Выберите шрифт Arial Times New Roman
Интервал между символами (кернинг): Стандартный Средний Большой
Ученые Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) и Новосибирского государственного технического университета (НГТУ) разработали технологию наплавки коррозионностойких покрытий из тантала, ниобия или циркония на титан с помощью промышленного ускорителя электронов ЭЛВ-6. Полученный материал может применяться при изготовлении реакторов для химической промышленности: по уровню устойчивости к агрессивному воздействию он в десятки раз превосходит специальную кислотостойкую нержавеющую сталь, которая традиционно применяется в этой области. Результаты опубликованы в журнале Applied Surface Science.
Ученые Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) в недавних исследованиях по поиску темной материи при помощи двухфазного криогенного детектора получили интересные фундаментальные результаты. Физики обратили внимание на тормозное излучение электронов на нейтральных атомах – дополнительный механизм электролюминесценции, благодаря которой и происходит регистрация частиц темной материи. Ученые экспериментально установили, что ранее не учитываемый механизм может не только упростить и удешевить детектирующие установки, но и повлиять на точность экспериментов по поиску темной материи. Эти результаты могут быть полезны различным проектам, например, международной коллаборации Dark Side.
В процессе совместной работы по поиску оптимальных условий радиотерапии глиом ученые Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) и Института цитологии и генетики СО РАН (ИЦиГ СО РАН) показали, что введенные в организм наночастицы оксида марганца на фоне микропучкового облучения позволяют нейтрализовать вредные факторы, связанные с облучением лабораторных животных. Этот результат в будущем может быть использован в разработке новых подходов радиационной защиты человека. Исследование поддержано грантом РНФ.
Специалисты Института химической кинетики и горения им. В.В. Воеводского СО РАН (ИХКГ СО РАН) совместно с коллегами из Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) провели серию экспериментов, в ходе которых образцы различных твердых материалов с тонким слоем воды на поверхности – среди них, например, латунь, свинец, а также углерод - облучали сфокусированным терагерцовым излучением. В результате этого воздействия формируются нансуспензии или взвеси. Вещества в такой форме активно применяются в химической промышленности, а также при производстве электроники. Исследования проводились на Новосибирском лазере на свободных электронах (ЛСЭ) в Центре коллективного пользования "Сибирский центр синхротронного и терагерцового излучения".
В Институте ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) состоялся физический пуск мощного инжектора пучка атомов водорода с проектной энергией частиц до одного миллиона электрон-вольт. В инжекторе пучок атомов образуется за счет нейтрализации ускоренного до нужной энергии пучка отрицательных ионов водорода. Эта экспериментальная установка была разработана и изготовлена по заказу американской компании TAE Technologies, которая занимается созданием безнейтронного термоядерного реактора. С помощью этого инжектора ученые планируют отработать технологию нагрева плазмы в реакторе ТАЕ Technologies и продемонстрировать надежность и высокую эффективность работы всех элементов инжектора.
Коллаборации AWAKE в Европейском центре ядерных исследований (ЦЕРН) впервые удалось ускорить электроны с помощью волны, создаваемой сгустком протонов в плазме. Электроны с начальной энергией 19 МэВ пролетели в плазме 10 метров и увеличили энергию более чем в 100 раз – до 2 ГэВ. Новый способ позволит уменьшить размеры, а значит и затраты на строительство будущих установок. В разработке принимали участие специалисты из 10 стран мира, в том числе и ученые Института ядерной физики им. Г.И. Будкера, которые создали теоретическую модель и показали возможность успешного применения метода протонного ускорения. Результаты опубликованы в журнале Nature.
Для увеличения емкости современных магнитных носителей информации необходимо преодолеть фундаментальное ограничение на минимальный размер магнитной ячейки памяти. Один из вариантов решения данной проблемы – использование мономолекулярных магнитов. В будущем они могут обеспечить сверхвысокую плотность записи информации на носители, а также стать структурными блоками квантовых компьютеров. Над исследованиями магнитов размером с молекулу работают ученые Международного томографического центра СО РАН (МТЦ СО РАН) при помощи Новосибирского лазера на свободных электронах (ЛСЭ) Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН). Результаты опубликованы в Journal of Magnetic Resonance.
Ученые Института ядерной физики им Г.И. Будкера СО РАН (ИЯФ СО РАН) разработали и изготовили для Европейского центра синхротронного излучения (ESRF) 66 октупольных магнитов. Оборудование станет частью новой магнитной системы, которая позволит увеличить яркость источника синхротронного излучения (СИ) в 30 раз. Общая сумма контракта составила 820 тысяч евро.
Ученые Института ядерной физики им Г.И. Будкера СО РАН (ИЯФ СО РАН) разработали проект системы идентификации частиц для экспериментов на будущем новосибирском коллайдере – Супер С-Тау фабрике. Это одна из ключевых систем будущей установки, она позволит с высокой надежностью определять типы рождающихся в эксперименте частиц. Эта и другие перспективные разработки для нового коллайдера будут обсуждаться международными экспертами 26-27 мая 2018 года в ИЯФ СО РАН на первом совещании международного Совета Супер С-тау фабрики.