## МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ, НГУ)

| Факультет ФИЗИЧЕСКИЙ  |
|-----------------------|
| Кафедра физики плазмы |

Направление подготовки **03.03.02 ФИЗИКА** Образовательная программа **БАКАЛАВРИАТ** 

#### ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Ломова Константина Андреевича

Тема работы **Локальные магнитные измерения в винтовой магнитной ловушке СМОЛА** 

| «К защите допущена» |                      |  |  |  |  |  |
|---------------------|----------------------|--|--|--|--|--|
| Заведующий кафедрой | Научный руководитель |  |  |  |  |  |
| к. ф.–м. н.         | к. фм. н.            |  |  |  |  |  |
| в. н. с. ИЯФ СОРАН  | с. н. с. ИЯФ СОРАН   |  |  |  |  |  |
| Беклемишев А. Д.    | Судников А.В.        |  |  |  |  |  |
| «»                  | «»                   |  |  |  |  |  |
|                     | Дата защиты: «»      |  |  |  |  |  |

# Содержание

| 1                | Вве                                              | едение                                             |                                                     |    |  |  |  |  |  |
|------------------|--------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|----|--|--|--|--|--|
| 2                | Оп                                               | исание                                             | установки СМОЛА                                     | 8  |  |  |  |  |  |
| 3                | Подвижный азимутальный магнитный зонд            |                                                    |                                                     |    |  |  |  |  |  |
|                  | 3.1                                              | Расче                                              | т параметров магнитного зонда                       | 11 |  |  |  |  |  |
|                  | 3.2                                              | Изгот                                              | овление и калибровка магнитного зонда               | 13 |  |  |  |  |  |
|                  | 3.3                                              | Резула                                             | ьтаты диагностики плазмы в винтовой секции установ- |    |  |  |  |  |  |
|                  |                                                  | ки СМ                                              | ИОЛА подвижным магнитным зондом                     | 15 |  |  |  |  |  |
|                  |                                                  | 3.3.1                                              | Спектральный анализ сигнала                         | 16 |  |  |  |  |  |
|                  |                                                  | 3.3.2                                              | Оценка радиального профиля возмущений тока          | 18 |  |  |  |  |  |
| 4                | Мн                                               | огокан                                             | альная азимутальная магнитная измерительная         | I  |  |  |  |  |  |
|                  | сис                                              | тема                                               |                                                     | 21 |  |  |  |  |  |
|                  | 4.1                                              | 1 Конструкция многоканальной измерительной системы |                                                     |    |  |  |  |  |  |
|                  | 4.2                                              | Матем                                              | латические методы обработки экспериментальных дан-  |    |  |  |  |  |  |
|                  |                                                  | ных.                                               |                                                     | 23 |  |  |  |  |  |
|                  |                                                  | 4.2.1                                              | Вычисление магнитного поля                          | 23 |  |  |  |  |  |
|                  |                                                  | 4.2.2                                              | Связь возмущения тока с азимутальным магнитным      |    |  |  |  |  |  |
|                  |                                                  |                                                    | полем                                               | 24 |  |  |  |  |  |
|                  | 4.3                                              | Первы                                              | ые результаты диагностики пространственной структу- |    |  |  |  |  |  |
|                  | одольного тока в винтовой секции установки СМОЛА | 29                                                 |                                                     |    |  |  |  |  |  |
|                  |                                                  | 4.3.1                                              | Амплитуда мод возмущения пространственной струк-    |    |  |  |  |  |  |
|                  |                                                  |                                                    | туры продольного тока                               | 31 |  |  |  |  |  |
|                  |                                                  | 4.3.2                                              | Фаза мод возмущения пространственной структуры      |    |  |  |  |  |  |
|                  |                                                  |                                                    | продольного тока                                    | 32 |  |  |  |  |  |
| 5                | Зак                                              | хлючен                                             | ие                                                  | 33 |  |  |  |  |  |
| $\mathbf{C}_{1}$ | писо                                             | к лите                                             | ературы                                             | 35 |  |  |  |  |  |
| П                | рилс                                             | жение                                              | e 1                                                 | 39 |  |  |  |  |  |
| $\Pi$            | рилс                                             | жение                                              | $\geq 2$                                            | 41 |  |  |  |  |  |
|                  | •                                                |                                                    |                                                     |    |  |  |  |  |  |

## 1 Введение

Альернативная энергетика на основе управляемого термоядерного синтеза (УТС) сейчас является одним из претендентов на закрытие энергетического дефицита, который ожидается в мире уже в этом столетии [1]. Для осуществления УТС необходимо решить проблему удержания достаточно плотной горячей плазмы из термоядерного топлива в реакторной зоне. На данный момент ниболее развит метод удержания плазмы с помощью различных конфигураций магнитного поля, имеющих свои преимущества и недостатки. Среди замкнутых конфигураций магнитного поля можно выделить токамаки [2] и стеллараторы (например, [3]). Отдельно стоит отметить конфигурацию с обращенным полем [4].

В Институте ядерной физики имени Г. И. Будкера СО РАН активно исследуется удержание плазмы с помощью линейной конфигурации магнитного поля — открытых магнитных ловушек [5]. Эта конфигурация относительно проста в инженерном плане, позволяет достичь близкого к единице значения параметра  $\beta$  (отношения давления плазмы к давлению магнитного поля) и эффективно использовать энергию магнитного поля, обеспечивает хорошее подавление теплопроводности поперек магнитного поля. В перспективе линейная конфигурация может позволить использовать для УТС анейтронные топливные циклы [6] и обойтись без серьезной радиационной защиты.

Основной проблемой открытых конфигураций является плохое удержание плазмы вдоль магнитного поля. На сегодняшний день предложены и испытаны такие методы улучшения продольного удержания плазмы, как запирание амбиполярным потенциалом [7], многопробочное удержание [8, 9], газодинамическая ловушка [10]. Планируется создание газодинамической многопробочной ловушки (ГДМЛ) — модульной открытой ловушки нового поколения для демонстрации технологий с плазмой субтермоядерного класса, объединяющей основные достижения по удержанию плазмы в открытой магнитной конфигурации [11, 5].

В многопробочной ловушке частицы плазмы можно разделить на запертые между магнитными пробками и пролетные, попадающие в конус

потерь классического пробкотрона. Если длина свободного пробега ионов много меньше длины установки, то пролетная частица не успеет покинуть ловушку, рассеется по углу и окажется запертой в одной из ячеек ловушки. После новых столкновений с другими частицами она снова попадает в конус потерь, но направление вылета не зависит от исходного направления движения частицы. В итоге движение частицы можно описать одномерными случайными блужданиями и уравнением диффузии, что приводит к квадратичной зависимости времени удержания плазмы от длины установки. Тем самым, столкновения пролетных частиц с запертыми позволяют ввести эффективную силу трения, связанную с передачей импульса пролетных частиц запертым и магнитному полю [8, 9].

Одной из новейших идей по улучшению продольного удержания плазмы в открытой ловушке является концепция винтового удержания [12], в которой предлагается использовать конфигурацию из скрещенных винтового магнитного и радиального электрического полей. Плазма вращается в скрещенных полях, и в связанной с ней системе отсчета винтовое магнитное поле выглядит как магнитные пробки, набегающие на плазму со скоростью

$$V_z = \frac{hE_r}{2\pi aB_z},$$

где a — радиус плазмы, h — шаг винтовой намотки,  $h \gg a$ ,  $E_r$  — радиальное электрическое поле,  $B_z$  — продольное магнитное поле. В результате на плазму действует сила трения (той же природы, что и в пассивном многопробочном удержании), зависящая от направления магнитного поля, спиральности винтового соленоида и направления радиального электрического поля. В открытых магнитных ловушках эту концепцию можно реализовать в виде двух винтовых секций, расположенных на выходах из зоны удержания плазмы и закачивающих плазму от краев ловушки к центру (см. рисунок 1). Источником энергии для вращения плазмы служит внешний источник питания, задающий требуемое радиальное распределение потенциала, либо амбиполярный потенциал плазмы. Концепция хорошо сочетается с технологией вихревого удержания, подавляющей МГД-неустойчивость [13].

Ожидается экспоненциальная зависимость времени удержания плазмы от длины установки, что выгодно отличает новую концепцию от пассивного многопробочного удержания. Кроме того, предложенная конфигурация может быть использована при создании плазменного ракетного двигателя [14].



Рис. 1: Вид магнитной поверхности открытой ловушки, использующей концепцию винтового удержания. Интенсивность цвета пропорциональна магнитной индукции. Стрелками показано направление вращения плазмы и направление сил, действующих на плазменный поток.

Для проверки концепции винтового удержания в ИЯФ СО РАН построена Спиральная магнитная открытая ловушка (СМОЛА) [15], представляющая собой половину системы, изображенной на рисунке 1: источник холодной плазмы (≈ 5 в) имитирует поток из центральной секции, который далее распространяется через магнитную пробку, винтовую секцию и попадает на сегментированный плазмоприемник (см. рисункок 2). Радиальное электрическое поле задается разностью потенциалов между катодом и анодом источника плазмы, а токже между пластинами плазмоприемника. Параметры установки подобраны таким образом, чтобы средняя длина свободного пробега ионов была примерно равна шагу винтовой намотки. В ходе первой серии экспериментов на СМОЛА были качественно подтверждены основные предположения концепции: подавление аксиального потока плазмы и пинч-эффект в плазменном шнуре [16]. После дооборудования установки начались эксперименты по количественному исследованию эффекта винтового удержания и определению скейлингов.

Исследование процессов, происходящих в плазме СМОЛА, позволит предсказать поведение горячей плазмы в субтермоядерной установке, использующей винтовое удержание плазмы, с такими же безразмерными параметрами (например, при модификации проекта ГДМЛ). Отдельный интерес представляет локальная диагностика параметров плазмы. Исследование возмущений плазмы позволит получить информацию о неустойчивостях, которые могут возникнуть при масштабировании системы.

Особенностью установки СМОЛА, как и некоторых других открытых ловушек, является наличие продольного тока в плазменном шнуре между катодом и плазмоприемником. Возмущения в плазменном шнуре приводят к искажению формы сечения тока и возмущению азимутального магнитного поля. Использование магнитных зондов, вводимых в плазму, позволяет получить радиальное распределение магнитного поля и отследить его эволюцию [17], откуда можно восстановить распределение тока в плазменном шнуре [18]. У данного метода есть ограничения, связанные с влиянием зонда на плазму и прочностью зонда, кроме того, введение зонда только по одной азимутальной координате предполагает интерпретацию его сигнала в предположении аксиальной симметрии.

Синхронные измерения азмутального магнитного поля в нескольких координатах по периметру поперечного сечения вакуумной камеры установки широко используются в плазменных установках различных конфигураций. Такие измерения позволяют диагностировать смещение плазменного шнура от оси установки [19] и более высокие моды распределения тока: азимутальные для открытых ловушек [20, 21] и полоидальные для замкнутых конфигураций (например, [22, 23]). Спектр и модовый состав возмущений, в частности, дают информацию о МГД-процессах в плазме и позволяют исследовать развитие неустойчивостей.

Существование замкнутых магнитных поверхностей в установке упрощает интерпретацию результатов, позволяя более однозначно соотнести распределение токов с движением плазмы. В приложении же к открытым ловушкам интерпретация сигнала многоканальной азимутальной магнитной измерительной системы является неоднозначной: возмущения магнитного поля могут быть вызваны как смещением плазменного шнура, так и перераспределением плотности тока в плазменном шнуре.

Кроме азимутальной диагностики, дополнительную информацию о МГД-процессах могут дать распределенные по азимутальной и продольной координате наборы радиальных магнитных зондов [24], также могут быть интересны корреляции между сигналами магнитных зондов, направленных по разным осям [25].

В данной работе представлена локальная азимутальная магнитная ди-

агностика плазмы в винтовой секции установки СМОЛА. В ходе работы были спроектированы, изготовлены и введены в эксплуатацию одиночный подвижный магнитный зонд для исследования радиальной зависимости возмущений азимутального магнитного поля и 12-канальная магнитная измерительная система для исследования возмущений формы сечения продольного тока в плазменном шнуре; представлены первые результаты диагностики.

- В разделе 2 дано краткое описание диагностического комплекса и режимов работы установки СМОЛА.
- В разделе 3 описаны расчет параметров, изготовление и калибровка подвижного азимутального магнитного зонда, представлены полученные с его помощью результаты.
- В разделе 4 описаны изготовление и калибровка многоканальной азимутальной магнитной измерительной системы, представлены математические методы интерпретации сигнала и первые результаты диагностики.
- В Приложение 1 вынесены промежуточные математические выкладки.
- В *Приложение 2* вынесен листинг программы на Python для обработки сигнала.

## 2 Описание установки СМОЛА

Схема установки представлена на рисунке 2. Плазма плотностью до  $10^{19}\,\mathrm{m}^{-3}$  и температурой  $\approx 5\,\mathrm{sB}$  распространяется от источника плазмы через транспортную секцию с винтовым (шаг  $h=18\,\mathrm{cm}$ ) и прямым солено-идами до сегментированного плазмоприемника с заданным распределением потенциала [15]. Основные параметры установки:

- Отношение шага винтового поля к средней длине пробега ионов  $h/\lambda \approx 0, 5-1.$
- Ларморовский радиус ионов  $\approx 0,5$  см.
- Радиус плазмы  $\approx 5$  см.
- Отношение скорости движения магнитных пробок в системе отсчета плазмы к тепловой скорости ионов  $V_z/V_T \approx 1$ .
- Средняя по сечению глубина перепада магнитного поля вдоль силовой линии  $R_{mean} = 1, 5 2.$
- Радиальное электрическое поле до  $E_r \approx 100\,\mathrm{B/cm}$ .

В отдельном эксперименте была продемонстрирована длительность выстрела 1600 мс с сохранением постоянных параметров плазмы и работы установки. Стационарный режим формируется менее, чем за 60 мс, поэтому в большей части экспериментов длительность выстрела устанавливается не более 300 мс.

Набор ленгмюровских зондов используется для измерения профилей плотности плазмы в разных частях установки, в конце транспортной секции СВЧ-интерферометром измеряется линейная плотность плазмы. На рисунке 3 представлено радиальное распределение концентрации плазмы в центральной секции установки, измеренное с помощью трех подвижных двойных ленгмюровских зондов, распределенных по вертикальной координате [26].

С помощью доплеровской спектрометрии по смещению линии  $H_{\alpha}$  определяется скорость вращения плазмы на входе [27] и — начиная с 2020 года

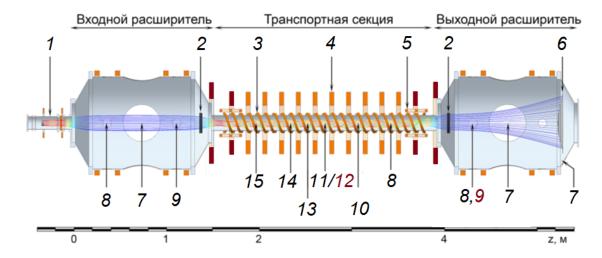



Рис. 2: Схема установки СМОЛА: 1 – источник плазмы; 2 – лимитер; 3 – винтовой соленоид; 4 – соленоид прямого поля; 5 – катушки коррекции; 6 – секционированный плазмоприемник; 7 – фотокамера; 8 – ленгмюровский зонд; 9 – доплеровский спектрометр; 10 – СВЧ- интерферометр; 11 – подвижный магнитный зонд (в 2019 г.); 12 – многоканальная магнитная измерительная система (с 2020 г.); 13 – неподвижный трех-канальный магнитный зонд; 14 – трехкоординатный ленгмюровский зонд; 15 – ультрафиолетовый фотодиод. Тёмно-красным цветом отмечены катушки магнитной системы и диагностики, добавленные в 2020 году.

— на выходе транспортной секции. Фотокамеры фиксируют форму и смещение плазменного шнура. С теорией сравнивается соотношение полного потока вещества через входное и выходное сечения винтовой секции при различных значениях ведущего магнитного поля, пробочного отношения, скорости вращения плазмы и других параметров [28]. Проводятся измерения с выключенным и включенным винтовым полем, в некоторых режимах винтовое поле включалось и выключалось несколько раз за один выстрел. Возможно включение винтового поля в обратном направлении для ускорения плазмы (на данный момент ускорение не наблюдается, так как  $V_z/V_T \approx 1$ ).

К началу экспериментальной кампании 2020 года была завершена установка всех элементов магнитной системы и модернизирован источник плазмы, что привело к увеличению плотности плазмы с 0, 3-0, 5 до  $1\cdot 10^{19}\,\mathrm{m}^{-3}$ , максимального ведущего поля с 65 до  $150\,\mathrm{m}$ Тл, уменьшению неоднородности ведущего поля с 5 до  $1-2\,\%$ , увеличению катодного тока с 50-100 до  $200-300\,\mathrm{A}$  и скорости вращения плазмы во входном расширителе с (1-5) до  $(8-10)\cdot 10^5\,\mathrm{pag/c}$ . Зафиксирована скорость вращения плазмы на выходе из винтовой секции до  $5\cdot 10^5\,\mathrm{pag/c}$ .

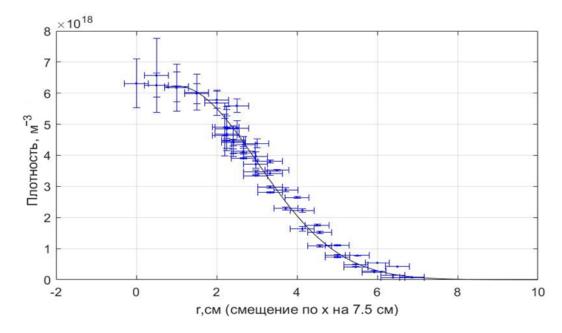



Рис. 3: Радиальное распределение концентрации плазмы в винтовой секции установки СМОЛА (выстрелы 5440-5485).

После модернизации источника плазмы были обнаружены провалы катодного тока длительностью  $\approx 50$  мкс на глубину 0, 2-0, 5 от максимальной силы тока, повторяющиеся с частотой  $5-10\,\mathrm{k}\Gamma\mathrm{u}$  (см. рисунок 4). Экспериментальные исследования эффекта показали, что амплитуда провалов не зависит от кривизны силовых линий, винтового магнитного поля, магнитного поля на аноде источника плазмы, среднего тока, давления нейтрального газа и потенциалов на плазмоприемнике. Почти полное подавление флуктуаций было достигнуто повышением магнитного поля в области катода до значения, при котором силовая линия с края катода приходит на край лимитера на входе в винтовую секцию [28]. Необходимо дальнейшее исследование эффекта: в частности, азимутальная структура провалов катодного тока может быть восстановлена с помощью многоканальной азимутальной магнитной диагностики.

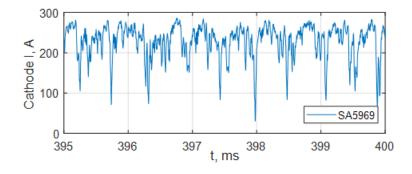



Рис. 4: Катодный ток при наииболее неблагоприятной конфигурации (выстрел 5969).

## 3 Подвижный азимутальный магнитный зонд

#### 3.1 Расчет параметров магнитного зонда

Рассмотрим частотную зависимость чувствительности магнитного зонда. На рисунке 5 изображена схема эквивалентной цепи подключения измерительной катушки ( $V_p$  — индуцируемое магнитным полем напряжение,  $L_p$  — собственная индуктивность,  $R_p$  — активное сопротивление,  $C_p$  — паразитная емкость) посредством кабеля RG-58 с волновым сопротивлением  $Z_0 = 50\,\mathrm{Om}$  к АЦП ADC1250 (частота дискретизации до  $50\,\mathrm{MF}\,\mathrm{I}$ д, разрешение по напряжению от  $7,3\cdot 10^{-5}\,\mathrm{B}$  [29]) с входным сопротивлением  $R_0$ , согласованным с кабелем ( $R_0 = Z_0$ ). В предположении однородности магнитного поля B, направленного вдоль оси измерительной катушки и осциллирующего с частотой  $\omega$ , в комплексном представлении напряжение на катушке равно  $V_p = i\omega S_{\mathrm{9}\mathrm{ch}} B$ , где  $S_{\mathrm{9}\mathrm{ch}} = NS$  — эффективная площадь катушки, N — количество витков в катушке, S — площадь одного витка.

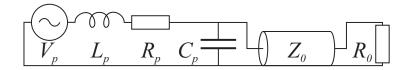



Рис. 5: Схема эквивалентной цепи подключения магнитного зонда к АЦП.

Тогда напряжение на АЦП  $(R_0)$  выражается как

$$U_0 = \frac{C_p || Z_0}{C_p || Z_0 + i\omega L_p + R_p} i\omega S_{\vartheta \Phi \Phi} B, \tag{1}$$

где  $C_p \| Z_0 = \frac{(i\omega C_p)^{-1} Z_0}{(i\omega C_p)^{-1} + Z_0}$  – импеданс параллельного соединения [30]. Из формулы (1) можно выразить передаточную функцию  $H(\omega)$ , связывающую амплитуду сигнала с катушки с амплитудой колебаний магнитного поля в катушке:

$$H(\omega) = \frac{|U_0|}{|B|} = \frac{\omega S_{\Rightarrow \varphi \varphi}}{\sqrt{\left(1 + \frac{R_p}{Z_0} - \omega^2 L_p C_p\right)^2 + \omega^2 \left(\frac{L_p}{Z_0} + R_p C_p\right)^2}}.$$
 (2)

Оценку для индуктивности катушки можно получить из формулы [31]:

$$L_p = \frac{39,4r^2N^2}{9r+10l} [\text{MK}\Gamma\text{H}],$$

где r и l – радиус и длина катушки в метрах, N – число витков. Для оценки паразитной емкости катушки можно использовать формулу для емкости между соседними витками катушки [32]:

$$C_p = \frac{2\pi^2 r \varepsilon_d}{\cosh^{-1} \left(\frac{d}{2a}\right)} [\Phi],$$

где r — радиус катушки в метрах, d — внешний диаметр проводника с изолятором, 2a — диаметр проводника без изолятора,  $\varepsilon_d$  — диэлектрическая проницаемость изолятора. Паразитная емкость многовитковой катушки подобна последовательному соединению емкостей между соседними витками, так что приведенная формула дает на паразитную емкость оценку сверху. В качестве оценки активного сопротивления рассчитывается сопротивление катушки постоянному току (предполагается, что толщина скинслоя в проводнике на всем диапазоне частот больше или порядка радиуса проводника).

Радиус плазменного шнура в транспортной секции СМОЛА равен  $\approx 5\,\mathrm{cm}$ , ларморовский радиус ионов  $\approx 0,5\,\mathrm{cm}$  [15], поэтому целесообразно использовать катушку с линейными размерами не более  $0,5\,\mathrm{cm}$ . Для 50-витковой катушки радиуса  $r=1\,\mathrm{mm}$  из медной проволоки (внешний диаметр  $d=0,1\,\mathrm{mm}$ , диаметр проводника  $2a=0,08\,\mathrm{mm}$ , диэлектричекая проницаемость изолятра  $\varepsilon_d=4\varepsilon_0$ ) приведенные выше оценки дают собственную индуктивность  $L_{pe}=1,67\,\mathrm{mk}\Gamma\mathrm{m}$ , паразитную емкость  $C_{pe}=1\,\mathrm{m}\Phi$ , активное сопротивление  $R_{pe}=0,85\,\mathrm{Om}$  и собственную резонансную частоту:

$$f_{pe} = rac{1}{2\pi\sqrt{L_{pe}C_{pe}}} = 123\,{
m M}$$
Гц.

Видно, что собственная резонансная частота катушки ожидается примерно в пять раз выше, чем максимальная детектируемая с помощью АЦП частота (половина от максимальной частоты дискретизации, равной 50 МГц). Тогда на основании приведенных оценок выражение (2) можно

упростить до вида

$$H(f) = \frac{|U_0|}{|B|} = \frac{S_{9\varphi\varphi}}{\sqrt{\left(\frac{1}{2\pi f}\right)^2 + \left(\frac{L_p}{Z_0}\right)^2}}.$$
 (3)

#### 3.2 Изготовление и калибровка магнитного зонда

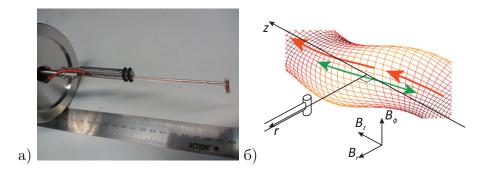



Рис. 6: а) Фотография магнитного зонда. б) Расположение магнитного зонда в транспортной секции СМОЛА (красной стрелкой обозначено направление движения пролетных частиц, зеленой – запертых между пробками).

С учетом требований к диагностике и теоретических расчетов был изготовлен магнитный зонд (см. рисунок ба для диагностики азимутальной компоненты магнитного поля. Измерительная катушка из медной проволоки (внешний диаметр 0, 1 мм) намотана на керамический сердечник (радиус 1 мм, длина 0,5 см) и помещена в кожух из кварцевой трубки для изоляции от воздействия плазмы. Катушка в кожухе Т-образно закреплена на длинной кварцевой трубке проволочной петлей, пропущенной через отверстие в сердечнике катушки и затянутой в трубку. Выводы измерительной катушки уходят в трубку через отверстие в середине кожуха, что уменьшает их контакт с плазмой. Кварцевая трубка крепится к манипулятору, позволяющему изменять радиальную координату зонда  $r_p$  в транспортной секции СМОЛА (позиция 11 на рисунке 2) от 59 мм до оси установки до 26 мм за осью установки (см. рисунок 6б). Выводы измерительной катушки скручены в витую пару для предотвращения образования петель и выведены из трубки на вакуумный разъем. Расстояние от центра катушки до металлических элементов манипулятора равно 67 мм. Измерителем иммитанса были измерены собственная индуктивность измерительной катушки  $L_p = 1,44\,{\rm mk}\Gamma$ н и ее активное сопротивление  $R_p = 1,6\,{\rm Om}.$  Индуктивность отличается от расчетной менее, чем на  $15\,\%$ , сопротивление совпадает с расчетным по порядку величины.

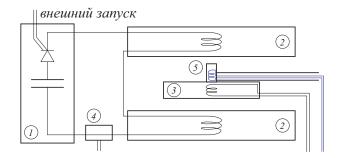



Рис. 7: Схема калибровочного стенда: 1 — конденсатор МБГВ 500 В,  $C=160\,\mathrm{mk}\Phi;$  2 — катушки Гельмольца 2 × 30 витков,  $R_H=8\,\mathrm{cm};$  3 — эталонная катушка 10 витков,  $R_C=4,6\,\mathrm{cm};$  4 — измеритель тока HASS 100S; 5 — магнитный зонд.

Схема калибровочного стенда изображена на рисунке 7. Магнитный зонд и эталонная катушка помещены в центр катушек Гельмгольца. При разрядке высоковольтного конденсатора через катушки Гельмгольца в пространстве между ними индуцируется импульсное магнитное поле с высокой степенью однородности в центральной области. На рисунке 8а приведены напряжения на зонде, эталонной катушке и сигнал с измерителя тока HASS 100-S (отклонение напряжения от уровня покоя пропорционально току катушек Гельмгольца I с известным коэффициентом [33]) при разрядке конденсатора. Заметно качественное совпадение сигналов магнитного зонда и эталонной катушки; также можно заметить хорошую чувствительность магнитного зонда к высоким частотам при коммутации конденсатора в сравнении с эталонной катушкой. Индукция магнитного поля в центре калибровочного стенда B связана с током I формулой

$$B(t) = \left(\frac{4}{5}\right)^{3/2} \frac{\mu_0 n I(t)}{R},$$

где n — количество витков в одной катушке, R — радиус катушек. С другой стороны, индукция магнитного поля находится через напряжение на катушке магнитного зонда:

$$B(t) = B(0) + \frac{1}{S_{\theta \Phi \Phi}} \int_{0}^{t} U_0(\tau) d\tau.$$

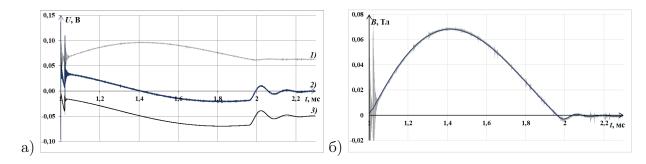



Рис. 8: а) Показания АЦП при калибровке зонда: 1 – измеритель тока; 2 – зонд; 3 – эталонная катушка (для наглядности сигнал катушки ослаблен в 50 раз и опущен на  $0,05\,\mathrm{B}$ ). б) Пересчет показаний АЦП в индукцию магнитного поля: полупрозрачная линия – по измерителю тока; сплошная линия – по магнитному зонду. Совпадение показаний достигнуто подбором  $S_{\mathrm{9do}}$ .

Таким образом, подбором  $S_{\mbox{\tiny 3}\mbox{\tiny 4}\mbox{\tiny 4}}$  (и корректировкой нулевого уровня напряжения зонда) можно добиться совпадения графиков индукции магнитного поля, полученных пересчетом сигнала измерителя тока и интегрированием сигнала магнитного зонда (см. рисунок 8б). Индукция магнитного поля, определенная по интегралу напряжения на эталонной катушке известной площади, также хорошо совпадает с индукцией, определенной по прямому измерению тока. В результате было получено значение эффективной площади измерительной катушки магнитного зонда

$$S_{\text{add}} = (1, 139 \pm 0, 013) \cdot 10^{-4} \,\text{m}^2,$$

что соответствует 36 виткам радиуса 1 мм. На рисунке 9 представлена передаточная функция магнитного зонда  $H\left(f\right)$  в логарифмическом масштабе, построенная по формуле (3) для определенных параметров магнитного зонда. До  $2\,\mathrm{M}\Gamma$ ц вклад собственной индуктивности зонда пренебрежимо мал и функция линейна. Также была исследована реакция зонда на перпендикулярное оси катушки магнитное поле: чувствительность зонда к поперечному полю составляет менее  $8\,\%$  от чувствительности к параллельному полю.

# 3.3 Результаты диагностики плазмы в винтовой секции установки СМОЛА подвижным магнитным зондом

Подвижный азимутальный магнитный зонд был установлен в винтовую секцию установки СМОЛА во время экспериментальной кампании 2019 го-

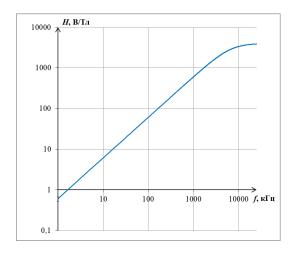



Рис. 9: Передаточная функция магнитного зонда H(f) в логарифмическом масштабе.

да. У АЦП, к которому был подключен зонд, потенциал земли изменялся во время выстрела, что делало невозможным исследование интегрального сигнала на временах порядка длительности выстрела, но не влияло на спектр и амплитуду возмущений с характерными частотами более 1 кГц. После нескольких экспериментальных серий у зонда расплавилась проволока в месте Т-образного соединения, и зонд более в экспериментах не использовался.

#### 3.3.1 Спектральный анализ сигнала

Характерный сигнал магнитного зонда во время выстрела показан на рисунке 10а. Измерения проводились во всём диапазоне конструктивно допустимых координат с различной частотой дискретизации АЦП. С помощью функции spectrogram из пакета программ МАТLAB строилась спектрограмма сигнала. В качестве оконной функциии, выделяющей фрагмент сигнала для ДПФ и минимизирующей растекание спектра из-за конечности фрагмента, использовалось окно Хэмминга [34]. В диапазоне выше 200 кГц возмущений магнитного поля не обнаружено (типичная спектрограмма показана на рисунке 10б).

На рисунке 11а представлена спектрограмма сигнала магнитного зонда в координате  $r_p=10\,\mathrm{mm}$  при частоте дискретизации 390 кГц. Под спектрограммой изображены временные зависимости катодного тока (синий график) и тока через винтовой соленоид (красный график). Возмущения, видимые на спектрограмме, можно разделить на три класса. Шум око-

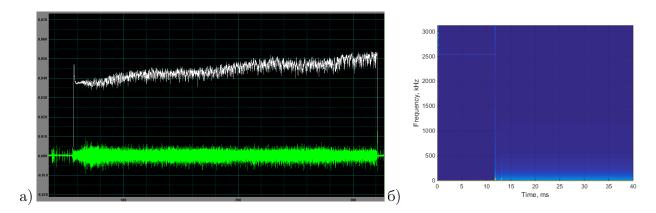



Рис. 10: а) Ток катода (белый сверху, ослаблен в 2048 раз) и сигнал магнитного зонда (зеленый снизу) в выстреле 3217,  $r_p=59\,\mathrm{mm}$ . б) Спектрограмма сигнала магнитного зонда при частоте дискретизации 6, 25 МГц (выстрелы 3218-3220, 3223, 3224, 3227,  $r_p=59\,\mathrm{mm}$ , старт плазмы за 17 мс до старта АЦП).

ло  $10\,\mathrm{k}\Gamma$ ц повторяется на сигналах остальных диагностик и контрольно-измерительных приборов установки и, следовательно, является артефактом измерительного комплекса установки. Шум в диапазоне  $40-100\,\mathrm{k}\Gamma$ ц не имеет выделенной частоты и характерных особенностей. Наибольший интерес представляют возмущения в диапазоне  $15-40\,\mathrm{k}\Gamma$ ц, частота которых возрастает при включении винтового соленоида примерно в 1,2 раза. Эта частота не совпадает с частотой вращения плазмы, которая согласно данным доплеровской спектроскопии равнялась  $\approx 10\,\mathrm{k}\Gamma$ ц.

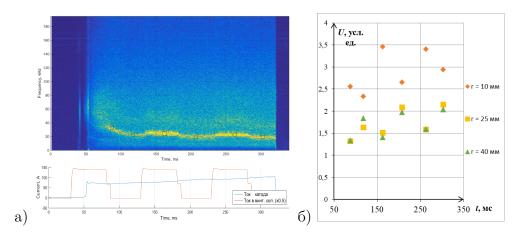



Рис. 11: а) Спектрограмма сигнала магнитного зонда в координате  $r_p = 10$  мм при частоте дискретизации 390 кГц (выстрелы 3281-3285). б) Средняя амплитуда возмущений в координатах спектрограммы, отмеченных прямоугольниками, при различных координатах зонда (выстрелы 3281-3295).

В диапазон  $1-150\,\mathrm{k}\Gamma$ ц попадают оценки характерных частот для различных механизмов возникновения возмущений в установке, в частности, частоты, соответствующие распространению ионно-звуковых колебаний

вдоль характерной длины  $L_{\rm xap}$ , лежат в диапазоне  $f_{T_i} \sim v_{T_i}/2L_{\rm xap} \sim 1-7$  к $\Gamma$ ц, частота, соответствующая пролету электрона с тепловой скоростью, составляет  $f_{T_e} \sim v_{T_e}/2L_{\rm xap} \sim 70-270$  к $\Gamma$ ц, для магнитозвуковых колебаний же  $f_A \sim v_A/2L_{\rm xap} \sim 50-130$  к $\Gamma$ ц ( $L_{\rm xap}$  варьируется от длины расширителя до полной длины установки с учетом в альфвеновской скорости различных значений ведущего поля в транспортной секции и в расширителе) [35]. На данный момент эти механизмы неразличимы.

На рисунке 116 приведена амплитуда данных возмущений в шести характерных областях спектрограммы (отмечены прямоугольниками) для трех различных координат магнитного зонда: 10 мм, 25 мм и 40 мм от оси установки.

#### 3.3.2 Оценка радиального профиля возмущений тока

На рисунке 12а изображена зависимость усредненной за выстрел амплитуды сигнала магнитного зонда от его координаты. В предположении аксиальной симметрии возмущений сигнал зонда ожидается симметричным относительно центра плазменного шнура. Строго говоря, положение шнура в транспортной секции неизвестно, поэтому за координату центра шнура взято положение вершины вписанной в зависимость параболы  $r_0 = 12$  мм. Для пересчета напряжения на зонде в индуктивность магнитного поля по формуле (3) необходимо знать частоту возмущений. На рисунке 126 представлен характерный спектр сигнала магнитного зонда, для оценки частоты возмущений использовалось значение  $f = (50 \pm 20)$  к $\Gamma$ ц.

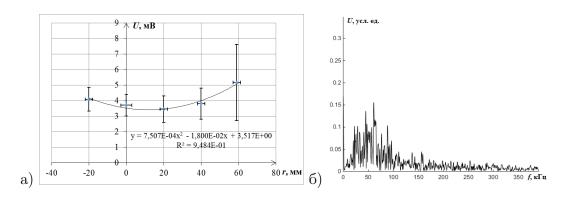



Рис. 12: а) Зависимость амплитуды колебаний сигнала зонда от расстояния до оси установки (выстрелы 3217-3227). б) Спектр сигнала магнитного зонда в момент  $t=170\,\mathrm{mc}$  (выстрел 3222,  $r_p=10\,\mathrm{mm}$ ).

В приближении аксиальной симметрии полный ток внутри цилиндра радиуса r связан с индуцированным на границе цилиндра азимутальным магнитным полем выражением

$$I\left(r\right) = \frac{B}{\mu_0} \cdot 2\pi r.$$

Тогда с учетом поправки на положение плазменного шнура амплитуда возмущений тока в цилиндре связана с амплитудой сигнала магнитного зонда выражением

$$I_0(r \equiv |r_p - r_0|) = \frac{U_0}{\mu_0 H(f)} \cdot 2\pi |r_p - r_0|,$$

а радиальный профиль плотности тока определяется выражением

$$j\left(r\right) = \frac{1}{2\pi r} \frac{dI\left(r\right)}{dr}.$$

На рисунке 13 представлены радиальные распределения тока и плотности тока, построенные по данным магнитного зонда в указанных выше предположениях. Построенное распределение несет оценочный характер. Большие погрешности, обусловленные в первую очередь неточностью определения частоты возмущений, позволяют вписать в зависимость почти любую функцию. Кроме того, измерения одиночным магнитным зондом не позволяют определить, являются возмущения магнитного поля результатом флуктуаций амплитуды тока в плазменном шнуре или или положения плазменного шнура.

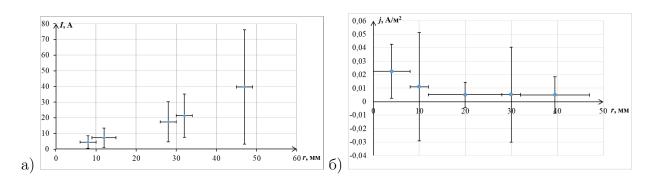



Рис. 13: а) Амплитуда колебаний тока в цилиндре радиуса r (выстрелы 3217-3227). б) Амплитуда колебаний плотности тока на радиусе r (выстрелы 3217-3227).

Тем не менее, полученные результаты согласуются с предположением,

что большая часть продольного тока сосредоточена в цилиндре некоторого радиуса, а не на краю плазменного шнура. Это предположение в дальнейшем используется при анализе результатов, полученных с помощью многоканальной азимутальной магнитной измерительной системы.

# 4 Многоканальная азимутальная магнитная измерительная система

## 4.1 Конструкция многоканальной измерительной системы

Исследования спектра возмущений азимутального магнитного поля одиночным магнитным зондом показали, что все возмущания сосредоточены в диапазоне до  $200\,\mathrm{k}\Gamma$ ц. Это позволяет использовать для диагностики катушки с большим количеством витков и эффективной площадью, что, с одной стороны, повышает чувствительность катушки, а с другой – повышает ее индуктивность и уменьшает собственную резонансную частоту. Для 100-витковой катушки длиной  $5\,\mathrm{mm}$  и диаметром  $5\,\mathrm{mm}$  из медной проволоки (внешний диаметр  $d=0,1\,\mathrm{mm}$ , диаметр проводника  $2a=0,08\,\mathrm{mm}$ , диэлектричекая проницаемость изолятра  $\varepsilon_d=4\varepsilon_0$ , предполагается двухслойная намотка) оценки по формулам из подраздела  $3.1\,\mathrm{дают}$  собственную индуктивность  $L_{pe}=34\,\mathrm{mk}\Gamma$ н, паразитную емкость  $C_{pe}=4,3\,\mathrm{n}\Phi$  и собственную резонансную частоту:

$$f_{pe} = rac{1}{2\pi\sqrt{L_{pe}C_{pe}}} = 13\,\mathrm{M}$$
Гц.

На рисунке 14 показана теоретическая передаточная функция новой катушки в сравнении с передаточной функцией магнитного зонда из раздела 3. Видно, что в частотном диапазоне наблюдаемых возмущений передаточная функция остаётся линейной.

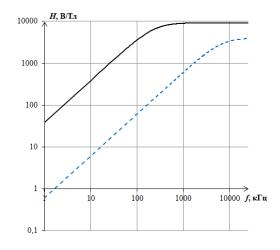



Рис. 14: Передаточная функция новой измерительной катушки (черная сплошная линия) и подвижного зонда (синий пунктир) H(f) в логарифмическом масштабе.

Катушки с новыми параметрами использованы в многоканальной азимутальной магнитной измерительной системе, конструкция которой представлена на рисунке 15. 12 магнитных зондов длиной 5 мм и диаметром 5 мм, распределенных по азимутальной координате (характерные углы подписаны на рисунке), располагаются в центральной секции установки внутри вакуумной камеры на расстоянии  $R=70\,\mathrm{Mm}$  от оси установки. Корпус катушек изготовлен из полиэфирэфиркетона, держатели изготовлены из нержавеющей стали, электростатическое экранирование в текущей конфигурации измерительной системы не предусмотрено.

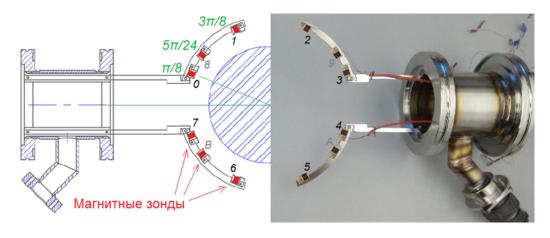



Рис. 15: Схема и фотография магнитной измерительной системы.

Элементы крепления разработаны таким образом, чтобы диагностику можно было смонтировать в установке, используя боковые диагностические порты. Сначала на диагностический порт монтируется деталь с вакуумным разъемом и направляющими, затем держатели катушек вводятся в установку и фиксируются на направляющих, катушки подключаются изнутри к вакуумному разъему, отверстие закрывается глухим фланцем. Магнитные зонды подключаются посредством кабеля RG-58 к АЦП АDC1250. В измерениях, представленных в данной работе, использовались свободные каналы АЦП, собирающих также данные с других диагностик. При этом потенциал земли АЦП так же, как и в экспериментах с подвижным магнитным зондом, изменялся во время выстрела, что привело к невозможности исследовать интеграл сигнала на временах порядка длительности выстрела и обрабатывать вместе данные с зондов, подключенных к разным АЦП. В дальнейшем планируется выделение под магнитную измерительную систему отдельных АЦП и, если проблема останется,

принятие других необходимых мер.

Катушки, изготовленные для измерительной системы, были откалиброваны на стенде, описанном в подразделе 3.2, их собственная индуктивность и активное сопротивление с учетом коммутации к вакуумному разъему определены с помощью измерителя иммитанса и мультиметра. Погрешность определения эффективной площади составила менее 2% (в т. ч. 1% – погрешность измерителя тока, менее 0,5% – погрешность АЦП, 1% – погрешность определения совпадения графиков). Результаты калибровки приведены в таблице 1. Большой разброс эффективной площади объясняется недостаточно аккуратной ручной намоткой катушек: ошибками в подсчете количества витков и изменением радиуса витков при нахлестах. Впрочем, этот разброс нивелируется высокой точностью калибровки. Собственная индуктивность по порядку величины соответствует расчетной. При обработке сигнала вклад индуктивности учитывается, хоть он и пренебрежимо мал на характерных частотах.

| № зонда                        | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | A    | В    |
|--------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| $S_{\text{эфф}}, \text{ cm}^2$ | 28,3 | 26,9 | 21,6 | 26,4 | 24,7 | 25,2 | 31,8 | 19,8 | 63,4 | 24,6 | 24,1 | 20,9 |
| $L_p$ , мк $\Gamma$ н          | 41,0 | 41,5 | 44,1 | 38,0 | 39,3 | 42,6 | 57,0 | 45,6 | 34,0 | 43,0 | 42,6 | 34,6 |
| $R_p$ , Om                     | 10,4 | 10,2 | 8,4  | 14,0 | 11,2 | 10,9 | 9,6  | 8,5  | 8,5  | 9,0  | 11,3 | 8,2  |

Таблица 1: Параметры зондов измерительной системы

При установке измерительной системы в транспортную секцию необходимо также учесть полярность подключения катушек к АЦП. Знак определяется по направлению характерного всплеска сигнала с катушки при выключении катодного тока в конце выстрела.

# 4.2 Математические методы обработки экспериментальных данных

#### 4.2.1 Вычисление магнитного поля

Рассмотим схему подключения зонда к АЦП (рисунок 5,  $R_0 = Z_0$ ). Магнитное поле в катушке B(t) связано с напряжением на АЦП U(t) (в пренебрежении паразитной емкостью  $C_p$  и при соответствующем выборе знака в эффективной площади катушки  $S_{9\varphi}$ ) выражением

$$S_{\ni \Phi \Phi} \frac{d}{dt} B(t) = V_p(t) = (R_p + R_0) \frac{U(t)}{R_0} + L_p \frac{d}{dt} \frac{U(t)}{R_0}, \tag{4}$$

где  $V_p$  – индуцируемое магнитным полем напряжение,  $L_p$  – собственная индуктивность катушки,  $R_p$  – активное сопротивление катушки,  $C_p$  – паразитная емкость катушки,  $Z_0 = 50\,\mathrm{Om}$  – волновое сопротивление кабеля,  $R_0$  – входное сопротивление АЦП, согласованное с кабелем  $(R_0 = Z_0)$ .

После интегрирования выражения 4 по времени от начала измерений до текущего момента времени t получается выражение для нахождения магнитного поля  $B\left(t\right)$  по известной зависимости  $U\left(t\right)$ :

$$B(t) = B(0) + \frac{1}{S_{9\Phi\Phi}} \left[ \left( 1 + \frac{R_p}{Z_0} \right) \int_0^t U(\tau) d\tau + \frac{L_p}{Z_0} (U(t) - U(0)) \right].$$
 (5)

Слагаемое с индуктивностью на практике вносит пренебрежимо малый вклад. Интеграл берется численно методом трапеций. Поскольку зачастую в отсутствие сигнала АЦП показывает ненулевое напряжение, из обрабатываемого массива  $U\left(t\right)$  перед интегрированием вычитается линейный тренд.

#### 4.2.2 Связь возмущения тока с азимутальным магнитным полем

Для упрощения математических выкладок в данной работе принято, что при отсутвии возмущений ток в плазменном шнуре равномерно распределен по круглому сечению радиуса  $R_0$  с центром на оси транспортной секции. Возмущение же рассматривается как малое изменение формы сечения плазменного шнура  $R(\varphi,t) = R_0 + dR(\varphi,t), dR(\varphi,t) \ll R_0$  при сохранении однородного по сечению распределения плотности тока (при этом допустимы колебания полного тока в плазменном шнуре  $I_0(t)$ ), что эквивалентно появлению на краю круглого сечения – в координате  $(R_0, \varphi)$  – дополнительного тока  $dI(\varphi,t)$ :

$$dI(\varphi,t) = j(t) R_0 d\varphi dR(\varphi,t) = \frac{I_0(t)}{\pi R_0} dR(\varphi,t) d\varphi.$$
 (6)

Учет радиального распределения плотности тока будет разобран в конце подраздела.

Разложим малое возмущение формы сечения тока в ряд Фурье по азимутальному углу (так же раскладывается и  $dR(\varphi,t)$ ):

$$dI(\varphi,t) = \sum_{n=1}^{+\infty} I_n(t) \cos(n\varphi - \varphi_n(t)) d\varphi.$$

Наименьшая характерная продольная длина в системе — шаг винтовой обмотки — заведомо больше поперечных расстояний  $(h=18\,\mathrm{cm}>2R=14\,\mathrm{cm}),$  поэтому пренебрежем изменением возмущения вдоль продольной координаты. В этом допущении дополнительный ток  $dI\left(\varphi,t\right)$  создает в координате  $(R,\varphi_i)$  дополнительное поле

$$dB\left(\varphi,\varphi_{i},t\right) = \frac{\mu_{0}}{2\pi} \frac{dI\left(\varphi,t\right)}{R_{1}\left(\varphi,\varphi_{i}\right)},$$

где  $R_1\left(\varphi,\varphi_i\right)=\sqrt{R^2+R_0^2-2RR_0\cos\left(\varphi-\varphi_i\right)}$  – расстояние от координаты дополнительного тока до точки измерения (см. рисункок 16).

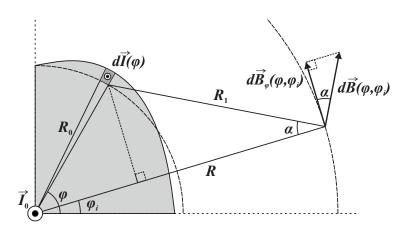



Рис. 16: Нахождение магнитного поля, создаваемого возмущением тока.

Азимутальная компонента этого дополнительного поля равна

$$dB_{\varphi}(\varphi,\varphi_{i},t) = dB(\varphi,\varphi_{i},t)\cos\alpha = dB(\varphi,\varphi_{i},t)\frac{R - R_{0}\cos(\varphi - \varphi_{i})}{R_{1}(\varphi,\varphi_{i})},$$

$$dB_{\varphi}\left(\varphi,\varphi_{i},t\right) = \frac{\mu_{0}}{2\pi} \sum_{n=1}^{+\infty} \frac{I_{n}\left(t\right)\cos\left(n\varphi-\varphi_{n}\left(t\right)\right)\left(R-R_{0}\cos\left(\varphi-\varphi_{i}\right)\right)d\varphi}{R^{2}+R_{0}^{2}-2RR_{0}\cos\left(\varphi-\varphi_{i}\right)},$$

откуда, поле представления знаменателя в виде суммы ряда и замены

 $\varphi_1 = \varphi - \varphi_i$ , получается выражение

$$dB_{\varphi}\left(\varphi_{1},\varphi_{i},t\right) = \frac{\mu_{0}}{2\pi} \sum_{n=1}^{+\infty} \frac{I_{n}\left(t\right)\cos\left(n\varphi_{1}-\left(\varphi_{n}\left(t\right)-n\varphi_{i}\right)\right)\left(R-R_{0}\cos\varphi_{1}\right)}{R^{2}+R_{0}^{2}} \times$$

$$\times \sum_{k=0}^{+\infty} \left( \frac{2RR_0}{R^2 + R_0^2} \cos \varphi_1 \right)^k d\varphi_1.$$

Полное азимутальное магнитное поле (за вычетом стационарного поля, создаваемого магнитной системой установки) в координате  $(R, \varphi_i)$  выражается через полный ток в плазменном шнуре  $I_0(t)$  и возмущение азмутального поля, связанное с изменением формы сечения тока:

$$B_{\varphi}(\varphi_i, t) = \frac{\mu_0}{2\pi R} I_0(t) + \int_{\varphi_1=0}^{2\pi} dB_{\varphi}(\varphi_1, \varphi_i, t).$$
 (7)

После взятия интеграла (*см. Приложение 1*) получаем связь между азимутальным магнитным полем в координате  $(R, \varphi_i)$  и модами возмущения тока в плазменном шнуре:

$$B_{\varphi}\left(\varphi_{i},t\right)=\frac{\mu_{0}}{2\pi R}\left[I_{0}\left(t\right)+\sum_{n=1}^{+\infty}K_{n}\left(n,R,R_{0}\right)I_{n}\left(t\right)\cos\left(n\varphi_{i}-\varphi_{n}\left(t\right)\right)\right],$$

$$K_n(n, R, R_0) = \pi \frac{R^2 - R_0^2}{R^2 + R_0^2} \sum_{m = \frac{n}{2}}^{+\infty} \left( \frac{RR_0}{R^2 + R_0^2} \right)^{2m} \frac{(2m)!}{(m - \frac{n}{2})! (m + \frac{n}{2})!}, \quad (8)$$

или, воспользовавшись заменой

$$I_n(t)\cos(n\varphi_i - \varphi_n(t)) = C_n(t)\cos n\varphi_i + S_n(t)\sin n\varphi_i,$$

$$B_{\varphi}(\varphi_{i},t) = \frac{\mu_{0}}{2\pi R} \left[ I_{0}(t) + \sum_{n=1}^{+\infty} K_{n}(C_{n}(t) \cos n\varphi_{i} + S_{n}(t) \sin n\varphi_{i}) \right].$$

Тогда в каждый момент времени t, зная значение азимутального магнитного поля в 2n+1 координатах и пренебрегая модами n+1 и выше, можно

восстановить первые n мод возмущения тока, решив матричное уравнение  $\overrightarrow{B}_{\varphi}(t) = M\left(R, R_0, \varphi_i\right) \overrightarrow{I}_{Fourier}(t)$ :

$$\begin{pmatrix}
B_{\varphi}(\varphi_{1}, t) \\
B_{\varphi}(\varphi_{2}, t) \\
\vdots \\
B_{\varphi}(\varphi_{2n+1}, t)
\end{pmatrix} = M(R, R_{0}, \varphi_{i}) \begin{pmatrix}
I_{0}(t) \\
C_{1}(t) \\
\vdots \\
S_{n}(t)
\end{pmatrix}, (9)$$

$$M(R, R_0, \varphi_i) = \frac{\mu_0}{2\pi R} \begin{pmatrix} 1 & K_1 \cos \varphi_1 & \cdots & K_n \sin n\varphi_1 \\ 1 & K_1 \cos \varphi_2 & \cdots & K_n \sin n\varphi_2 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & K_1 \cos \varphi_{2n+1} & \cdots & K_n \sin n\varphi_{2n+1} \end{pmatrix}, \quad (10)$$

и пересчитав найденые коэффициенты  $C_{k}\left(t\right)$  и  $S_{k}\left(t\right)$  в амплитуду и фазу соответствующей моды:

$$I_k(t) = \sqrt{C_k^2(t) + S_k^2(t)},$$
 (11)

$$\varphi_k(t) = \arctan2(S_k(t), C_k(t)). \tag{12}$$

Представленные выражения позволяют восстанавливать возмущение формы сечения тока в плазменном шнуре, используя любую комбинацию азимутальных магнитных зондов. Использование 12 зондов позволяет восстановить возмущение до 5 моды включительно. Для обработки данных измерительной системы была написана программа на Python (см. Приложение 2), работающая по следующему алгоритму:

- ullet Чтение сигналов выбранных зондов  $\overrightarrow{U}(t)$  из банка на заданном временном интервале.
- Интегрирование сигналов и вычисление азимутального магнитного поля  $\overrightarrow{B}_{\varphi}(t)$  по формуле (5) в соответствующих координатах.
- Построение матрицы  $M\left(R,R_{0},\varphi_{i}\right)$  по формуле (10) для выбранных зондов.

- ullet Решение матричного уравнения  $\overrightarrow{B}_{arphi}(t)=M\overrightarrow{I}_{Fourier}(t)$  (формула (9)) для каждого момента времени t.
- Вычисление амплитуд  $I_k(t)$  и фаз  $\varphi_k(t)$  мод возмущения пространственной структуры тока по формулам (11) и (12) соответственно.
- Развертка зависимости  $\varphi_k(t)$  за пределы  $\varphi \in (-\pi; \pi]$ :  $\varphi'_k(t_0) = \varphi_k(t_0)$ , каждое следующее значение новой функции  $\varphi'_k(t_{i+1})$  получается из предыдущего  $\varphi'_k(t_i)$  прибавлением наименьшего расстояния из  $|\varphi_k(t_{i+1}) \varphi_k(t_i)|$ ,  $|\varphi_k(t_{i+1}) + 2\pi \varphi_k(t_i)|$  и  $|\varphi_k(t_{i+1}) 2\pi \varphi_k(t_i)|$  (с учетом знака).

Если используются сигналы четного количества зондов (2n+2), то последний найденный коэффициент в  $\overrightarrow{I}_{Fourier}(t) - S_{n+1}(t)$  – не используется и определяются только амплитуды и фазы первых n мод.

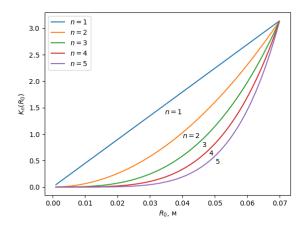



Рис. 17: График зависимости  $K_n\left(R_0\right)$  для  $0 < R_0 < R = 70$  мм и  $n = 1, \dots, 5$ .

На рисунке 17 представлены результаты численного вычисления коэффициентов  $K_n(R_0)$ , определяемых формулой (8), для  $0 < R_0 < R = 70$  мм и  $n = 1, \ldots, 5$ . Любое радиальное распределение плотности тока можно представить в виде суперпозиции круглых сечений с однородной плотностью и вычислить моды возмущения формы сечения тока в предположении малости возмущений радиального распределения. Учет радиального распределения дает поправку только к коэффициенту  $K_n$  и относительные амплитуды мод, не влияя на их фазы. Поэтому для первичного анализа возмущений в данной работе используется приближение однородной плотности тока с радиусом невозмущенного сечения  $R_0 = 35$  мм, что соответствует полуширине распределения плотности плазмы в винтовой секции

(см. рисунок 3) и не противоречит оценке радиального распределения колебаний продольного тока (см. рисунок 13).

# 4.3 Первые результаты диагностики пространственной структуры продольного тока в винтовой секции установки СМОЛА

Многоканальная азимутальная магнитная измерительная система была установлена в 2020 году в винтовую секцию установки СМОЛА. К одной вставке АЦП были подключены зонды №№ 0, 1, 3, 4, 5, 7, к другой — №№ 2 и 6 (см. рисунок 15). Для вычисления пространственной структуры продольного тока использовались зонды, подключенные к первой вставке.

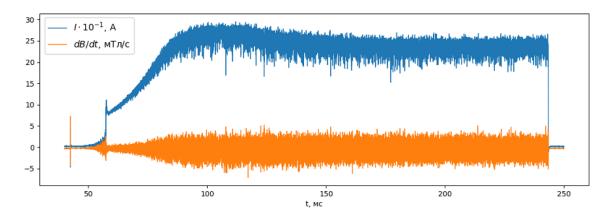



Рис. 18: Ток катода (сверху) и сигнал зонда № 2, нормированный на эффективную площадь (выстрел 6287).

На рисунке 18 показан ток катода во время выстрела и характерный сигнал зонда измерительной системы. На рисунках 19 и 20 показаны сдвинутые по вертикали пропорционально координате нормированные сигналы трех зондов и вычисленные по ним азимутальные магнитные поля на участке выстрела 162-175 мс. Видны характерные совпадения формы сигналов, отвечающие за возмущение нулевой моды формы сечения продольного тока.

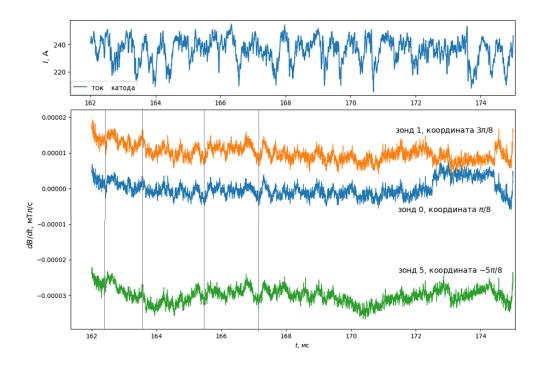



Рис. 19: Ток катода и сигналы зондов 0, 1, 5, нормированные на эффективную площадь и сдвинутые по вертикали пропорционально их координате (выстрел 6287).

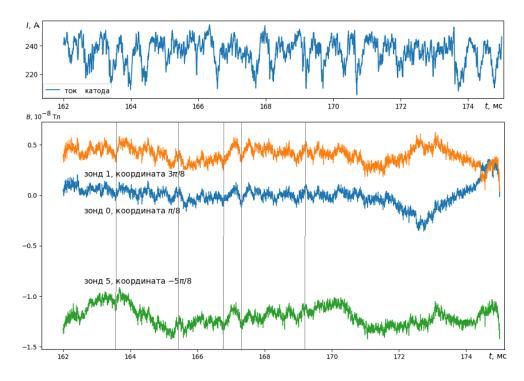



Рис. 20: Ток катода и азимутальное магнитное поле, определенное по сигналам зондов 0, 1, 5, графики сдвинуты по вертикали пропорционально координате зондов (выстрел 6287).

# 4.3.1 Амплитуда мод возмущения пространственной структуры продольного тока

На рисунках 21 и 22а представлены ток катода и амплитуды 0, 1 и 2 мод возмущения пространственной структуры продольного тока на участках 162-175 мс и 165-167 мс. Видно, что графики амплитуд 1 и 2 мод с хорошей точностью совпалают. Провалам катодного тока соответствует падение амплитуды нулевой моды и рост амплитуды 1 и 2 мод, что может отвечать аксиально несимметричному снижению плотности тока разряда.

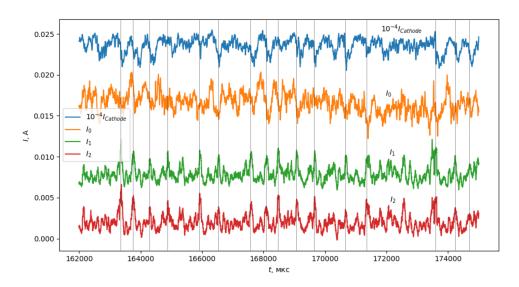



Рис. 21: Ток катода и амплитуды 0, 1, 2 мод тока в плазменном шнуре, рассчитанные по сигналам зондов 0, 1, 3, 4, 5, 7 (графики смещены для наглядности, выстрел 6287).

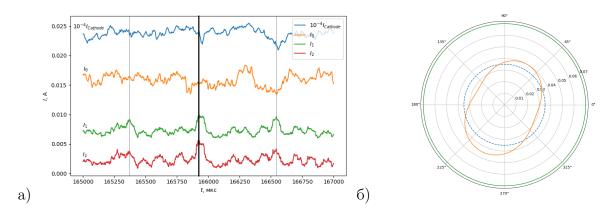



Рис. 22: а) Ток катода и амплитуды 0, 1, 2 мод тока в плазменном шнуре, рассчитанные по сигналам зондов 0, 1, 3, 4, 5, 7 (графики смещены для наглядности, выстрел 6287). б) Условная форма сечения тока (оранжевый цвет) в момент, отмеченный на рис. а) черной прямой (выстрел 6287).

На рисунке 226 показана условная форма сечения продольного тока в плазменном шнуре, рассчитанная из фазы и амплитуды 1 и 2 мод возмуще-

ния тока по формуле (6), где полный ток в плазменном шнуре  $I_0(t)$  выбран из соображений наглядности.

### 4.3.2 Фаза мод возмущения пространственной структуры продольного тока

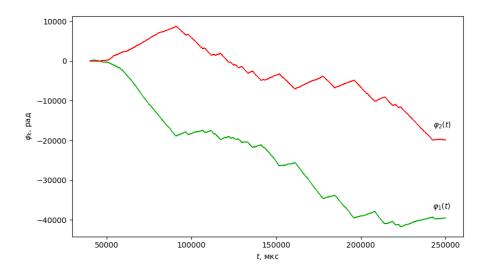



Рис. 23: Фазы 1 и 2 мод тока в плазменном шнуре, рассчитанные по сигналам зондов 0, 1, 3, 4, 5, 7 (выстрел 6287).

На рисунке 23 представлена зависимость развернутых фаз 1 и 2 мод возмущения сечения продольного тока в плазменном шнуре от времени. Прямые участки с отрицательным угловым коэффициентом отвечают вращению фазы со скоростью до  $5, 3 \cdot 10^5 \, \mathrm{pag/c}$ . На этих участках направление вращения фазы совпадает с направлением вращения плазмы, скорость вращения хорошо согласуется с данными доплеровской спектрометрии. Поведение фазы на других участках требует дальнейших исследований.

#### 5 Заключение

В ходе данной работы был спроектирован, изготовлен и смонтирован в винтовой секции установки СМОЛА подвижный азимутальный магнитный зонд. Первичная диагностика азимутального магнитного поля в винтовой секции показала, что возмущения магнитного поля локализованы в частотном диапазоне до  $200\,\mathrm{kTu}$ . На частоте  $\approx 20\,\mathrm{kTu}$  обнаружено возмущение магнитного поля, частота которого возрастает приблизительно в 1,2 раза при включении винтового соленоида. Построен оценочный радиальный профиль амплитуды возмущений продольного тока в плазме винтовой секции в приближении аксиальной симметрии.

По результатам первичной диагностики азимутального магнитного поля подвижным зондом была спроектирована, изготовлена, смонтирована в винтовой секции установки СМОЛА и введена в строй 12-канальная азимутальная магнитная измерительная система, оптимизированная для изучения обнаруженных возмущений магнитного поля. Разработано математическое обеспечение измерительной системы, позволяющее восстановить до 5 азимутальных мод возмущения сечения продольного тока в установке, используя любую комбинацию магнитных зондов измерительной системы.

В ходе первых экспериментов с одновременным использованием 6 магнитных зондов измерительной системы достигнуты следующие результаты:

- Восстановлена пространственная структура провалов тока катода: провалам тока катода соответствуют провалы 0 моды и рост 1 и 2 мод тока в центральной секции, что может отвечать аксиально несимметричному снижению плотности тока разряда.
- Обнаружено вращение 1 и 2 моды возмущения тока в центральной секции со скоростью до  $5, 3 \cdot 10^5 \, \text{pag/c}$ , что согласуется со скоростью вращения плазмы во входном ( $(8-10) \cdot 10^5 \, \text{pag/c}$ ) и выходном (до  $5 \cdot 10^5 \, \text{pag/c}$ ) расширителях, определенной с помощью доплеровской спектроскопии.

Для определения механизма возникновения возмущений, наблюдаемых в установке, необходимы дальнейшие исследования с применением дополнительных методов диагностики.

А. В. Судникову за предложенную тему исследований, непосредственное руководство работой и безграничное терпение к легкомысленному отношению автора к поставленным срокам выполнения работ. Также автор выражает признательность заведующему 10 лабораторией ИЯФ СО РАН А. В. Бурдакову за внимание к работе и неоднократно предоставленную возможность представить промежуточные результаты исследования на конференциях в разных городах России. Кроме того, нельзя не выразить благодарность коллективу установки СМОЛА в составе В. В. Поступаева, И. А. Иванова, В. Ф. Склярова, А. А. Инжеваткиной, В. О. Устюжанина, М. С. Толкачева, М. В. Ларичкина, а также остальным сотрудникам 10 лаборатории, оказывавшим помощь и содействие автору в работе и не только.

## Список литературы

- [1] C. N. Zou et al. Energy revolution: From a fossil energy era to a new energy era // Natural Gas Industry B 3 (2016) 1-11.
- [2] Азизов Э. А., Токамаки от А. Д. Сахарова до наших дней (60 лет токамакам) // УФН, 2012, Т. 182, № 2, 202-215.
- [3] R. C. Wolf et al. Performance of Wendelstein 7-X stellarator plasmas during the first divertor operation phase //Physics of Plasmas, 26(8), 082504 (2019).
- [4] H. Gota et al. Overview and Recent Achievements in the C-2W Field-Reversed Configuration Experiment // 61th APS-DPP Meeting, October 21-25, 2019.
- [5] P. A. Bagryansky, A. D. Beklemishev, V. V. Postupaev. Encouraging Results and New Ideas for Fusion in Linear Traps // J Fusion Energy 38, 162-181 (2019).
- [6] W. M. Nevins. A Review of Confinement Requirements for Advanced Fuels // Journal of Fusion Energy, 17, 25-32 (1998).
- [7] Димов Г. И., Закайдаков В. В., Кишиневский М. Е. Термоядерная ловушка с двойными пробками. // Физика Плазмы, 2 (1976) 597.
- [8] Будкер Г. И., Мирнов В. В., Рютов Д. Д. Влияние гофрировки магнитного поля на расширение и остывание плотной плазмы // Письма в ЖЭТФ 14 320 (1971).
- [9] Бурдаков А. В., Поступаев В. В. Многопробочная ловушка: путь от пробкотрона Будкера к линейному термоядерному реактору // УФН 188 651-671 (2018).
- [10] Иванов А. А., Приходько В. В. Газодинамическая ловушка: результаты исследований и перспективы // УФН 187 547-574 (2017).
- [11] A. D. Beklemishev et al. Helical mirror concept exploration: Design and status // Fusion Sci. Technol. 63 (1T) (2013), 46-51.

- [12] A. D. Beklemishev. Helicoidal System for Axial Plasma Pumping in Linear Traps // Fusion Sci. Technol. 63 (1T) (2013) 355-357.
- [13] A. D. Beklemishev et al. Vortex Confinement of Plasmas in Symmetric Mirror Traps // Fusion Sci. Technol. 57 351 (2010).
- [14] A. D. Beklemishev Helical plasma thruster // Phys. Plasmas 22 103506 (2015).
- [15] A. V. Sudnikov et al. SMOLA device for helical mirror concept exploration // Fusion Engineering and Design. 122, 85 (2017).
- [16] A. V. Sudnikov et al. First Experimental Campaign on SMOLA Helical Mirror // Plasma and Fusion Res. 14, 2402023 (2019).
- [17] H. Gota et al. Internal magnetic field measurement on C-2 field-reversed configuration plasmas // Rev. Sci. Instrum. 83, 0D706 (2012).
- [18] Ахметов Т. Д., Давыденко В. И., Кабанцев А. А., Рева В. Б., Соколов В. Г., Таскаев С. Ю. Продольный ток и магнитные флуктуации в стартовой плазме установки АМБАЛ-М // Препринт 97-4 ИЯФ СО РАН, Новосибирск, 1997.
- [19] Мирнов С. В. Зондовая методика измерения смещения токового шнура в цилиндрической и тороидальной камерах // Атомная энергия, 1964, т. 17, с. 209–211.
- [20] Судников А. В. Пространственная структура плазмы в многопробочной ловушке с продольным током // дис. . . . канд. физ.-мат. наук. ИЯФ СО РАН, Новосибирск, 2013.
- [21] T. Roche et al. Overview of the C-2W Experimental Diagnostic Systems // 61th APS-DPP Meeting, October 21-25, 2019.
- [22] Белов А. М., Макашин И. Н. МГД-диагностика на токамаке Т-11М // Физика плазмы, 2004, т. 30, № 2, с. 195-199.
- [23] E. J. Strait. Magnetic diagnostic system of the DIII-D tokamak. // Rev. Sci. Instrum.7, 023502 (2006).

- [24] V. V. Prikhodko et al. Low-Frequency Oscillations of Plasma in the Gas Dynamic Trap. // Fusion Science and Technology, 2011 V. 59, №1T, P. 94-97.
- [25] Коржавина М. С. и др. Микронеустойчивости в анизотропном плазмоиде // Вестник НГУ. Серия: Физика. 2009. Том 4, выпуск 1. с. 25-29.
- [26] Ларичкин М. В., Электростатический зонд для измерения профиля плотности плазмы в транспортной секции установки СМОЛА // доклад на 58 Международной научной студенческой конференции МНСК-2020, г. Новосибирск, 10-13 апреля 2020 г.
- [27] A. A. Inzhevatkina et al. Doppler Spectroscopy System for the Plasma Velocity Measurements in SMOLA Helical Mirror // Plasma and Fusion Res. 14, 2402020 (2019).
- [28] Судников А. В. Основные эмпирические зависимости эффективности винтового удержания в винтовой магнитной ловушке СМОЛА // доклад на XLVII Международной звенигородской конференции по физике плазмы и УТС, г. Звенигород, 16-20 марта 2020 г.
- [29] Хильченко А. Д. Аппаратная инфраструктура измерительных и управляющих систем плазменных установок ИЯФ СО РАН // дис. . . . д-ра техн. наук. ИЯФ СО РАН, Новосибирск, 2010.
- [30] M. J. Hole et al. A high resolution Mirnov array for the Mega Ampere Spherical Tokamak // Rev. Sci. Instrum. 80, 123507 (2009).
- [31] H. A. Wheeler. Simple inductance formulas for radio coils // Proc. IRE 16, 1398 (1928).
- [32] W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1950), p. 48.
- [33] Current Transucer HASS 50 ... 600-S datasheet. Available: https://www.lem.com/sites/default/files/products\_datasheets/hass\_50-600-s.pdf [2020, May 31].
- [34] https://www.mathworks.com/help/signal/ref/spectrogram.html

[35] NRL Plasma Formulary // Washington, DC 20375-5320, Revised 2013.

#### Приложение 1

Взятие интеграла в выражении (7), связывающем азимутальное магнитное поле с возмущением сечения тока в плазменном шнуре.

$$B_{\varphi}(\varphi_{i},t) = \frac{\mu_{0}}{2\pi R} I_{0}(t) + \int_{\varphi_{1}=0}^{2\pi} dB_{\varphi}(\varphi_{1},\varphi_{i},t),$$

$$dB_{\varphi}(\varphi_{1},\varphi_{i},t) = \frac{\mu_{0}}{2\pi} \sum_{n=1}^{+\infty} \frac{I_{n}(t) \cos(n\varphi_{1} - (\varphi_{n}(t) - n\varphi_{i})) (R - R_{0} \cos\varphi_{1}) d\varphi_{1}}{R^{2} + R_{0}^{2}} \times \frac{1}{R^{2} + R_{0}^{2}} \times \frac{1}{R^{2} + R_{0}^{2}} \cos\varphi_{1} \times \frac{1}{R^{2} + R_{0}^{2}} \sin(\varphi_{n} - n\varphi_{i}) + \sin(\varphi_{n} - n\varphi_{i}) \times \frac{1}{R^{2} + R_{0}^{2}} \sin(\varphi_{n} - n\varphi_{i}) \times \frac{1}{R^{2} + R_{0}^{2}} \cos\varphi_{1} \times \frac{1}{R^{2} + R_{0}^{2}} \sin(\varphi_{n} - n\varphi_{i}) \times \frac$$

Рассмотрим полученные интегралы:

$$\int_{0}^{2\pi} \cos n\varphi \cos^{k}\varphi \,d\varphi = \frac{1}{2^{k+1}} \int_{0}^{2\pi} \left( e^{in\varphi} + e^{-in\varphi} \right) \left( e^{i\varphi} + e^{-i\varphi} \right)^{k} d\varphi =$$

$$= \frac{1}{2^{k+1}} \int_{0}^{2\pi} \left( e^{in\varphi} + e^{-in\varphi} \right) \sum_{m=0}^{k} C_{k}^{m} e^{im\varphi} e^{-i(k-m)\varphi} d\varphi =$$

$$= \frac{1}{2^{k+1}} \sum_{m=0}^{k} \frac{k!}{m! (k-m)!} \int_{0}^{2\pi} \left( e^{i(2m-k+n)\varphi} + e^{-i(2m-k-n)\varphi} \right) d\varphi =$$

$$= \frac{1}{2^{k+1}} \sum_{m=0}^{k} \frac{k!}{m! (k-m)!} 2\pi \left( \delta_{2m,k-n} + \delta_{2m,k+n} \right).$$

Оба символа Кронекера равны нулю для любого  $m=[0,\ldots,k]$  при k< n и в случае, если у k и n разная четность. Кроме того, они не могут быть равны единице одновременно, так как  $n\geq 1$ . При этом значения коэффициента  $C_k^m$  совпадают при  $m=\frac{k\pm n}{2}$ . Значит,

$$\int_{0}^{2\pi} \cos n\varphi \cos^{k} \varphi \, d\varphi = \begin{cases} \frac{2\pi}{2^{k}} \frac{k!}{\left(\frac{k-n}{2}\right)! \left(\frac{k+n}{2}\right)!} & k \geq n, (k+n) \vdots 2 \\ 0 & \text{иначе} \end{cases}$$

То есть данный интеграл не равен нулю при k=n и при всех больших k той же четности. Аналогичный интеграл с синусом зануляется, так как подынтегральная функция нечетная:

$$\int_{0}^{2\pi} \sin n\varphi \cos^{k} \varphi \, d\varphi = \int_{-\pi}^{+\pi} \sin n\varphi \cos^{k} \varphi \, d\varphi = 0.$$

Учту полученные тождества в исходном выражении, сделав замену 2m = k:

$$\int_{\varphi_1=0}^{2\pi} dB_{\varphi} = \frac{\mu_0}{2\pi \left(R^2 + R_0^2\right)} \sum_{n=1}^{+\infty} I_n \cos\left(\varphi_n - n\varphi_i\right) \times$$

$$\times \sum_{2m=n}^{+\infty} \left[ R \left( \frac{2RR_0}{R^2 + R_0^2} \right)^{2m} \frac{2\pi}{2^{2m}} \frac{(2m)!}{\left(m - \frac{n}{2}\right)! \left(m + \frac{n}{2}\right)!} - R_0 \left( \frac{2RR_0}{R^2 + R_0^2} \right)^{2m-1} \frac{2\pi}{2^{2m}} \frac{(2m)!}{\left(m - \frac{n}{2}\right)! \left(m + \frac{n}{2}\right)!} \right] = \frac{1}{2^{2m}} \left[ \frac{2RR_0}{R^2 + R_0^2} \right]^{2m} \frac{(2m)!}{(m - \frac{n}{2})! \left(m + \frac{n}{2}\right)!} = \frac{1}{2^{2m}} \frac{(2m)!}{(m - \frac{n}{2})! \left(m + \frac{n}{2}\right)!} \left(m + \frac{n}{2}\right)!} = \frac{1}{2^{2m}} \frac{(2m)!}{(m - \frac{n}{2})! \left(m + \frac{n}{2}\right)!} \left(m + \frac{n}{2}\right)!} = \frac{1}{2^{2m}} \frac{(2m)!}{(m - \frac{n}{2})! \left(m + \frac{n}{2}\right)!} \left(m + \frac{n}{2}\right)!} = \frac{1}{2^{2m}} \frac{(2m)!}{(m - \frac{n}{2})! \left(m + \frac{n}{2}\right)!} \left(m + \frac{n}{2}\right)!} \left(m + \frac{n}{2}\right)!} = \frac{1}{2^{2m}} \frac{(2m)!}{(m - \frac{n}{2})! \left(m + \frac{n}{2}\right)!} \left(m + \frac{n}{2}\right)!} \left(m + \frac{n}{2}\right)!} = \frac{1}{2^{2m}} \frac{(2m)!}{(m - \frac{n}{2})! \left(m + \frac{n}{2}\right)!} \left(m + \frac{n}{2$$

$$=\frac{\mu_0}{2\pi\left(R^2+R_0^2\right)}\sum_{n=1}^{+\infty}I_n\cos\left(\varphi_n-n\varphi_i\right)\sum_{2m=n}^{+\infty}\left(\frac{RR_0}{R^2+R_0^2}\right)^{2m}\frac{2\pi\left(2m\right)!}{\left(m-\frac{n}{2}\right)!\left(m+\frac{n}{2}\right)!}\left[R-R_0\frac{R^2+R_0^2}{2RR_0}\right]=$$

$$= \frac{\mu_0}{2\pi \left(R^2 + R_0^2\right)} \sum_{n=1}^{+\infty} I_n \cos\left(\varphi_n - n\varphi_i\right) \sum_{2m=n}^{+\infty} \left(\frac{RR_0}{R^2 + R_0^2}\right)^{2m} 2\pi \frac{(2m)!}{\left(m - \frac{n}{2}\right)! \left(m + \frac{n}{2}\right)!} \frac{R^2 - R_0^2}{2R},$$

откуда получается итоговое выражение:

$$B_{\varphi}\left(\varphi_{i},t\right)=\frac{\mu_{0}}{2\pi R}\left[I_{0}\left(t\right)+\sum_{n=1}^{+\infty}K_{n}\left(n,R,R_{0}\right)I_{n}\left(t\right)\cos\left(n\varphi_{i}-\varphi_{n}\left(t\right)\right)\right],$$

$$K_n(n,R,R_0) = \pi \frac{R^2 - R_0^2}{R^2 + R_0^2} \sum_{m = \frac{n}{2}}^{+\infty} \left( \frac{RR_0}{R^2 + R_0^2} \right)^{2m} \frac{(2m)!}{(m - \frac{n}{2})! (m + \frac{n}{2})!}.$$

#### Приложение 2

Листинг программы на Python для обработки сигнала многоканальной азимутальной магнитной измерительной системы.

```
import math as m
import readrmn as rmn #функции для обращения к банку
import numpy as np
import numpy.linalg as npl
import scipy.integrate as spi
import scipy.signal as sps
import matplotlib.pyplot as plt
#параметры зондов
name=[ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B']
phi=[ i*m.pi/24 for i in [3, 9, 15, 21, 27, 33, 39, 45, 5, 19, 29, 43] ]
S=[-28.3, -26.9, +21.6, -26.4, -24.7, -25.2, +31.8, -19.8, 63.4, 24.6, 24.1,
   -20.9
L=[40.8, 41.1, 43.8, 37.7, 39.2, 42.5, 57.1, 45.4, 34.0, 42.8, 41.7, 34.6]
Rp=[10.0, 9.5, 9.6, 9.5, 9.9, 9.4, 9.9, 8.8, 8.7, 9.9, 9.6, 8.5]
 def smooth (Y, interval):
    сглаживание массива усреднением по +-интервалу
    if interval == 0:
        return Y
    if len(Y) \le (2*interval):
        print("interval is too big")
        return None
    Y temp=[]
    for i in range(interval):
        Y temp.append(np.mean(Y[:i+interval]))
    for i in range(interval, len(Y)-interval):
        Y temp.append(np.mean(Y[i-interval:i+interval]))
    for i in range(len(Y)-interval,len(Y)):
        Y temp.append(np.mean(Y[i-interval:]))
    return np.array(Y temp)
def K(n, R0=0.050, R=0.070):
    сумма бесконечного ряда в связи напряжения и тока
    n – мода тока, радиусы в [м]
    RR0 = R*R0/(R**2+R0**2)
    K=0
    k=n
    iter=RR0**n
```

```
while True:
         K += i t e r
         k+=2
          iter*=4*k*(k-1)/(k**2-n**2)*RR0**2
          if iter < 1e-15:
               break
     return K*m. pi*(R**2-R0**2)/(R**2+R0**2)
 def UtoB(t, U, S, L, R, z0=51):
     пересчет нормир. напряжения на зонде в магнитное поле
     t, U - numpy array [MKC, B/CM2]; S[CM2]; L[MK\GammaH]; R[OM]; z0=51[OM]
    \longrightarrow t, B - numpy array [c], [T<sub>I</sub>]
     t = t * 1E - 6
     \mathtt{return} \ \ (1 + R/\,z0\,) * \mathtt{spi.cumtrapz} \, (U,t\,,\,\mathtt{initial} = 0) \,\, + \,\, L * 1E - 6/\,z0 \, * \, (U - U\,[\,0\,]\,) \,\, / \, (S * 1E - 4)
def ItoB matrix (active, R0=0.050, R=0.070):
     Матрица перехода от значений магн. поля на зондах к простр. разложению
         сечения тока
     Parameters
     active : list
          список номеров активных зондов в десятичной с.с.
    R0:
          радиус тока в плазме в м. The default is 0.050.
    R:
          расстояние от центра до зондов в м. The default is 0.070.
      Returns
     2D numpy_array
         моды тока - А. Поле в Тл
     , , ,
    M=[]
     for i in active:
          M str = [1]
          for j in range (1, len(active) - len(active)//2):
               M str.append (m. cos (j*phi[i])*K(j,R0,R))
          for j in range (1, len(active)//2+1):
               \mathbf{M\_str.append}\left(\mathbf{m.\,sin}\left(\,\mathbf{j}*\mathbf{phi}\,[\,\mathbf{i}\,]\,\right)*\mathbf{K}(\,\mathbf{j}\,\,,\mathbf{R0}\,,\mathbf{R})\,\right)
         M.append(M_str)
     return np.array (M) *2e-7/R
def probe array signal(filename, shot, active, t start, t stop, sm): #считывание
    массива сигналов
    U \text{ norm} = []
     dt = 0 \# шаг по времени в мкс
     for i in active:
```

```
t_temp,U_temp=rmn.Data( filename, shot, 'dBphi_z276_'+name[i]) #
            внешняя функция чтения из банка
         if dt == 0:
             dt=t \text{ temp}[1]-t \text{ temp}[0]
         else:
             if dt != (t \text{ temp}[1] - t \text{ temp}[0]) :
                  print("Error: dt is inequable")
                  return None
        \label{eq:continuous_temp} U \ \ temp\!=\!\!U \_temp \left[ \ \ np.\, where \left( \, t\_temp \, < \, t\_stop \, \right) \ \ \right]
        U_{temp}=U_{temp}[np.where(t_{temp}[:len(U_{temp})]>=t_{start})]
        U temp=smooth(U temp,sm)
        U norm.append(U temp/S[i]) #нормирование на площадь зонда
    t = t temp[ np.where(t temp<t stop)]
    t = t [ np.where(t temp[:len(t)] >= t start) ]
    return np.array(t),np.array(U norm)
def read signal(filename, shot, name, t_start, t_stop, sm=50): #считывание сигнала
    t, U=rmn. Data (filename, shot, name)
    U = U[np.where(t < t stop)]
    t = t [ np.where(t < t stop) ]
    U = U[np.where(t>=t_start)]
    t = t [ np.where(t)=t start) ]
    U=smooth (U, sm)
    return t, U
 def UtoB list(t,U, active, interval=2500): #вычисление массива магнитных полей
    print("
                 Вычитаю сглаженный сигнал из напряжения:")
    if interval > 0:
        U0=np.array([smooth(U[i,:],interval) for i in range(len(active))])
                  - OK!")
    print("
    B=[]
    for i in range(len(active)):
         if interval > 0:
             B temp=UtoB(t,U[i,:]-U0[i,:],S[active[i]],L[active[i]],Rp[active[i
         else:
             B temp=UtoB(t,U[i,:],S[active[i]],L[active[i]],Rp[active[i]])
        B. append (B temp)
    return np.array(B)
def sc to Aphi(t,SC, active, R0=0.050): #перевод синуса, косинуса в ампл. и фазу
    amp = []
    phi = []
    for time in range(len(t)):
        amp temp=[SC[time, 0]]
        phi_temp = [0]
         for i in range (1, len(active)-len(active)//2):
             amp temp.append((SC[time, i]**2+SC[time, i+max mode-1]**2))
             phi\_temp.append(np.arctan2(SC[time,i+max\_mode-1],SC[time,i])
```

```
amp.append(amp temp)
        phi.append(phi temp)
    return np.array(amp), np.array(phi)
def I phi corr(I phi, max mode): #развертка фазы
    I phi corr=[I phi[:,0].tolist()]
    for i in range(1,max mode+1):
        temp=I_phi[0,i]
        phi temp=[temp]
        for phi in I phi[1:,i]:
             if (abs(phi+2*m.pi-temp) \le abs(phi-2*m.pi-temp)
                 and abs(phi+2*m.pi-temp) \le abs(phi-temp):
                 phi temp.append(phi temp[-1]+phi+2*m.pi-temp)
             elif (abs(phi-2*m.pi-temp) \le abs(phi+2*m.pi-temp)
                 and abs(phi-2*m.pi-temp) \le abs(phi-temp):
                 phi temp.append(phi temp[-1]+phi-2*m.pi-temp)
            else:
                 phi temp.append(phi temp[-1]+phi-temp)
            temp=phi
        I phi corr.append(phi temp)
    return np.array(I phi corr)
# входные данные
R{=}0.070 #расстояние от центра до зонда, м
R0{=}0.035 #средний радиус тока в плазме, м
filename = 'X: \ Bank \ 2020 \ SA 6285.rmn'
shot = '6287'
active = [0, 1, 3, 4, 5, 7] \ \# номера активных катушек в десятичной с.с.
t start=40000 #начало исследуемого сигнала в мкс
t stop=250000 #конец исследуемого сигнала в мкс
smooth signal=0
smooth zero line for integral=500
t1, Icath=read_signal(filename, shot, 'Cathode_I', t_start, t_stop, 0)
#выполнение алгоритма
\max \mod (len(active)-1)/2
print ("Считываю сигналы зондов:")
t, U=probe array signal(filename, shot, active, t start, t stop, smooth signal)
print ("Сигналы считаны!")
print ("Пересчитываю напряжения на зондах в магнитное поле:")
B=UtoB list(t, U, active, smooth zero line for integral)
print(" - OK!")
```

```
print ("Пересчитываю магнитное поле в разложение тока:")

M=ItoB_matrix (active, R0,R)

I=np.array ([ npl.solve( M, B[:,time] ) for time in range(len(t)) ])

print (" - OK!")

print ("Вычисляю амплитуды и фазы мод тока:")

I_amp, I_phi=sc_to_Aphi(t, I, active, R0)

print (" - OK!")

I_phi1=I_phi_corr(I_phi, max_mode)

#вывод полученных результатов выполняется отдельными командами
```