<td>FNAL beam dump</td>
<td></td>
</tr>
<tr>
<td>42 GOLDMAN</td>
<td>85</td>
<td>RVUE</td>
<td>Gluonium</td>
<td></td>
</tr>
<tr>
<td>43 HABER</td>
<td>85</td>
<td>RVUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44 BALL</td>
<td>84</td>
<td>CALO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 BRICK</td>
<td>84</td>
<td>RVUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46 FARRAR</td>
<td>84</td>
<td>RVUE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HTTP://PDG.LBL.GOV Page 70 Created: 6/18/2012 15:10
AAD 11k looked in 34 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with heavy stable particles, identified by their anomalous dE/dx in the tracker or time of flight in the tile calorimeter, from pair production of \tilde{g}. No evidence for an excess over the SM expectation is observed. Limits are derived for pair production of gluinos as a function of mass (see Fig. 4), for a fraction, $f = 0.10$, of formation of $\tilde{g} - g$ (R-gluonball). If instead of a phase space driven approach for the hadronic scattering of the R-hadrons, a triple-Regge model or a bag-model is used, the limit degrades to 566 and 562 GeV, respectively.

AAD 11p looked in 37 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with heavy stable particles, reconstructed and identified by their time of flight in the Muon System. There is no requirement on their observation in the tracker to increase the sensitivity to cases where gluinos have a large fraction, f, of formation of neutral $\tilde{g} - g$ (R-gluonball). No evidence for an excess over the SM expectation is observed. Limits are derived as a function of mass (see Fig. 4), for $f=0.1$. For fractions $f = 0.5$ and 1.0 the limit degrades to 537 and 530 GeV, respectively.

KHACHATRYAN 11 looked in 10 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with pair production of long-lived gluinos. The hadronization of the gluinos leads to R-hadrons which may stop inside the detector and later decay via $\tilde{g} \rightarrow g \chi_{1}^{0}$ during gaps between the proton bunches. No significant excess over the expected background is observed. From a counting experiment, a limit at 95% C.L. on the cross section times branching ratio is derived for $m_{\tilde{g}} - m_{\chi_{1}^{0}} > 100$ GeV, see their Fig. 2. Assuming 100% branching ratio, lifetimes between 75 ns and 3×10^5 s are excluded for $m_{\tilde{g}} = 300$ GeV. The \tilde{g} mass exclusion is obtained with the same assumptions for lifetimes between 10 μs and 1000 s, but shows some dependence on the model for R-hadron interactions with matter, illustrated in Fig. 3. From a time-profile analysis, the mass exclusion is 382 GeV for a lifetime of 10 μs under the same assumptions as above.

KHACHATRYAN 11c looked in 3.1 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with heavy stable particles, identified by their anomalous dE/dx in the tracker or additionally requiring that it be identified as muon in the muon chambers, from pair production of \tilde{g}. No evidence for an excess over the expected background is observed. Limits are derived for pair production of gluinos as a function of mass (see Fig. 3), depending on the fraction, f, of formation of $\tilde{g} - g$ (R-gluonball). The quoted limit is for $f=0.1$, while for $f=0.5$ it degrades to 357 GeV. In the conservative scenario where every hadronic interaction causes it to become neutral, the limit decreases to 311 GeV for $f=0.1$.

BERGER 10 updated the results of BERGER 05. They fit parton distribution functions including the effects of a light gluino as an extra parton. Different data on α_s is also included. A fit for $\alpha_s(M_Z)$ is performed as a function of the gluino mass. The bound is determined by comparing the quality of the fit to the CT10 fit, and the CT10 tolerance criterion is used to define the significance. The lower bound is 25 GeV for fixed $\alpha_s(M_Z) = 0.118$.

KAPLAN 08 reanalysed jet event shape data from LEP 1 and LEP 2 using soft collinear effective theory methods. These data are sensitive to the effects of new degrees of freedoms, including a relatively light gluino, at different energy scales, roughly between 5 and 50 GeV. The analysis relies on theoretical modeling of and approximations for non-perturbative effects and matching between different scales.

ABAZOV 07L looked in approximately 410 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV for events with a long-lived gluino from split supersymmetry, decaying after stopping in the detector into $g \chi_1^{\pm}$ with lifetimes from 30 μs to 100 h. The signal signature is a largely empty event with a single large transverse energy deposit in the calorimeter. The main background is due to cosmic muons interacting in the calorimeter. The data agree with the estimated background and allow the authors to estimate a limit on the rate of an
out-of-time monojet signal of a given energy. Assuming the branching ratios \(g \rightarrow \tilde{g}, \tilde{g} \rightarrow \chi^0_1 \) to be 100\% the results can be translated to limits on the gluino cross section versus the gluino mass for fixed \(\chi^0_1 \) mass. After comparing to the expected gluino cross sections, the excluded region of gluino masses can be obtained, see examples in their Fig. 3.

BERGER 05 include the light gluino in proton PDF and perform global analysis of hadronic data. Effects on the running of \(\alpha_S \) also included. Strong dependency on \(\alpha_S(m_Z) \). Bound quoted for \(\alpha_S(m_Z) = 0.118 \). Superseded by BERGER 10.

ABDALLAH 03c looked for events of the type \(q\bar{q}R^\pm R^\pm, q\bar{q}R^0 R^0 \) in \(e^+ e^- \) interactions at 91.2 GeV collected in 1994. The \(R^\pm \) bound states are identified by anomalous dE/dx in the tracking chambers and the \(R^0 \) by missing energy, due to their reduced energy loss in the calorimeters. The upper value of the excluded range depends on the probability for the gluino to fragment into \(R^\pm \) or \(R^0 \), see their Fig. 17. It improves to 23 GeV for 100\% fragmentation to \(R^\pm \).

ABDALLAH 03g used \(e^+ e^- \) data at and around the \(Z^0 \) peak, above the \(Z^0 \) up to \(\sqrt{s} = 202 \) GeV and events from radiative return to cover the low energy region. They perform a direct measurement of the QCD beta-function from the means of fully inclusive event observables. Compared to the energy range, gluinos below 5 GeV can be considered massless and are firmly excluded by the measurement.

HEISTER 03 use \(e^+ e^- \) data from 1994 and 1995 at and around the \(Z^0 \) peak to measure the 4-jet rate and angular correlations. The comparison with QCD NLO calculations allow the color factor ratios to be extracted and the results are in agreement with the expectations from QCD. The inclusion of a massless gluino in the beta functions yields \(T_R / C_F = 0.15 \pm 0.06 \pm 0.06 \) (expectation is \(T_R / C_F = 3/8 \)), excluding a massless gluino at more than 95\% CL. As no NLO calculations are available for massive gluinos, the earlier LO results from BARATE 97l for massive gluinos remain valid.

HEISTER 03h use \(e^+ e^- \) data at and around the \(Z^0 \) peak to look for stable gluinos hadronizing into charged or neutral R-hadrons with arbitrary branching ratios. Combining these results with bounds on the \(Z^0 \) hadronic width from electroweak measurements (JANOT 03) to cover the low mass region the quoted lower limit on the mass of a long-lived gluino is obtained.

JANOT 03 excludes a light gluino from the upper limit on an additional contribution to the \(Z \) hadronic width. At higher confidence levels, \(m_{\tilde{g}} > 5.3(4.2) \) GeV at 3\(\sigma \)(5\(\sigma \)) level.

MAFI 00 reanalyzed CDF data assuming a stable heavy gluino as the LSP, with model for R-hadron-nucleon scattering. Gluino masses between 35 GeV and 115 GeV are excluded based on the CDF Run I data. Combined with the analysis of BAER 99, this allows a LSP gluino mass between 25 and 35 GeV if the probability of fragmentation into charged R-hadron \(P > 1/2 \). The cosmological exclusion of such a gluino LSP are assumed to be avoided as in BAER 99. Gluino could be NLSP with \(\tau_{\tilde{g}} \approx 100 \) yrs, and decay to gluon gravitino.

ALAVI-HARATI 99e looked for \(R^0 \) bound states, yielding \(\pi^+ \pi^- \) or \(\pi^0 \) in the final state. The experiment is sensitive to values of \(\Delta m = m_{R^0} - m_{\tilde{g}} \) larger than 280 MeV and 140 MeV for the two decay modes, respectively, and to \(R^0 \) mass and lifetime in the ranges 0.8–5 GeV and \(10^{-10} - 10^{-3} \) s. The limits obtained depend on \(B(R^0 \rightarrow \pi^+ \pi^- \text{ photino}) \) and \(B(R^0 \rightarrow \pi^0 \text{ photino}) \) on the value of \(m_{R^0}/m_{\tilde{g}} \), and on the ratio of production rates \(\sigma(R^0)/\sigma(K^0_L) \). See Figures in the paper for the excluded \(R^0 \) production rates as a function of \(\Delta m, m_{R^0} \) mass and lifetime. Using the production rates expected from perturbative QCD, and assuming dominance of the above decay channels over the suitable phase space, \(R^0 \) masses in the range 0.8–5 GeV are excluded at 90\%CL for a large fraction of the sensitive lifetime region. ALAVI-HARATI 99e updates and supersedes the results of ADAMS 97b.

BAER 99 set constraints on the existence of stable \(\tilde{g} \) hadrons, in the mass range \(m_{\tilde{g}} > 3 \) GeV. They argue that strong-interaction effects in the low-energy annihilation rates could leave small enough relic densities to evade cosmological constraints up to \(m_{\tilde{g}} < 10 \).
TeV. They consider jet+E_T as well as heavy-ionizing charged-particle signatures from production of stable \tilde{g} hadrons at LEP and Tevatron, developing modes for the energy loss of \tilde{g} hadrons inside the detectors. Results are obtained as a function of the fragmentation probability P of the \tilde{g} into a charged hadron. For $P<1/2$, and for various energy-loss models, OPAL and CDF data exclude gluinos in the $3 < m_{\tilde{g}}$(GeV) < 130 mass range. For $P>1/2$, gluinos are excluded in the mass ranges $3 < m_{\tilde{g}}$(GeV) < 23 and $50 < m_{\tilde{g}}$(GeV) < 200.

17 FANTI 99 looked for R^0 bound states yielding high P_T $\eta \to 3\pi^0$ decays. The experiment is sensitive to a region of R^0 mass and lifetime in the ranges of 1–5 GeV and 10^{-10}–10^{-3} s. The limits obtained depend on $B(R^0 \to \eta \gamma)$, on the value of $m_{R^0}/m_{\tilde{g}}$, and on the ratio of production rates $\sigma(R^0)/\sigma(K_L^0)$. See Fig. 6–7 for the excluded production rates as a function of R^0 mass and lifetime.

18 ACKERSTAFF 98v excludes the light gluino with universal gaugino mass where charginos, neutralinos decay as $\tilde{\chi}_1^\pm, \tilde{\chi}_2^0 \to q \tilde{g}$ from total hadronic cross sections at $\sqrt{s}=130$–172 GeV. See paper for the case of nonuniversal gaugino mass.

19 ADAMS 97s looked for $\rho^0 \to \pi^+\pi^-$ as a signature of $R^0=(\tilde{g}g)$ bound states. The experiment is sensitive to an R^0 mass range of 1.2–4.5 GeV and to a lifetime range of 10^{-10}–10^{-3} sec. Precise limits depend on the assumed value of $m_{R^0}/m_{\tilde{g}}$. See Fig. 7 for the excluded mass and lifetime region.

20 ALBUQUERQUE 97 looked for weakly decaying baryon-like states which contain a light gluino, following the suggestions in FARRAR 96. See their Table 1 for limits on the production fraction. These limits exclude gluino masses in the range 100–600 MeV for the predicted lifetimes (FARRAR 96) and production rates, which are assumed to be comparable to those of strange or charmed baryons.

21 BARATE 97L studied the QCD color factors from four-jet angular correlations and the differential two-jet rate in Z decay. Limit obtained from the determination of $n_f = 4.24 \pm 0.29 \pm 1.15$, assuming $T_F/C_F=3/8$ and $C_A/C_F=9/4$.

22 CSIKOR 97 combined the α_s from $\sigma(e^+e^- \to \text{hadron})$, τ decay, and jet analysis in Z decay. They exclude a light gluino below 5 GeV at more than 99.7%CL.

23 DEGOUVEA 97 reanalyzed AKERS 95A data on Z decay into four jets to place constraints on a light stable gluino. The mass limit corresponds to the pole mass of 2.8 GeV. The analysis, however, is limited to the leading-order QCD calculation.

24 FARRAR 96 studied the possible $R^0=(\tilde{g}g)$ component in Fermilab E799 experiment and used its bound $B(K_L^0 \to \pi^0 \nu \bar{\nu}) \leq 5.8 \times 10^{-5}$ to place constraints on the combination of R^0 production cross section and its lifetime.

25 AKERS 95R looked for Z decay into $q\bar{q}g \tilde{g}$, by searching for charged particles with dE/dx consistent with \tilde{g} fragmentation into a state $(\tilde{g} q \bar{q})^\pm$ with lifetime $\tau > 10^{-7}$ sec. The fragmentation probability into a charged state is assumed to be 25%.

26 CLAVELLI 95 updates the analysis of CLAVELLI 93, based on a comparison of the hadronic widths of charmonium and bottomonium S-wave states. The analysis includes a parametrization of relativistic corrections. Claims that the presence of a light gluino improves agreement with the data by slowing down the running of α_s.

27 CAKIR 94 reanalyzed TUTS 87 and later unpublished data from CUSB to exclude pseudo-scalar gluonium $\eta_\tilde{g}(\tilde{g}g)$ of mass below 7 GeV. It was argued, however, that the perturbative QCD calculation of the branching fraction $T \to \eta_\tilde{g} \gamma$ is unreliable for $m_{\eta_\tilde{g}} < 3$ GeV. The gluino mass is defined by $m_{\tilde{g}}=(m_{\eta_\tilde{g}})/2$. The limit holds for any gluino lifetime.

28 LOPEZ 93C uses combined restraint from the radiative symmetry breaking scenario within the minimal supergravity model, and the LEP bounds on the (M_2, μ) plane. Claims that the light gluino window is strongly disfavored.
29 CLAVELLI 92 claims that a light gluino mass around 4 GeV should exist to explain the discrepancy between α_s at LEP and at quarkonia (Υ), since a light gluino slows the running of the QCD coupling.

30 ANTONIADIS 91 argue that possible light gluinos (< 5 GeV) contradict the observed running of α_s between 5 GeV and m_Z. The significance is less than 2 s.d.

31 ANTONIADIS 91 interpret the search for missing energy events in 450 GeV/c pN collisions, AKESSON 91, in terms of light gluinos.

32 NAKAMURA 89 searched for a long-lived ($\tau > 10^{-7}$ s) charge-(±2) particle with mass $\lesssim 1.6$ GeV in proton-Pt interactions at 12 GeV and found that the yield is less than 10^{-8} times that of the pion. This excludes $R\Delta^{++}$ (a $\tilde{g}uud$ state) lighter than 1.6 GeV.

33 The limits assume $m_{\tilde{q}} = 100$ GeV. See their figure 3 for limits vs. $m_{\tilde{q}}$.

34 The gluino mass is defined by half the bound $\tilde{g}\tilde{g}$ mass. If zero gluino mass gives a $\tilde{g}\tilde{g}$ of mass about 1 GeV as suggested by various glueball mass estimates, then the low-mass bound can be replaced by zero. The high-mass bound is obtained by comparing the data with nonrelativistic potential-model estimates.

35 ALBRECHT 86c search for secondary decay vertices from $\chi_b(1P) \rightarrow \tilde{g}\tilde{g}\tilde{g}$ where \tilde{g}'s make long-lived hadrons. See their figure 4 for excluded region in the $m_{\tilde{g}} - m_{\tilde{q}}$ and $m_{\tilde{g}} - m_{\tilde{q}}$ plane. The lower $m_{\tilde{g}}$ region below ~ 2 GeV may be sensitive to fragmentation effects. Remark that the \tilde{g}-hadron mass is expected to be ~ 1 GeV (glueball mass) in the zero \tilde{g} mass limit.

36 BADIER 86 looked for secondary decay vertices from long-lived \tilde{g}-hadrons produced at 300 GeV π^- beam dump. The quoted bound assumes \tilde{g}-hadron nucleon total cross section of $10\mu b$. See their figure 7 for excluded region in the $m_{\tilde{g}} - m_{\tilde{q}}$ plane for several assumed total cross-section values.

37 BARNETT 86 rule out light gluinos ($m = 3–5$ GeV) by calculating the monojet rate from gluino gluino gluon events (and from gluino gluino events) and by using UA1 data from $p\bar{p}$ collisions at CERN.

38 VOLOSHIN 86 rules out stable gluino based on the cosmological argument that predicts too much hydrogen consisting of the charged stable hadron $\tilde{g}uud$. Quasi-stable ($\tau > 1. \times 10^{-7}$ s) light gluino of $m_{\tilde{g}} < 3$ GeV is also ruled out by nonobservation of the stable charged particles, $\tilde{g}uud$, in high energy hadron collisions.

39 COOPER-SARKAR 85 is BEBC beam-dump. Gluinos decaying in dump would yield $\tilde{\gamma}$'s in the detector giving neutral-current-like interactions. For $m_{\tilde{q}} > 330$ GeV, no limit is set.

40 DAWSON 85 first limit from neutral particle search. Second limit based on FNAL beam dump experiment.

41 FARRAR 85 points out that BALL 84 analysis applies only if the \tilde{g}'s decay before interacting, i.e. $m_{\tilde{g}} < 80 m_{\tilde{g}}^{1.5}$. FARRAR 85 finds $m_{\tilde{g}} < 0.5$ not excluded for $m_{\tilde{q}} = 30–1000$ GeV and $m_{\tilde{g}} < 1.0$ not excluded for $m_{\tilde{q}} = 100–500$ GeV by BALL 84 experiment.

42 GOLDMAN 85 use nonobservation of a pseudoscalar $\tilde{g}\tilde{g}$ bound state in radiative ψ decay.

43 HABER 85 is based on survey of all previous searches sensitive to low mass \tilde{g}'s. Limit makes assumptions regarding the lifetime and electric charge of the lightest supersymmetric particle.

44 BALL 84 is FNAL beam dump experiment. Observed no interactions of $\tilde{\gamma}$ in the calorimeter, where $\tilde{\gamma}$'s are expected to come from pair-produced \tilde{g}'s. Search for long-lived $\tilde{\gamma}$ interacting in calorimeter 56m from target. Limit is for $m_{\tilde{g}} = 40$ GeV and production cross section proportional to $A^{0.72}$. BALL 84 find no \tilde{g} allowed below 4.1 GeV at CL = 90%. Their figure 1 shows dependence on $m_{\tilde{g}}$ and A. See also KANE 82.

45 BRICK 84 reanalyzed FNAL 147 GeV HBC data for $R-\Delta(1232)^{++}$ with $\tau > 10^{-9}$ s and $p_{lab} > 2$ GeV. Set CL = 90% upper limits 6.1, 4.4, and 29 microbarns in pp, $\pi^+\rho$, $\pi^-\rho$, $\pi^0\pi^0$, and $\eta\eta$.
\(K^{+}p\) collisions respectively. \(R^{-}\Delta^{++}\) is defined as being \(\tilde{g}\) and 3 up quarks. If mass = 1.2–1.5 GeV, then limits may be lower than theory predictions.

\(^{46}\) FARRAR 84 argues that \(m_{\tilde{g}} < 100\) MeV is not ruled out if the lightest \(R\)-hadrons are long-lived. A long lifetime would occur if \(R\)-hadrons are lighter than \(\tilde{\gamma}\)’s or if \(m_{\tilde{g}} > 100\) GeV.

\(^{47}\) BERGSMA 83C is reanalysis of CERN-SPS beam-dump data. See their figure 1.

\(^{48}\) CHANOWITZ 83 find in bag-model that charged \(s\)-hadron exists which is stable against strong decay if \(m_{\tilde{g}} < 1\) GeV. This is important since tracks from decay of neutral \(s\)-hadron cannot be reconstructed to primary vertex because of missed \(\tilde{\gamma}\). Charged \(s\)-hadron leaves track from vertex.

\(^{49}\) KANE 82 inferred above \(\tilde{g}\) mass limit from retroactive analysis of hadronic collision and beam dump experiments. Limits valid if \(\tilde{g}\) decays inside detector.

LIGHT \(\tilde{G}\) (Gravitino) MASS LIMITS FROM COLLIDER EXPERIMENTS

The following are bounds on light (\(<1\) eV) gravitino indirectly inferred from its coupling to matter suppressed by the gravitino decay constant.

Unless otherwise stated, all limits assume that other supersymmetric particles besides the gravitino are too heavy to be produced. The gravitino is assumed to be undetected and to give rise to a missing energy \((\vec{E})\) signature.

<table>
<thead>
<tr>
<th>VALUE (eV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 1.09 \times 10^{-5}</td>
<td>95</td>
<td>1 ABDALLAH 05B</td>
<td>DLPH</td>
<td>e^+ e^- \rightarrow \tilde{G} \tilde{G} \gamma</td>
</tr>
<tr>
<td>> 1.35 \times 10^{-5}</td>
<td>95</td>
<td>2 ACHARD 04E</td>
<td>L3</td>
<td>e^+ e^- \rightarrow \tilde{G} \tilde{G} \gamma</td>
</tr>
<tr>
<td>> 1.3 \times 10^{-5}</td>
<td>95</td>
<td>3 HEISTER 03C</td>
<td>ALEP</td>
<td>e^+ e^- \rightarrow \tilde{G} \tilde{G} \gamma</td>
</tr>
<tr>
<td>> 11.7 \times 10^{-6}</td>
<td>95</td>
<td>4 ACOSTA 02H</td>
<td>CDF</td>
<td>p\bar{p} \rightarrow \tilde{G} \tilde{G} \gamma</td>
</tr>
<tr>
<td>> 8.7 \times 10^{-6}</td>
<td>95</td>
<td>5 ABBIENDI,G 00D</td>
<td>OPAL</td>
<td>e^+ e^- \rightarrow \tilde{G} \tilde{G} \gamma</td>
</tr>
<tr>
<td>> 10.0 \times 10^{-6}</td>
<td>95</td>
<td>6 ABREU 00Z</td>
<td>DLPH</td>
<td>e^+ e^- \rightarrow \tilde{G} \tilde{G} \gamma</td>
</tr>
<tr>
<td>> 11 \times 10^{-6}</td>
<td>95</td>
<td>7 AFFOLDER 00J</td>
<td>CDF</td>
<td>p\bar{p} \rightarrow \tilde{G} \tilde{G} + jet</td>
</tr>
<tr>
<td>> 8.9 \times 10^{-6}</td>
<td>95</td>
<td>8 ACCIARRI 99R</td>
<td>L3</td>
<td>e^+ e^- \rightarrow \tilde{G} \tilde{G} \gamma</td>
</tr>
<tr>
<td>> 7.9 \times 10^{-6}</td>
<td>95</td>
<td>9 ACCIARRI 98V</td>
<td>L3</td>
<td>e^+ e^- \rightarrow \tilde{G} \tilde{G} \gamma</td>
</tr>
<tr>
<td>> 8.3 \times 10^{-6}</td>
<td>95</td>
<td>9 BARATE 98J</td>
<td>ALEP</td>
<td>e^+ e^- \rightarrow \tilde{G} \tilde{G} \gamma</td>
</tr>
</tbody>
</table>

1 ABDALLAH 05B use data from \(\sqrt{s} = 180–208\) GeV. They look for events with a single photon + \(\vec{E}\) final states from which a cross section limit of \(\sigma < 0.18\) pb at 208 GeV is obtained, allowing a limit on the mass to be set. Supersedes the results of ABREU 00Z.

2 ACHARD 04E use data from \(\sqrt{s} = 189–209\) GeV. They look for events with a single photon + \(\vec{E}\) final states from which a limit on the Gravitino mass is set corresponding to \(\sqrt{F} > 238\) GeV. Supersedes the results of ACCIARRI 99R.

3 HEISTER 03C use the data from \(\sqrt{s} = 189–209\) GeV to search for \(\gamma \vec{E}_T\) final states.

4 ACOSTA 02H looked in \(7 p b^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV for events with a high-\(E_T\) photon and \(\vec{E}_T\). They compared the data with a GMSB model where the final state could arise from \(q\bar{q} \rightarrow \tilde{G} \tilde{G} \gamma\). Since the cross section for this process scales as \(1/|F|^4\), a limit at 95\% CL is derived on \(|F|^{1/2} > 221\) GeV. A model independent limit for the above topology is also given in the paper.

5 ABBIENDI,G 00D searches for \(\gamma \vec{E}\) final states from \(\sqrt{s} = 189\) GeV.

6 ABREU 00Z search for \(\gamma \vec{E}\) final states using data from \(\sqrt{s} = 189\) GeV. Superseded by ABDALLAH 05B.

7 AFFOLDER 00J searches for final states with an energetic jet (from quark or gluon) and large \(\vec{E}_T\) from undetected gravitinos.
Supersymmetry Miscellaneous Results

Results that do not appear under other headings or that make nonminimal assumptions.

<table>
<thead>
<tr>
<th>VALUE</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>none 100–185</td>
<td>95</td>
<td>AAD 11AA</td>
<td>ATLS</td>
<td>scalar gluons</td>
</tr>
<tr>
<td>1 CHATRCHYAN 11E</td>
<td>CMS</td>
<td>CMS</td>
<td>$\mu\mu$ resonances</td>
<td></td>
</tr>
<tr>
<td>2 ABAZOV 10N</td>
<td>D0</td>
<td>D0</td>
<td>γD, hidden valley</td>
<td></td>
</tr>
<tr>
<td>3 LOVE 08A</td>
<td>CLEO</td>
<td>R, $Y \rightarrow \mu\tau$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 ABULENCIA 06P</td>
<td>CDF</td>
<td>$\ell\gamma E_T$, $\ell\ell\gamma$, GMSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 ACOSTA 04E</td>
<td>CDF</td>
<td>$\tilde{\chi}_0^1$ or $\tilde{\chi}_1^0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 TCHIKILEV 04</td>
<td>ISTR</td>
<td>$K^- \rightarrow \pi^- \pi^0\rho$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 AFFOLDER 02D</td>
<td>CDF</td>
<td>$p\bar{p} \rightarrow \gamma b (E_T)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 AFFOLDER 01H</td>
<td>CDF</td>
<td>$p\bar{p} \rightarrow \gamma \gamma X$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 ABBOTT 00G</td>
<td>D0</td>
<td>$p\bar{p} \rightarrow 3\ell + E_T$, R, $LL\ell\ell\ell\ell$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 ABREU,P 00C</td>
<td>DLFH</td>
<td>$e^+ e^- \rightarrow \gamma + S/P$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 ABACHI 97</td>
<td>D0</td>
<td>$\gamma \gamma X$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 BARBER 84B</td>
<td>RVUE</td>
<td>$\pi p \rightarrow n (e^+ e^-)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 HOFFMAN 83</td>
<td>CNTR</td>
<td>$\pi p \rightarrow n (e^+ e^-)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 AAD 11AA looked in 34 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with ≥ 4 jets originating from pair production of scalar gluons, each decaying to two gluons. No two-jet resonances are observed over the SM background. Limits are derived on the cross section times branching ratio (see Fig. 3). Assuming 100% branching ratio for the decay to two gluons, the quoted exclusion range is obtained, except for a 5 GeV mass window around 140 GeV.

2 CHATRCHYAN 11E looked in 35 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV for events with collimated μ pairs (leptonic jets) from the decay of hidden sector states. No evidence for new resonance production is found. Limits are derived and compared to various SUSY models (see Fig. 4) where the LSP, either the $\tilde{\chi}_0^0$ or a $\tilde{\chi}_1^0$, decays to dark sector particles.

3 ABAZOV 10N looked in 5.8 fb$^{-1}$ of pp collisions at $\sqrt{s} = 1.96$ TeV for events from hidden valley models in which a $\tilde{\chi}_0^0$ decays into a dark photon, γD, and the unobservable lightest SUSY particle of the hidden sector. As the γD is expected to be light, it may decay into a tightly collimated lepton pair, called lepton jet. They searched for events with E_T and two isolated lepton jets observable by an opposite charged lepton pair $e\mu$ or $\mu\mu$. No significant excess over the SM expectation is observed, and a limit at 95% C.L. on the cross section times branching ratio is derived, see their Table I. They also examined the invariant mass of the lepton jets for a narrow resonance, see their Fig. 4, but found no evidence for a signal.

4 LOVE 08A searched for decays of $Y(nS)$ with $n = 1, 2, 3$ into $\mu\tau$ in 1.1, 1.3, 1.4 fb$^{-1}$, respectively, in the CLEO III detector at CESR. The signature is a muon with $\approx 97\%$ of the beam energy and an electron from the decay of τ. No evidence for lepton flavour violation is found and 95% CL limits on the branching ratio are estimated to be 6.0, 14.4 and 20.3×10^{-6} for $n = 1, 2, 3$, respectively.

5 ABULENCIA 06P searched in 305 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV for an excess of events with $\ell\gamma E_T$ and $\ell\ell\gamma (\ell = e, \mu)$. No significant excess was found compared to the background expectation. No events are found such as the $e e\gamma \gamma E_T$ event observed in ABE 99.
6 ACOSTA 04e looked in 107 pb⁻¹ of p̅p collisions at √S = 1.8 TeV for events with two same sign leptons without selection of other objects nor E_{T}. No significant excess is observed compared to the Standard Model expectation and constraints are derived on the parameter space of MSUGRA models, see Figure 4.

7 Looked for the scalar partner of a goldstino in decays K⁻ → π⁻ π⁰ P from a 25 GeV K⁻ beam produced at the IHEP 70 GeV proton synchrotron. The sgoldstino is assumed to be sufficiently long-lived to be invisible. A 90% CL upper limit on the decay branching ratio is set at ~ 9.0 × 10⁻⁶ for a sgoldstino mass range from 0 to 200 MeV, excluding the interval near m(n₀), where the limit is ~ 3.5 × 10⁻⁵.

8 AFFOLDER 02D looked in 85 pb⁻¹ of p̅p collisions at √S=1.8 TeV for events with a high-E_T photon, and a b-tagged jet with or without E_{T}. They compared the data with models where the final state could arise from cascade decays of gluinos and/or squarks into χ²± and χ₀ or direct associated production of χ₀γ²±, followed by χ²± → γχ₀ or a GMSB model where χ₀ → γG. It is concluded that the experimental sensitivity is insufficient to detect the associated production or the GMSB model, but some sensitivity may exist to the cascade decays. A model independent limit for the above topology is also given in the paper.

9 AFFOLDER 01H searches for p̅p → γγX events, where the di-photon system originates from sgoldstino production, in 100 pb⁻¹ of data. Upper limits on the cross section times branching ratio are shown as function of the di-photon mass >70 GeV in Fig. 5. Excluded regions are derived in the plane of the sgoldstino mass versus the supersymmetry breaking scale for two representative sets of parameter values, as shown in Figs. 6 and 7.

10 ABBOTT 00G searches for trilepton final states (ℓ=e,μ) with E_T from the indirect decay of gauginos via LLE couplings. Efficiencies are computed for all possible production and decay modes of SUSY particles in the framework of the Minimal Supergravity scenario. See Figs. 1–4 for excluded regions in the m₁/₂ versus m₀ plane.

11 ABREU, P 00C look for the CP-even (S) and CP-odd (P) scalar partners of the goldstino, expected to be produced in association with a photon. The S/P decay into two photons or into two gluons and both the tri-photon and the photon + two jets topologies are investigated. Upper limits on the production cross section are shown in Fig. 5 and the excluded regions in Fig. 6. Data collected at √S = 189–202 GeV.

12 ABACHI 97 searched for p̅p → γγ E_T +X as supersymmetry signature. It can be caused by selectron, sneutrino, or neutralino production with a radiative decay of their decay products. They placed limits on cross sections.

13 BARBER 84B consider that ⃗μ and ⃗e may mix leading to μ → eγγ. They discuss mass-mixing limits from decay dist. asym. in LBL-TRIUMF data and e⁺ polarization in SIN data.

14 HOFFMAN 83 set CL = 90% limit dσ/dt B(e⁺e⁻) < 3.5 × 10⁻³² cm²/GeV² for spin-1 partner of Goldstone fermions with 140 < m < 160 MeV decaying → e⁺e⁻ pair.

REFERENCES FOR Supersymmetric Particle Searches

CHATRCHYAN 12 PR D85 012004 S. Chatrchyan et al. (CMS Collab.)
AAD 11AA EPJ C71 1828 G. Aad et al. (ATLAS Collab.)
AAD 11AE JHEP 1110 107 G. Aad et al. (ATLAS Collab.)
AAD 11AF JHEP 1111 099 G. Aad et al. (ATLAS Collab.)
AAD 11X EPJ C71 1744 G. Aad et al. (ATLAS Collab.)
AAD 11Z EPJ C71 1809 G. Aad et al. (ATLAS Collab.)
AALTONEN 11Q PRL 107 042001 T. Aaltonen et al. (CDF Collab.)
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Journal, Volume, Pages</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Beringer et al. (Particle Data Group)</td>
<td>PR D86, 010001 (2012)</td>
<td>(URL: http://pdg.lbl.gov)</td>
</tr>
</tbody>
</table>

Transcribed from YAF 43 779.
<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Journal/Volume/Issue</th>
<th>Authors/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoffman</td>
<td>83</td>
<td>PR D28 660</td>
<td>C.M. Hoffman et al.</td>
</tr>
<tr>
<td>Krauss</td>
<td>83</td>
<td>NP B227 556</td>
<td>L.M. Krauss</td>
</tr>
<tr>
<td>Vysotskii</td>
<td>83</td>
<td>SJNP 37 948</td>
<td>M.I. Vysotsky</td>
</tr>
<tr>
<td>Kane</td>
<td>82</td>
<td>PL 112B 227</td>
<td>G.L. Kane, J.P. Leveille</td>
</tr>
<tr>
<td>Cabibbo</td>
<td>81</td>
<td>PL 105B 155</td>
<td>N. Cabibbo, G.R. Farrar, L. Maiani</td>
</tr>
<tr>
<td>Farrar</td>
<td>78</td>
<td>PL 76B 575</td>
<td>G.R. Farrar, P. Fayet</td>
</tr>
<tr>
<td>Also</td>
<td></td>
<td>PL 79B 442</td>
<td>G.R. Farrar, P. Fayet</td>
</tr>
</tbody>
</table>

Translated from YAF 37 1597.