Министерство образования Российской Федерации

Новосибирский Государственный Университет

Физический факультет

Кафедра Физики Плазмы

Квалификационная работа на соискание степени бакалавра

ИССЛЕДОВАНИЕ ЭМИССИИ БЫСТРЫХ НЕЙТРАЛОВ ПРЕЗАРЯДКИ ИЗ ГОРЯЧЕЙ ПЛАЗМЫ НА УСТАНОВКЕ ГОЛ-3

Трунев Юрий Александрович

Научный руководитель аспирант Шошин А.А.

1. Введение.

С целью исследования перспектив открытых ловушек как термоядерных реакторов, на установке ГОЛ-3 (открытая гофрированная ловушка) проводятся эксперименты по нагреву и удержанию плотной ($n \sim 10^{15} \text{ cm}^{-3}$) горячей плазмы. Важной задачей на пути достижения термоядерных параметров является получение высокой температуры ионов плазмы [1]. В последние несколько лет был достигнут существенный прогресс, а именно найден эффективный режим нагрева плазмы, что позволяет получать плазму с $T_e \sim 2K_3B$, $T_i \sim 1K_3B$ и временем удержания сотни микросекунд [2]. Это стимулировало активное изучение ионной компоненты плазмы и была поставлена задача по определению температуры ионов. Для решения поставленной задачи на установке ГОЛ-3 методы: нейтронные диагностики, спектроскопия используются разные плазмы, пассивная корпускулярная диагностика. Пассивная корпускулярная диагностика эффективно применялась на различных термоядерных установках с магнитным удержанием [3], в её основе лежит регистрация потоков перезарядных атомов из плазмы и их последующий анализ по массам и энергиям, как известно [4] она обладает рядом преимуществ по сравнению с другими методами исследования ионной компоненты плазмы:

- 1. бесконтактность метода.
- анализу подвергаются покидающие плазму быстрые нейтральные атомы, несущие информацию о температуре, и энергетическом распределении ионов в горячей области плазмы.
- возможность восстановления временной эволюции энергетического спектра и температуры ионов плазмы.

В данной работе экспериментально исследовалась эмиссия быстрых нейтралов перезарядки из плазмы ГОЛ-3, с целью определения энергетического спектра и температуры ионов плазмы, и их временной эволюции в различных режимах работы ГОЛ-3. В экспериментах использовался многоканальный анализатор нейтралов перезарядки разработанный на установке ГОЛ-3 [5].

2. Установка ГОЛ-3.

Рис.1: Схема установки ГОЛ-3.

Установка ГОЛ-3 – гофрированная открытая ловушка, предназначенная для удержания плотной горячей плазмы [2]. Установка состоит (см.рис.1) из генератора электронного пучка У-2, 12 метрового соленоида и выходного узла, который включает в себя систему создания предплазмы и приемник пучка. Генератор У-2 позволяет получать мощный релятивистский электронный пучок (РЭП) с энергией электронов ~ 1 МэВ, энергосодержанием до 300 КДж и током ~ 30 кА. Питание соленоида осуществляется с помощью 15 МДж емкостного накопителя что позволяет создавать квазистационарное магнитное поле на оси установки: до 5 Тл в однородной части и до 10 Тл в пробках. Начальное распределение рабочего газа (водорода или дейтерия) вдоль оси установки создается с помощью импульсных клапанов.

Сценарий экспериментов на ГОЛ-3 следующий: в зависимости от конфигурации эксперимента в вакуумную камеру ГОЛ-3 напускается водород или дейтерий (t = -500 мс), начальная плотность $n_a \sim 10^{15}$ см⁻³, с заданным распределением по длине рис.2. После этого создается магнитное поле, в максимуме магнитного поля (t = -30 мкс) специальным прямым замагниченным разрядом создается предплазма с температурой T ~ 1-2 эВ [6]. В момент t = 0 мкс происходит инжекция РЭП в предплазму, в результате коллективного пучково–плазменного взаимодействия происходит возбуждение ленгмюровской

турбулентности, что приводит к нагреву плазмы: $T_e \sim 2-3$ кэВ плотность плазмы $n \sim (0.5-5) \cdot 10^{15}$ см⁻³, через 10 мкс происходит уменьшение электронной температуры до 200 – 300 эВ [2].Затем электроны передают энергию ионам плазмы. В режиме с многопробочным магнитным полем и магнитной ямой была предложена следующая модель [7] передачи энергии от электронов к ионам в плазме: искусственная модуляция электронной температуры вдоль плазменного шнура приводит к модуляции давления плазмы, и, как следствие, к макроскопическому движению плазмы. В следствии чего формируются встречные плазменные потоки в ячейках многопробочной ловушки. Перемешивание таких потоков сопровождается нагревом ионной компоненты за счет перекачки поступательной энергии потоков в тепловую за времена порядка одного ион –ионного столкновения.

Рис.2, Начальное распределение дейтерия вдоль вакуумной камеры ГОЛ-3, в серии выстрелов 4636- 4678.

3. Расчет ослабления потока нейтралов перезарядки из плазмы ГОЛ-3.

Использование пассивных методов определения энергетического распределения быстрых нейтралов перезарядки или температуры ионов в плазме требует понимания механизма появления нейтральных атомов в различных областях плазмы, а также процессов столкновений, которые определяют перенос нейтральных частиц внутрь плазмы.

Важной задачей при использовании пассивной корпускулярной диагностики, является определение ослабления потока горячих перезарядных атомов из центральной области на пути к детектору анализатора, за счет столкновительных процессов. Как показано в [4] ослабление потока перезарядных атомов, в зависимости от энергии атома определяется как:

Ослабление =
$$-\sum_{j,k} \int_{r}^{a} \sigma_{k,j}(E_j) f(E_j,r') dE_j dr'$$
 (1)

- где ј нумерует сорт частиц - электроны, дейтоны, протоны и т.д., сумма по *k* означает суммирование по всем столкновительным процессам, *a*- радиус плазмы, *E_j*- энергия частицы *j*, *r*-радиус образования перезарядного атома в плазме. Эта формула может быть представлена в явной форме:

Ослабление из центра плазмы = K(E, T_e, nl) = exp(-nl[
$$\sigma_{cx}(E) + \sigma_{ip}(E) + \langle \sigma_{ie}v_e \rangle (T_e)/v_a(E)]$$
) (2)

,где nl - линейная плотность плазмы вдоль линии наблюдения анализатора, $\sigma_{ex}(E)$ -сечение перезарядки на протонах плазмы, $\sigma_{ip}(E)$ -сечение ионизации протонами плазмы, $<\sigma_{ie}(E)v_e >$ -скорость ионизации электронами, усредненная по функции распределения Максвелла, $v_a(E)$ - скорость перезарядного атома. Сечения всех процессов были взяты из [10,11,12], и изображены на рис.3. Видно что основные процессы ослабляющие поток из центра плазмы это перезарядка и ионизация электронным ударом. На рис.4 построен график зависимости коэффициента ослабления K(E, T_e, nl) от энергии перезарядных атомов выходящих из центра плазмы, для различных плотностей плазмы. Плотность плазмы оказывает существенное влияние, на K(E, T_e, nl). Поэтому регистрация нейтралов перезарядки будет сильно затруднена, в режимах с плотностью плазмы выше, чем 10¹⁵ см⁻³.

рис.3, $\sigma_{ex}(E)$ -сечение перезарядки нейтрального водорода на протонах плазмы, $\sigma_{ip}(E)$ -сечение ионизации водорода протонами плазмы, пунктирная линия - < $\sigma_{ie}(E)v_e$ >/ v_a -эффективное сечение ионизации водорода электронами, усредненная по функции распределения Максвелла

Рис.4, Ослабление потока перезарядных атомов при прохождении из центра плазмы на периферию.

4. Эксперименты по регистрации эмиссии быстрых нейтралов перезарядки из плазмы ГОЛ-3.

Для исследования эмиссии быстрых нейтралов перезарядки на установке ГОЛ-3 использовался пятиканальный 45[°] электростатический анализатор. Принцип действия такого анализатора основан на разделении частиц по энергиям, входящих в однородное тормозящее электрическое поле под углом 45[°] [13,15,16].

Пусть имеется плоский конденсатор, одна из пластин которого находится под нулевым потенциалом, а другая под положительным потенциалом U_a , а расстояние между пластинами будет d. Тогда поток ионов с энергией E и зарядом q=Ze, входящий через щель в пластине с нулевым потенциалом под углом 45° , будет двигаться по параболе и возвратится снова к пластине с нулевым потенциалом на некотором расстоянии *l*. Дальность полета ионов определяется соотношением:

$$l = 2\frac{d}{U_a}\frac{E}{q}$$
(3)

Величина *l* прямо пропорциональна энергии ионов E (при заданном расстоянии между входной и выходной щелью анализатора) и не зависит от массы ионов. Таким образом располагая выходные щели анализатора на различных расстояниях от входной, можно разлагать входящий поток ионов в спектр по энергии.

Рис.5, Траектория пучка ионов с угловым разбросом $\delta \alpha$ входящих в тормозящее поле анализатора E=U/d.

Разрешающая способность такого анализатора как показано в работах [13,15,8], определяется соотношением:

$$\frac{\Delta E}{E} = \frac{\Delta l_0 + \Delta l_n}{l_n} \tag{4}$$

где Δl_0 -ширина входной щели, Δl_n -ширина n-ой выходной щели, l_n расстояние между входной и n-ой выходной щелями. Если ширины всех выходных щелей сделать одинаковыми, то при заданном анализирующем напряжении все каналы вырезают одинаковый интервал по энергии ΔE . Угол влета 45⁰ обеспечивает фокусировку по углу первого порядка. Это значит, что если входящий поток ионов имеет некоторый угловой разброс $\Delta \alpha$, то при достаточно не больших $\Delta \alpha \leq 5^0$, можно считать что он не влияет на разрешение анализатора т.е. $\frac{dl}{d\alpha} = 0$.

Схема используемого пятиканального анализатора быстрых нейтралов перезарядки представлена на рис.6. Анализатор состоит из следующих узлов: транспортный канал с диафрагмами, камера обдирки, 45⁰ электростатический анализатор, 5 ВЭУ и АЦП.

Анализатор расположен на расстоянии 3,1 м от входной катушки ГОЛ-3 (28-29 катушка). Методика измерений следующая: горячие ионы плазмы перезаряжаются на нейтралах плазмы, вылетают из плазменного столба, проходят по транспортному каналу в камеру обдирки, где конвертируются в ионы, которые разделяются по энергиям в поле 45⁰-го электростатического анализатора и попадают на ВЭУ, сигнал с ВЭУ усиливается и записывается на АЦПЗЗЗ.

Для преобразования быстрых атомов в ионы используется камера обдирки. В качестве обдирочного газа в камере обдирки используется воздух, напускается через игольчатый который натекатель. Напуск воздуха стационарный. Давление в камере обдирки измеряется ионизационным вакуумметром. Рабочее давление воздуха в камере обдирки 5,6·10⁻² Па. Данные по эффективности обдирки были взяты из работы [14]. Для защиты от сильных магнитных и электрических наводок корпус анализатора (размеры 20×25×60 см) и камера обдирки выполнены из стали "армко" и Ст3. с высокой магнитной проницаемостью. Расстояние между пластинами 9,8 см. На отклоняющую пластину подается анализирующее напряжение U_a. Входная щель, и пять выходных щелей, которые покрыты мелкоячеистой сеткой высокой прозрачности, для устранения искажения электрического поля анализатора. На передней стенке анализатора напротив выходных щелей находятся ВЭУ (вторичные электронные умножители). Напряжение на ВЭУ, и напряжение на отклоняющую пластину, подводится через специальные высоковольтные вводы. Сигнальные выходы с ВЭУ, осуществляются через помехозащищенные разъемы. Для защиты от наводок использовались коаксиальные кабели с двойной оплёткой. Сигналы с ВЭУ регистрируются с помощью АЦПЗЗЗ (до модернизации использовались АЦП122s) с временным разрешением 2 мкс в четырех канальном режиме (0.5 мкс в одноканальном режиме), выполненного в стандарте КАМАК. АЦПЗЗЗ и ВВИ (высоковольтный источник) для питания ВЭУ, расположены в подвале, в металлическом экране-боксе, там же расположен регулируемый источник напряжения для отклоняющей пластины анализатора.

Рис.6, Схема эксперимента по регистрации горячих нейтралов перезарядки на установке ГОЛ-3

Чтобы получить формулу для восстановления энергетического спектра нейтралов перезарядки по сигналам ВЭУ, представим вывод аналогично работе

[14]. Амплитуда сигналов с ВЭУ A(t) в момент времени t_0 пропорциональна току нейтралов перезарядки поступающих из плазмы:

$$\mathbf{A}(\mathbf{t}_0) \sim \mathbf{C} \cdot \Delta \mathbf{J}_{\mathrm{cx}}(\mathbf{E}, \mathbf{t}_0) \cdot \boldsymbol{\alpha}(\mathbf{E}) \cdot \boldsymbol{\gamma}^+(\mathbf{E}) \qquad (5)$$

-где С-некоторая константа не зависящая от энергии, $\Delta J_{cx}(E,t_0)$ - ток нейтралов перезарядки с энергией Е, в момент времени t_0 , $\alpha(E)$ -эффективность обдирки, $\gamma^+(E)$ -коэффициент вторичной эмиссии первого динода ВЭУ.

В свою очередь ток нейтралов перезарядки можно связать с их функцией распределения по энергии соотношением:

$$\Delta J_{cx}(E,t_0) \sim C \cdot \int dE \cdot \sqrt{2E/M} \cdot \frac{dn_{cx}}{dE}(E,t_0)$$
 (6)

учитывая коэффициент ослабления K(E,T_e,nl) потока нейтралов вследствие столкновительных процессов в плазме и транспортном канале за счет столкновений с молекулами водорода (дейтерия), получим окончательную формулу:

$$\frac{dn_{ex}}{dE}(E,t_0) = C \cdot \frac{A(t_0)}{E^{3/2} \cdot \alpha(E) \cdot \gamma^+(E) \cdot K(E,T_e,nl)}$$
(7)

где учтено что разрешение одного канала анализатора по энергии $\Delta E \sim const \cdot E$ (см.формулу (4)).

Как показано в [9,14] для получения функции распределения ионов плазмы по энергиям, найденный спектр нейтралов перезарядки нормируется на сечение перезарядки $\sigma_{cx}(E)$:

$$\frac{dn_i}{dE}(E,t_0) \sim \frac{1}{\sigma_{cx}(E)} \cdot \frac{dn_{cx}}{dE}(E,t_0)$$
(8)

Необходимо заметить экспериментальные сложности при использовании данного метода связанные с особенностями экспериментов на установке ГОЛ-3:

- высокая плотность плазмы ГОЛ-3 (n ~ 10¹⁵ cm⁻³), при таких плотностях выход быстрых атомов из центральной области затруднен, т.е. полученные данные носят интегральный характер и требуют дополнительной обработки.
- 2. наличие сильных электромагнитных наводок на установке ГОЛ-3 в течение выстрела.
- сложность интерпретации данных анализатора, связанная с необходимостью знания о радиальном распределении плотности плазмы, электронной температуры (т.е. вдоль линии наблюдения анализатора) и т.д.

4. Результаты экспериментов.

Эксперименты по регистрации быстрых нейтралов перезарядки велись в различных режимах работы на установке ГОЛ-3. Основными параметрами изменяемыми в ходе экспериментов являются: конфигурация магнитного поля, плотность напускаемого рабочего газа (водород или дейтерий) и его распределение вдоль установки, энергосодержание, ток и энергия электронов РЭП. Это существенно влияет на параметры получаемой плазмы. Однако экспериментально было обнаружено, что сигналы ВЭУ имеют характерные особенности, связанные с общим сценарием экспериментов на ГОЛ-3. На рис.7 представлен типичный сигнал полученный анализатором в ходе экспериментов, выстрел РС4832. Время отсчитывается от начала инжекции РЭП в плазму.

От 0 до -30 мкс создается предплазма, от 0 до 4-6 мкс наводка от срабатывания генератора У-2.

Рис.7, Сигнал с первого канала анализатора, анализирующее напряжение 7 кВ.

Затем сотни микросекунд продолжается эмиссия нейтралов перезарядки из плазмы ГОЛ-3. Максимум сигналов наблюдается через 10-50 мкс после инжекции пучка. Длительность сигнала, и положение максимума зависит от режима экспериментов на ГОЛ-3. На рис.8, представлена статистика по серии выстрелов 4636-4678, построенная по амплитудам сигналов первого ВЭУ, в момент t = 30 мкс и t = 50 мкс, после инжекции пучка, в зависимости от анализирующего напряжения.

Рис.8, График зависимости амплитуды сигнала ВЭУ от анализирующего напряжения в выстрелах 4636- 4678, амплитуда сигнала в момент t=30 мкс после инжекции пучка-кружки, t=50 мкс-кресты.

Построенный по этим данным энергетический спектр горячих нейтралов перезарядки $\frac{dn_{cx}}{dE}(E)$ представлен на рис.9, в логарифмическом масштабе. При вычислении спектра использовалась формула (7).

Рис.9, Спектр горячих нейтралов перезарядки в момент t = 50 мкс после инжекции пучка, построенный по серии выстрелов 4636-4678.

Энергетическое распределение ионов плазмы (рис.10) вычислялось в соответствии с формулой (8). Температура ионов определялась по наклону кривой построенной методом наименьших квадратов, в предположении что функция распределения ионов по энергиям – Максвелловская, т.е.

 $\frac{dn_i}{dE}(E) = const \cdot \sqrt{E} \cdot T^{-3/2} \cdot \exp(-\frac{E}{T})$. Определенная таким образом температура

ионов составила $T_i = 1,3$ кэВ.

Рис.10, Рассчитанное по экспериментальным данным распределение ионов по энергиям (кресты), максвелловская функция распределения с T_i = 1,3 кэВ (сплошная кривая).

Энергетическое распределение ионов плазмы в горячей области восстанавливалось с учетом функции K(E, T_e, nl), моделирующей ослабление потока нейтралов перезарядки из центра плазмы. Линейная плотность задавалась исходя из начального распределения дейтерия по длине установки (см. рис.2), в серии выстрелов 4636-4678, которое создавалось двумя клапанами: на входе установки (10 катушка), и центре (63 катушка), при таком распределении вдоль линии наблюдения анализатора (z=3,1 м), линейная плотность была благоприятной для регистрации нейтралов перезарядки из горячей области nl ~ $6*10^{14} \cdot 10^{15}$ см⁻².

Временная эволюция $\frac{dn_i}{dE}(E)$ была рассмотрена: по двум точкам:30 и 50 мкс после инжекции пучка (рис.7). В определяемая по $\frac{dn_i}{dE}(E)$, ионная температура меняется слабо и составляет величину $T_i \sim 1$ кэВ. Такое поведение ионной температуры подтверждается данными диамагнитных датчиков (рис.12), давление плазмы $n_iT_i + n_eT_e$ сначала резко возрастает до 10^{15} кэВ/см⁻³, а затем спадает до $\sim 3,5*10^{14}$ кэВ/см⁻³, после чего свыше 200 мкс остается практически постоянным.

Рис.11, Давление плазмы измеренное диамагнитным датчиком на расстоянии ~ 60 см от входной щели анализатора.

5. Обсуждение результатов.

Наблюдаемая сразу после инжекции РЭП в плазму эмиссия горячих нейтралов перезарядки подтверждает модель нагрева ионов за счет модуляции электронной температуры вдоль плазменного столба [1]: так как при классическом режиме нагрева время появления горячих ионов определяется кулоновской частотой электрон - ионных соударений и составляет величину ~10⁻³ с, а характерные времена нагрева для режима с гофрированным магнитным полем, порядка одного ион-ионного столкновения (10⁻⁶-10⁻⁵ с) [1]. Сигналы анализатора достигают своего максимума за 10-50 мкс после инжекции пучка, т.е. близко к времени ион-ионных столкновений за которое происходит максвеллизация ионов во встречных потоках в отдельной ячейке многопробочной ловушки. Регистрация нейтронного излучения вдоль всей установки [1,2] подтверждает что происходит нагрев всей ионной компоненты плазмы. Эти факты оправдывают предположение о том, что регистрируемый распределение ионов $\frac{dn_i}{dE}(E)$ близко к максвелловскому. Величина ионной температуры T_i~1-1.5 кэВ определяемая по спектру нейтралов перезарядки, в режиме с пониженной плотностью плазмы в месте расположения анализатора хорошее дает соответствие с нейтронными И спектроскопическими [2]. Временная эволюция температуры ионов диагностиками плазмы согласуется с временным ходом давления плазмы.

6. Выводы.

Проведена модернизация многоканального анализатора, число каналов увеличено с двух до пяти, что позволит регистрировать спектр нейтралов перезарядки в одном выстреле.

Представлена модель для восстановления энергетического распределения ионов в горячей области плазмы ГОЛ-3.

Исследована эмиссия быстрых нейтралов перезарядки из горячей плазмы ГОЛ-3.

Обнаружено:

Эмиссия горячих нейтралов перезарядки наблюдаемая сразу после инжекции РЭП в плазму, подтверждает модель нагрева ионов за счет модуляции электронной температуры вдоль плазменного столба.

Благоприятными для регистрации нейтралов перезарядки были режимы работы с пониженной плотностью (~10¹⁴ см⁻³) в области наблюдения анализатора.

Энергетическое распределение ионов плазмы в горячей области, остается практически неизменным десятки микросекунд.

По серии выстрелов определена температура ионов в горячей области плазмы, которая в результате измерений и расчетов составила величину T_i~ 1-1,5 кэВ,. что находится в согласии с другими ионными диагностиками на установке ГОЛ-3.

7. Литература.

- Р.Ю. Акентьев, А.В. Аржанников, В.Т. Астрелин, А.В.Бурдаков, Э.Р.Зубаиров,В.Г.Иваненко, И.А. Иванов, М.В.Иванцивский, В.С. Койдан, В.В.Конюхов, А.Г.Макаров, К.И. Меклер, В.С.Николаев, В.В. Поступаев, А.Ф. Ровенских, С.В. Полосаткин, С.Л.Синицкий, В.Д.Степанов, Ю.С.Суляев, А.А.Шошин, Эксперименты по изучению плазмы в отдельных ячейках многопробочной ловушки ГОЛ-3, Препринт ИЯФ-2002-72.
- R.Yu. Akentjev, A.V. Arzhannikov, V.T. Astrelin, A.V. Burdakov, I.A. Ivanov, M.V. Ivantsivsky, V.S. Koidan, V.V. Konyukhov, A.G. Makarov, K.I. Mekler, S.S. Perin, S.V. Polosatkin, V.V. Postupaev, A.F. Rovenskikh, S.L. Sinitsky, V.D. Stepanov, Yu.S. Sulyaev, A.A. Shoshin, Eh.R. Zubairov. Multimirror Open Trap GOL-3: recent results // Transactions of Fusion Technology Vol.43, No 1T, Jeju Island, Korea, 2003, p.30-36.
- 3. Петров М.П.. Корпускулярная диагностика квазистационарной термоядерной плазмы, Физика плазмы, 1976, т.2, с371-389.
- Барнет К., Харрисон М. Прикладная физика атомных столкновений. М.: Энергоатомиздат, 1987.
- Бурдаков А.В., Койдан В.С., Шошин А.А. Исследование эмиссии быстрых нейтралов перезарядки из горячей плазмы на установке ГОЛ-3.
 // Тезисы докладов XXX Звенигородской конференции по физике плазмы и УТС, Звенигород, 2003, стр.84.
- V.T. Astrelin, A.V. Burdakov, V.S. Koidan, K.I. Mekler, S.V.Polosatkin, V.V. Postupaev, A.F.Rovenskikh. Long linear discharge in corrugated magnetic field. - Novosibirsk, 2001. 9 c. - (Preprint / Budker INP 2001-17).
- A.V. Arzhannikov, V.T. Astrelin, A.V. Burdakov, I.A. Ivanov, V.S. Koidan, K.I. Mekler, S.V. Polosatkin, V.V. Postupaev, A.F. Rovenskikh, S.L. Sinitsky. Dynamics of Ions of a Beam-Heated Plasma in a Cell of Multimirror Open Trap // Transactions of Fusion Technology Vol.43, No 1T, Jeju Island, Korea, 2003, p.172-176.
- Давыденко В. И., Иванов А. А., Вайсен Г. Экспериментальные методы диагностики плазмы. Часть 1. НГУ. Новосибирск, 1999.
- Диагностика термоядерной плазмы. / Под ред. С.Ю. Лукьянова. М.: Энергоатомиздат, 1985.

- C. F. Barnett et al. Physics division atomic data for controlled fusion research. Oak Ridge National Laboratory. 1977.
- 11. R.K. Janev, W.D.Langer, K. Evans and D.E. Post, Jr., Elementary Processes in Hydrogen-Helium Plasmas," Springer Series on Atoms and Plasmas, Springer-Verlag (Berlin, Heidelberg, New York) 1987.
- 12. "Cross sections for Collision processes of Hydrogen Atoms with Electrons, Protons and Multiply Charged Ions", Atomic and Plasma-Material Interaction Data for Fusion, a Supplement to the journal Nuclear Fusion, Vol. 4, 1993.
- 13. Афанасьев В.П., Явор С.П. Электростатические анализаторы для пучков заряженных частиц. М.: Наука, 1978.
- Койдан В.С. Исследование динамики нагрева плазмы продольным током в турбулентном режиме. Дис. на соиск. учен. степени канд. физ.мат.наук. ИЯФ. Новосибирск, 1971.
- 15. Койдан В.С., Многоканальный анализатор ионов и быстрых атомов перезарядки. Препринт 19-70, Новосибирск, ИЯФ, 1970.

Оглавление

- 1. Введение. 2
- 2. Установка ГОЛ-3. 3
- 3. Физика атомных процессов в плазме ГОЛ-3. 5

4. Эксперименты по регистрации эмиссии быстрых нейтралов перезарядки из плазмы ГОЛ-3. 7

- 5. Результаты экспериментов. 11
- 6. Обсуждение результатов. 15
- 7. Выводы. 16
- 8. Литература. 17