Экспериментальные методы исследования плазмы, ч. 1

Электронный лекционный курс* Судников А. В.

Лекция 3

Приёмники потоков частиц и излучения

© Новосибирский государственный университет 2013 г. Редакция 2017 г. * Курс подготовлен в рамках реализации Програмыы развития НИУ НГУ на 2009-2018 годы

Приемники потоков частиц и излучения.

- Регистраторы потоков заряженных частиц:
 - Сеточный детектор;
 - Цилиндр Фарадея.
- Регистраторы потоков энергии:
 - Калориметры
 - Болометры.
 - Пироэлектрические приемники.
- о Вторично-эмиссионные датчики
- о Вторично-электронные умножители (ВЭУ).
- Канальный электронный умножитель (КЭУ).
- о Микроканальные пластины (МКП).

Сеточный детектор (grid energy analyser) (вариация на тему Retarding Field Analyser)

Датчик потока ионов: 1 – входной электрод, 2 – вытягивающий электрод, 3 – коллектор, 4 – изоляторы.

Регистраторы потоков заряженных частиц

Akira Takagi. Ion sources // http://slideplayer.com/slide/4452593/ Существенная проблема – еторичная электронная эмиссия с поверхности детектора. При ионной бомбардировке электроны эмитируются, если полная энергия иона превышает удвоенную работу выхода:

 $e\Delta\phi + \frac{mV^2}{2} > 2A_{exact}$

Чпен *L*ф отвечает за разницу между нижним свободным уровнем атома/юна и уровнем Ферми стенки. Характерная величина коэффициента потенциальной эмиссии ~0.2, кинетической может составлять 2-3 (для металлов) и выше.

Регистраторы потоков заряженных частиц

Способы решения:

1. Электрическое смещение:

Сеточный анализатор на установке C2U

FIGURE 1: (Color online). (a) Magnetic filed surface contour lines and plasma density (color) in C-2U calculated by a 2-D magnetohydrodynamic numerical simulation[7]. (b) Photograph of the ELA mounted on the divertor electrode

FIGURE 2: (Color online). The energy analyzer consists of a series of mesh electrodes in from of a current collector M. E. Griswold et al. End loss analyzer system for measurements of plasma flux at the C-22 divertor electrode // Review of Scientific Instruments 87, 11D428 (2016)

Характеристики различных термопар Букве нное обозна чение НСХ* Тип термо-пары 1ºC (8) ного Сплав константен (45% Cu + 45% Ni, Mn, Fe) 50-64 (0-800) тжк ОТ -200 до +750 900 железо (Fe) Сплав хронель (90,5% Ni +9,5% Cr) Сплав алюмель (94,5% Ni + 5,5% Al, Si, Mn, Co) 35-42 (0-1300) тха от -200 до +1200 1300 Сплав константан (55% Си + 45% Ni, Mn, Fe) 40-60 (0-400) тмк Медь (Cu) от -200 до +350 400 ÷ Сплав константан (55% Сu + 45% Ni, Mn, Fe) 59-81 (0-600) ель (90.5% Ni + тхкн Cnnas xpo 9,5% Cr) от-200 до+700 900 ε Сплав колель (56% Си + 44% 64-88 (0-600) NI). нель (90,5% Ni + тхк Сплав хро 9,5% Cr) от -200 до +600 800 от -270 до +1300 тнн N 1300 TNN 13 10-14 (600-1600) от 0 до +1300 160 Сплав платина-родий (87% Pt — 13% Rh) TNN10 S 10-14 (600-1600) от 0 до +1300 1600 на-родий (70% Pt Сплав платина-родий (94% Pt-6%Rh) Сплав плат - 30% Rh} тпр в 10-14(1000-1800) от 600 до+1700 1800 A-1 A-2 A-3 I от 0 до +2200 от 0 до +1800 от 0 до +1800 2500 Сплав вольфран-рений (95% Сплав вольфран-рений (80% w - 5% Re) W-20% Re) 14-7 (1300-2500) твр тсс от 0 до + 800 900 Сплав сильд Сплав силин ие: НСХ — но еские характе классификации ТСС По e cran

3. Пироэлектрический детектор

- экранирующие сетки,
 пироэлектрическая керамика,
 капропоновый держатель,
 вкуумная резина,
 Б пружина,
 проводник,
 плата усилителя

Чувствительность пиродетектора

R _r	-	сопротивление нагрузки
C_{cr}	-	электроемкость кристалла
S	-	площадь поверхности кристалла
d	-	толщина кристалла
W_{-}	-	плотность падающей мощности
с	-	удельная теплоемкость кристалла
з	-	диэлектрическая проницаемость
σ	-	поверхностная плотность зарядов
Пиро	оэлен	трический коэффициент:
γ =	$\frac{dP}{dT}$	<i>= const</i> в широком диапазоне <i>T</i>

Считаем переток тепла вдоль поверхности пренебрежимо малым. Задача становится одномерной.

Чувствительность пиродетектора

(1)
(2)

Чувствительность пиродетектора

$\frac{d}{dt}(2)$:	$\frac{dU_r}{dt} + 4\pi \int$	$\frac{dP}{dt}dl = \frac{4\pi d}{S}$	$\cdot \frac{U_r}{R_r}$
Интеграл г падающей	юляризации пр мощности:	опорционал	ен плотности
	$\int \frac{dP}{dt} dl = \int \frac{dP}{dT} \frac{dT}{dt}$	$-(l,t)dl = \gamma \int \frac{dl}{dt}$	$\frac{r}{t}(l,t)dl =$
	$= \frac{1}{\rho c} \int \frac{d}{dt}$	$\frac{\gamma}{Vdt} = \frac{1}{\rho c} W$	$d U_r$
2/ 5	$\frac{dt}{dt}$	$\frac{-}{\rho c} w(t) = 4\pi$	$\frac{\overline{S}}{R_r}$

$$\frac{\gamma}{\rho c} \frac{S}{d} R_r W(t) = U_r - R_r \frac{S}{4\pi d} \frac{dU_r}{dt} = U_r - \frac{R_r C_{cr}}{\varepsilon} \frac{dU_r}{dt}$$

Чувствительность пиродетектора

 $\frac{\gamma}{\rho c} \frac{S}{d} R_r W(t) = U_r - R_r \frac{S}{4\pi d} \frac{dU_r}{dt} = U_r - \frac{R_r C_{cr}}{\varepsilon} \frac{dU_r}{dt}$

Выберем $R_r C_{\kappa pucm.} < < \tau_{u \omega n}$ Тогда чувствительность пиродетектора

 $U_r \approx \frac{\gamma}{\rho c} \frac{S}{d} R_r W(t)$

 $W(t) = \frac{\rho c}{\gamma} \frac{d}{S} I(t)$

Пироэлектрические кристаллы. Ниобат и танталат лития

	LiNbO ₃	LiTaO ₃
γ , $\frac{K\pi}{\circ C \times M^2}$	-8.3×10 ⁻⁵	-2.3×10-4
c, $\frac{\beta_{\mathcal{K}}}{\circ C \times \kappa \Gamma}$	630	250
$\rho, \frac{\kappa\Gamma}{M^3}$	4650	7450
$\frac{\gamma}{\rho c}, \frac{\pi A \times M}{BT}$	28	123
Теплопроводность, Вт °С×см	4.2×10 ⁻²	1.25×10 ⁻³
Пьезоэлектрическая постоянная c_{33} , $\frac{K\pi}{M^2}$	1.33	1.09
Диэлектрическая проницаемость г	29	45

Регистраторы потоков нейтральных атомов

Вторично-эмиссионный датчик:

Вторично-электронный умножитель (ВЭУ, electron multiplier)

Коэффициент усиления ВЭУ $K = \xi_1 \xi_2 \xi_3 \dots \xi_n$.

Полное число динодов в различных вариантах ВЭУ составляет 10 - 25, что обеспечивает коэффициент усиления ~ 3·10⁴-10⁵. Временное разрешение ВЭУ определяется временем пролета электронов через умножитель и равно ~ 10 нс.

Коэффициент вторичной эмиссии при бомбардировке электронами (MgO)

Коэффициент вторичной электронной эмиссии зависит от угла падения. При скользящих углах падения коэффициент эмиссии возрастает в несколько раз, что используется в конструкции ВЭУ.

Внутри канала возникает продольное электрическое поле $E \sim U_0 \mathcal{I}$

Коэффициент усиления (упрощённая модель)

о Будем предполагать, что все вторичные электроны вылетают

- нормально к поверхности с одинаковой энергией $eU_{\scriptscriptstyle H}$
- о Время пролета от стенки до стенки τ ≈ d/V_n
 о Продольное движение равноускоренное, a = eE/m
- продольное движение равноускоренное, *a = eE/m* «Длина свободного пробега» электрона вдоль трубки
- составляет: $\lambda \approx a\tau^2/2 \approx d^2 U_0/4 l U_n$.
- $_{\odot}~$ Энергия электрона при ударе со стенкой $U_{yo}\approx\lambda U_{0}\,/\!\!/,$
- Энергия вторичных электронов связана с энергией падающего электрона и, следовательно, коэффициентом умножения. *σ*~AU_w⁵.
- Число степеней умножения N ≈ l/λ.

Канальный электронный умножитель (КЭУ)

Усиление КЭУ определяется только калибром канала $a{=}d{}h$. Коэффициент усиления достигает максимума при некотором U_0 из-за энергетической зависимости $\sigma\!(E).$

При достижении *K* ≥ 10⁴-10⁵ даже при вакууме 10⁻⁴ Па в канальном умножителе наблюдается значительная ионная обратных ионных лавин. Подавление ионной связы обеспечивается изопнутостью канала.

Стандартный канальный умножитель КЭУ-6 имеет $l/d \sim 50 - 100$, коэффициент усиления $K \sim 10^7 - 10^8$, собственный фон на уровне одного импульса в секунду.

Микроканальные пластины (МКП)

диаметр каналов расстояние между каналами коэффициент вторичной эмиссии: напряжении на пластине коэффициент усиления, К время усиления первичного сигнала: фронт нарастания:

10 - 20 мкм;
20 – 60 мкм;
1 < σ <2.5;
~ 0,8 – 1 кB,
~ 104 - 105;
1 нс;
100-200 нс.

Микроканальные пластины

Каталог Hamamatsu Photonics

Многоступенчатые микроканальные пластины

Сборка из двух и более пластин («шеврон») позволяет достигать коэффициента усиления $K\sim 10^8$

«Мёртвое» время канала

Темновой ток

I ~ 1 имп./(см²×с) при К ~ 10⁷

