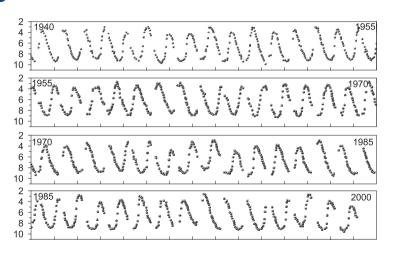
Плазма в космосе

Лекция №8

Эволюция звёзд ч.3: Гиганты и переменные звёзды

Анненков Владимир, с.н.с. лаб. 9-1

28 октября 2021


Содержание лекции

- 1 Цефеиды
 - Периодичность пульсаций
 - Причина пульсаций
- 2 Звёзды массой $> 8M_{\odot}$
- 3 Сверхновые
- 4 Нейтронные звёзды
 - Структура
 - Радиопульсары
 - Рентгеновские барстеры
 - Рентгеновские пульсары

- Цефеиды звезды, мощность излучения которых в десятки тысяч раз больше, чем у Солнца.
- Это желтые сверхгиганты, они не принадлежат ни к самым горячим, ни к самым холодным звездам.
- Блеск цефеид меняется почти строго периодически
- Периоды большинства цефеид заключены в пределах от суток до месяца.
- В максимальном блеске типичная цефеида становится ярче на одну-две звездных величины, что соответствует увеличению мощности излучения по сравнению с минимальным блеском примерно в 2.5—6 раз.

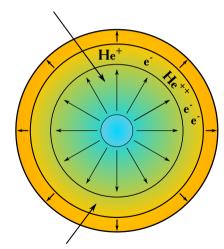
RS Кормы (RS Риррів, RS Рир)

- Классическим образцом долгопериодических пульсаций является звезда Мира (о Ceti), переменность блеска которой с периодом 11 месяцев (точнее, 322 дня) была обнаружена в1596 г. Д. Фабрициусом.
- В минимуме блеска она наблюдается как звезда +9 зв. величины и не видна невооруженным глазом, а в максимуме ее яркость достигает +3.5 звездной величины, то есть за один период светимость Миры изменяется более чем в 100 раз.
- \circ Позднее (1784 г.) периодические пульсации блеска с амплитудой в 1-2 зв. величины и периодами в несколько дней были обнаружены у важного класса переменных звезд типа δ Цефея (отсюда название всего класса).

Изменения блеска Миры Кита за 60 лет по данным Американской ассоциации наблюдателей переменных звезд. Указана визуальная звездная величина, усредненная за 10 суток.

- О Основное свойство этих переменных звезд состоит в эмпирической зависимости период—светимость: чем ярче звезда, тем больше период переменности ее блеска (1912 г., обнаружена амер. астрономом Генриеттой Левитт по наблюдениям 25 цефеид в Малом Магеллановом Облаке).
- О Современная зависимость (Бердников и др., 1996) имеет вид:

$$\left\langle \lg \frac{L_V}{L_{\odot}} \right\rangle = 1.15 \lg \left(\frac{T}{\text{сут}} \right) + 2.34$$
 (1)


где L_V – средняя (за период) светимость в видимой области спектра, T – период пульсаций.

- ⊙ Эта зависимость достаточно универсальна и по измерениям периода позволяет определять светимость цефеиды, а тогда из наблюдаемого потока излучения (видимой зв. величины) можно определить расстояние до нее.
- \circ Цефеиды яркие звезды-гиганты и могут наблюдаться в близких галактиках до расстояний $\approx 15~{
 m Mpc}$.

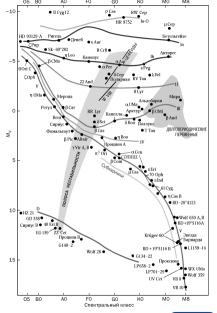
Каппа-механизм

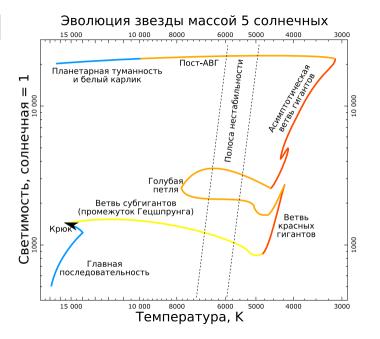
- В звезде есть слой ионизованного гелия толщиной порядка 1-2% радиуса.
- О Не III (дважды ионизованный гелий) менее прозрачен, чем Не II (однократно ионизованный гелий).
- С ростом температуры доля Не III растёт и "запирает" энергию, идущую из ядра.
- Э В самой тусклой части цикла Цефеиды ионизированный газ во внешних слоях звезды непрозрачен, поэтому он нагревается излучением звезды и из-за повышения температуры начинает расширяться.
- По мере расширения он охлаждается и становится менее ионизированным и, следовательно, более прозрачным, что позволяет излучению выходить наружу.
- Эатем расширение останавливается, и под действием гравитационного притяжения звезды происходит обратное движение.

Поток излучения от ядра

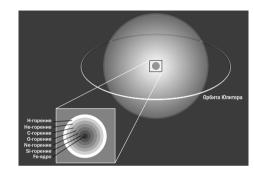
Слой ионизованного гелия

7/29

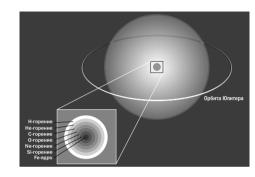

О Эти пульсации в наблюдениях проявляются как переменности блеска цефеид.


О Движение вещества происходит только вдоль радиуса звезды, а ее форма не

- изменяется, оставаясь приблизительно шаровой.
- О Пульсируют только атмосферы: глубоко в недра звезды пульсации не проникают.
- \circ При сжатии атмосфера звезды разогревается, а при расширении охлаждается.
- О Светимость цефеиды оказывается наиболее высокой, когда температура поверхности близка к максимуму и звезда начала расширяться после того, как сжалась до минимального размера.


- Распределение температуры внутри звезды зависит от её массы.
- О Чем массивнее звезда, тем ближе к поверхности достигается необходимая для реализации описываемого процесса температура, составляющая 35000–55000 Кельвин.
- О Колебания могут продолжаться только в том случае, если их период совпадает с собственным периодом колебаний звезды.
- О При увеличении массы уменьшается плотность звезды и увеличивается период колебаний и светимость, чем и вызвана наблюдаемая зависимость период светимость.
- O Эта зависимость позволяет использовать цефеиды в качестве стандаютных свечей для опоеделения расстояний.

${\mathcal 3}$ вёзды массой $> 8 M_{\odot}$


- \circ У звёзд большой массы вырождение электронного газа не препятствует нагреву внутренних слоёв до температуры порядка $\sim 10^9~{
 m K}.$
- При таких условиях углерод и кислород начинают вступать в разные ядерные реакции с образованием более тяжёлых элементов.
- Эволюция звезды состоит в последовательном "выгорании" всё более тяжёлых элементов, сжатию ядра и образрованию на его внешней границ новых слоевых источников.
- Звезда становится луковицей.

Іродолжительность этапов эволюции звезды с массой 25 \emph{M}_{\odot}

Стадия	Длительность	Стадия	Длительность
Горение водорода Горение гелия Горение углерода Горение кислорода Горение кремния	500 000 лет 600 лет	Коллапс ядра Отскок ядра Взрывное горение Разлет оболочки	Около 0,1 секунд Несколько миллисекунд Около 10 секунд Около 1 часа

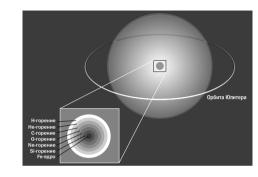
- О После начала ядерных реакций с участием углерода и кислорода основную часть выделяющейся энергии уносят не фотоны, а нейтрино и антинейтрино.
- \circ При температуре 10^9 К протекает множество процессов, приводящих к рождению нейтрино.
- О Например, ядро кремния $^{28}_{14}\mathrm{Si}$ может захватить свободный электрон, испустить нейтрино и превратиться в ядро алюминия $^{28}_{13}\mathrm{Al}$, которое неустойчиво и вскоре превращается в исходное ядро $^{28}_{14}\mathrm{Si}$, порождая при этом электрон и антинейтрино.
- В результате ни кремний, ни электрон не исчезли, но появились нейтрино и антинейтрино, на рождение которых ушла часть кинетической энергии свободного электрона, т. е. тепловой энергии газа.

Тродолжительность этапов эволюции звезды с массой 25 \emph{M}_{\odot}

Стадия	Длительность	Стадия	Длительность
Горение водорода Горение гелия Горение углерода Горение кислорода Горение кремния	500 000 лет 600 лет	Коллапс ядра Отскок ядра Взрывное горение Разлет оболочки	Около 0,1 секунд Несколько миллисекунд Около 10 секунд Около 1 часа

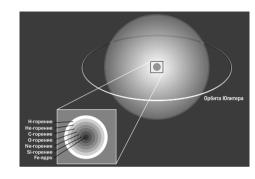
$y_{ ho \kappa a}$ -процесс

- Урка-процесс процесс нейтринного охлаждения звёздных недр.
- Впервые об этом процессе заговорили Георгий Гамов (1904-1968) и и Марио Шенберг (1914-1990), когда они посетили казино «Огса» в Рио-де-Жанейро и обнаружили, что при игре в рулетку деньги исчезают так же быстро, как энергия с потоком нейтрино уносится из звездного ядра.
- Кроме того, Гамов, несомненно, знал, что в России «урками» называют мелких воришек, так что это название с подтекстом.



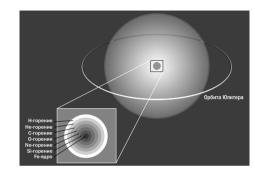
Георгий Антонович Гамов

Марио Шёнберг


- На поздних стадиях эволюции нейтрино весьма эффективно «крадут» у звезды тепловую энергию, вынуждая ее ядерный реактор работать на полную мощность, чтобы не дать веществу остыть.
- О Переход к новому виду ядерного топлива требует увеличения температуры газа, что, в свою очередь, приводит к возрастанию интенсивности нейтринного излучения.
- О Из-за этого выгорание каждого нового вида ядерного топлива происходит все быстрее и быстрее: для превращения углерода и кислорода в элементы группы кремния требуется несколько сотен лет, а последующее их превращение в железо происходит за несколько десятков лет.

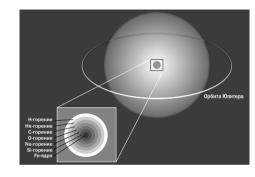
Продолжительность этапов эволюции звезды с массой 25 M_{\odot}

	,		
Стадия	Длительность	Стадия	Длительность
Горение водорода	7 000 000 лет	Коллапс ядра	Около 0,1 секунд
Горение гелия	500 000 лет	Отскок ядра	Несколько миллисекунд
Горение углерода	600 лет	Взрывное горение	Около 10 секунд
Горение кислорода	6 месяцев	Разлет оболочки	Около 1 часа
Горение кремния	1 день		


- О Чем горячее газ, тем выше средняя энергия рождающихся в нем фотонов.
- О Когда температура поднимается до миллиарда кельвинов и начинается горение кремния, в заметном количестве появляются γ -кванты, энергия которых настолько велика, что при столкновении с ядрами они разбивают их на несколько ядер-осколков (фотодиссоциация).
- О Осколки тут же вступают в реакции синтеза.
 - На фотодиссоциацию ядер расходуется энергия фотона, которая при его рождении была изъята из тепловой энергии газа.
- До некоторого момента выделяемая при ядерных реакциях энергия превосходит затраты энергии на разрушение ядер, но лишь до тех пор, пока у звезды не сформируется железно-никелиевое ядро.

Продолжительность этапов эволюции звезды с массой 25 M_{\odot}

	продолжител		dun apestor e maceon Es mo
Стадия	Длительность	Стадия	Длительность
Горение водорода Горение гелия Горение углерода Горение кислорода Горение кремния	500 000 лет 600 лет	Коллапс ядра Отскок ядра Взрывное горение Разлет оболочки	Около 0,1 секунд Несколько миллисекунд Около 10 секунд Около 1 часа


- О Синтез элементов тяжелее $^{56}_{26}$ Fe сопровождается уже не выделением, а поглощением энергии, поэтому на фотодиссоциацию начинает расходоваться тепловая энергия, выделяемая при сжатии внутренних областей звезды.
- Из-за этого температура, а вместе с ней и давление газа нарастают слишком медленно, чтобы компенсировать растущую при сжатии силу тяготения.
- В результате нарушается гидростатическое равновесие, и ядро звезды начинает стремительно сжиматься – коллапсировать.
- \circ При сжатии газ нагревается до $10^{10}-10^{11}$ K, и это приводит к мощному всплеску нейтринного излучения.

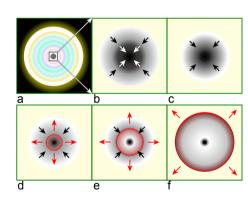
Продолжительность этапов эволюции звезды с массой 25 M_{\odot}

	·· F -M		
Стадия	Длительность	Стадия	Длительность
Горение водорода Горение гелия Горение углерода Горение кислорода Горение кремния	500 000 лет 600 лет	Коллапс ядра Отскок ядра Взрывное горение Разлет оболочки	Около 0,1 секунд Несколько миллисекунд Около 10 секунд Около 1 часа

- \circ У звезд, имевших на главной последовательности массу менее примерно 40_{\odot} , коллапсирующее ядро превращается в **нейтронную звезду** объект с массой $1.5-3M_{\odot}$, радиусом около 10 км и средней плотностью в сотни миллионов тонн в кубическом сантиметре.
- О При такой плотности вещество в основном состоит из нейтронов; именно давление вырожденного нейтронного газа уравновешивает гигантскую силу тяготения, сжимающую эти компактные тела.
- О Если масса ядра оказывается больше $3M_{\odot}$, то происходит формирование **чёрной дыры**.

родолжительность этапов эволюции звезды с массой 25 *М*

Стадия	Длительность	Стадия	Длительность
Горение водорода		Коллапс ядра	Около 0,1 секунд
Горение гелия	500 000 лет	Отскок ядра	Несколько миллисекунд
Горение углерода	600 лет	Взрывное горение	Около 10 секунд
Горение кислорода	6 месяцев	Разлет оболочки	Около 1 часа
Горение кремния	1 день		

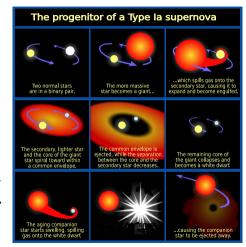

Сверхновые

Сверхновые

- \circ Вспышка сверхновой один из самых мощных катастрофических природных процессов. В астрономии вспышки сверхновых наблюдаются как внезапное увеличение блеска звезды на 9-10 порядков, т. е. одна звезда в максимуме светит почти так же, как совокупность звезд всей галактики, и поэтому сверхновые в настоящее время регистрируются из очень далеких галактик вплоть до красных смещений ~ 1 , т. е. с расстояний порядка тысячи Mпк.
- О По своим спектральным свойствам сверхновые делятся на два основных типа: I в спектрах которых отсутствуют линии водорода, и II в спектрах которых линии водорода наблюдаются. Кроме того, сверхновые этих типов имеют разные кривые блеска L(t).

Сверхновые II типа

- \circ C физической точки эрения, феномен сверхновой II типа и типа Ib/с означает очень быстрое (почти мгновенное) энерговыделение порядка $E_0=10^{51}$ эрг внутри эвезды с радиусом $R_0\sim 10^{14}$ см.
- Эта энергия в конечном счете переходит в кинетическую и тепловую энергию расширяющейся оболочки.
- О Увеличение блеска связано с нагревом расширяющихся внешних слоев звезды ударной волной, возникновение которой связывают с отскоком свободно падающих внутренних слоев от сколлапсировавшего плотного ядра массивной звезды.

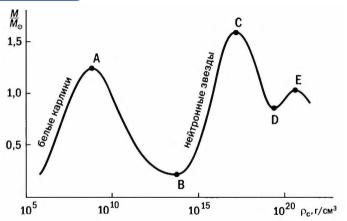


Сверхновые типа Ia

- о В спектрах сверхновых Іа нет линий водорода.
- Кривые блеска носят универсальный характер, что свидетельствует об одинаковых свойствах предсверхновых этого типа.
- \circ Наиболее реалистичной представляется модель термоядерного взрыва белого карлика с массой около M_{Ch} , поэтому такие сверхновые также называют «термоядерным».
- $O(M_{Ch} = 5.83 M_{\odot} Y_e^2$ предел Чандрасекара (верхний предел массы холодного невращающегося белого карлика, определяемый условием равенства сил давления вырожденного электронного газа и гравитации), где Y_e число электронов, приходящееся на один нуклон, и для элементов тяжелее гелия $Y_e \leqslant 0.5$

Сверхновые типа Іа

- Причины потери гидростатичекой устойчивости белого карлика по мере приближения его массы к верхнему пределу это нейтронизация вещества в центре и эффекты ОТО.
- Однако эта неустойчивость приводит не к коллапсу, а к термоядерному взрыву звезды.
- \circ Энергия, выделяемая при термоядерном взрыве белого карлика с массой около M_{Ch} составляет около $2\cdot 10^{52}$ эрг.
- О В этом случае масса оболочки должна быть порядка $1 M_{\odot}$, а скорость расширения $v \sim 10^4$ км/с.



- В большинстве случаев нейтронные звезды образуются в результате коллапса ядер массивных звезд с массой на главной последовательности больше $8-10M_{\odot}$.
- Специфическое свойство нейтронных звезд сверхвысокая плотность, порядка ядерной ($\rho_0 \approx 2.8 \cdot 10^{14} \text{ г/см}^3$)
- В нейтронной звезде нуклоны удерживаются вместе гравитационными силами.
- Внутри НЗ вырожденные нейтроны не распадаются: из-за высокой плотности β-распад нейтрона запрещен принципом Паули, так как образующемуся электрону нет «места» в фазовом пространстве из-за сильного вырождения электронного газа.
- Масса нейтронной звезды не превышает $3M_{\odot}$, а минимальная составляет $\sim 0.1M_{\odot}$.

- О Первая статья с упоминанием возможности сверхплотного состояния материи была опубликована Л. Д. Ландау в 1932 г. вскоре после открытия нейтрона.
- О На возможность образования сверхплотных нейтронных звезд при коллапсе ядер массивных звезд, сопровождающихся вспышками сверхновых, указывали астрономы В. Бааде (W. Baade) и Ф. Цвикки (F. Zwicky) в 1934 г.
- \circ Теоретическая заметка Л. Д. Ландау о нейтронных звездах была опубликована в 1938 г.
- О Одиночные нейтронные звезды были открыты как радиопульсары только в 1967 г. Э. Хьюишем (A. Hewish) и Дж. Беллом (I. Bell).
- О Их продолжают открывать в радио и гамма-диапазоне, и на конец 2010 г. их число превысило 2000.
- Общее число нейтронных звезд в Галактике оценивается в $10^8 \div 10^9$, из них радиопульсаров (молодых нейтронных звезд) порядка 10^5 .
- О Нейтронные звезды, входящие в состав тесных двойных систем, были открыты как компактные рентгеновские источники первым специализированным рентгеновским спутником «Ухуру» в 1972 г.

23/29

- Зависимость «масса—центральная плотность» для звезд, лишенных ядерного источника энергии.
- О Точка А соответствует максимальной массе белых карликов (предел Чандрасекара).
- О Участки до точки A и от B до C соответствуют двум устойчивым решениям: белым карликам и нейтронным звездам; для них центральная плотность растет с ростом массы.

- Радиусы НЗ, выводимые из современных наблюдений, лежат в пределах от 10 до 15 км.
- О Из наблюдений следует, что НЗ обладают сверхсильным магнитным полем.
- \circ Из-за вмороженности магнитного поля в космическую плазму, при сжатии вещества сохраняется поток магнитного поля через выделенный контур: $\Phi \sim RR^2 = const$
- О Так, при сжатии звезды типа Солнца, со средней напряженностью магнитного поля на поверхности $B_0 \sim 1$ Гс, до размеров НЗ 10 км, получаем $B_{ns} = B_0 (R_\odot/10 \text{ км})^2 \sim 5 \cdot 10^{11}$ Гс.
- О Такие огромные и даже более высокие значения действительно подтверждаются анализом наблюдаемых свойств радиопульсаров и рентгеновских пульсаров.

В отличие от масс, которые в двойных пульсарах измеряются по релятивистским эффектам с рекордной точностью в доли процентов, внутреннее строение НЗ (особенно ее центральных частей) известно с большой степенью неопределенности из-за отсутствия лабораторных данных о свойствах вещества в сверхплотном состоянии.

В зависимости от состояния вещества по модельным расчетам внутри $H\mathfrak{Z}$ выделяют четыре основных зоны.

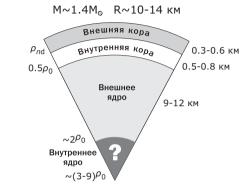



Схема внутреннего строения НЗ. Обозначения: $\rho_0 = 2.8 \cdot 10^{14} \ \text{г/см}^3 - \text{ядерная плотность,} \\ \rho_{nd} = 4 \cdot 10^{11} \ \text{г/см}^3 - \text{плотность} \\ \text{образования нейтронных капель.}$

26/29

1) Внешняя кора

- $O \Delta R = 300 \div 600 \text{ m}, \ \rho < \rho_{nd} \approx 4 \cdot 10^{11} \text{ r/cm}^3$
- О Величина ρ_{nd} соответствует плотности, при которой газ свободных нейтронов начинает приобретать свойства жидкости.
- Внешняя кора состоит из сильно вырожденных электронов (представляющих почти идеальный Ферми-газ) и ядер (ионов).
- Уравнение состояния во внешней коре известно достаточно хорошо.

Обозначения: $\rho_0 = 2.8 \cdot 10^{14} \ \text{г/см}^3 - \text{ядерная плотность,} \\ \rho_{nd} = 4 \cdot 10^{11} \ \text{г/см}^3 - \text{плотность} \\ \text{образования нейтронных капель.}$

строения

внутреннего

Схема

НЗ.

2) Внутренняя кора

- О $\Delta R = 500 \div 800$ м, $\rho_{nd} < \rho < 0.5 \rho_0$, где ρ_0 ядерная плотность.
- О Верхняя граница соответствует плотностям, при которых отдельные атомные ядра уже не могут существовать.
- О Электроны находятся в состоянии ультрарелятивистского вырожденного газа, а ядра обогащены нейтронами и занимают значительный объем.
- О Свободные нейтроны образуют сильно вырожденную Ферми-жидкость, которая может быть сверхтекучей.
 - Вблизи границы с внешним ядром в слое в несколько сотен метров атомные ядра становятся слабо связанными.
- О Детали структуры внутренней коры плохо известны.

Схема внутреннего строения НЗ. Обозначения:

$$ho_0 = 2.8 \cdot 10^{14} \ {
m r/cm}^3$$
 – ядерная плотность, $ho_{nd} = 4 \cdot 10^{11} \ {
m r/cm}^3$ – плотность

образования нейтронных капель.

3) Внешнее ядро

- \circ $0.5\rho_0 < \rho \lesssim 2\rho_0$.
- О Вещество во внешнем ядре представляет собой однородную материю из сильно вырожденных нейтронов, протонов, электронов и возможно мюонов.
- Электроны и мюоны образуют почти идеальные ферми-газы, а нуклоны – сильно неидеальные ферми-жидкости, которые могут быть сверхтекучими и сверхпроводящими.
- Уравнение состояния известно сравнительно неплохо, но точность резко уменьшается с ростом плотности.

Схема внутреннего строения НЗ. Обозначения:

 $ho_0 = 2.8 \cdot 10^{14} \ {
m r/cm}^3$ – ядерная плотность, $ho_{nd} = 4 \cdot 10^{11} \ {
m r/cm}^3$ – плотность

образования нейтронных капель.

4) Внутреннее ядро

- \circ $2\rho_0 < \rho \lesssim 20\rho_0$.
- О Состав точно не известен из-за плохого знания физики сильных взаимодействий и эффектов взаимного влияния частиц в сверхплотном веществе.
- Возможный состав нуклонно-гиперонное вещество, или более экзотические возможности (пионный конденсат, кварковое вещество).
- Уравнение состояния во внутреннем ядре является фундаментальной физической проблемой.

гипероны – семейство элементарных частиц, барионы, содержащие минимум один s-кварк, но не содержащие более тяжёлых кварков (с и b)

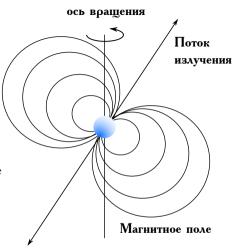



Схема внутреннего строения НЗ. Обозначения:

$$ho_0 = 2.8 \cdot 10^{14} \ {
m r/cm}^3$$
 – ядерная плотность, $ho_{nd} = 4 \cdot 10^{11} \ {
m r/cm}^3$ – плотность образования нейтронных капель.

Радиопульсары

- Известно, что пульсары излучают за счет энергии своего вращения. Период их вращения постоянно увеличивается, вращение затухает, а его энергия уходит в виде электромагнитных волн и потоков релятивистских частиц.
- О Торможение вращения происходит за счет магнитного поля.
- О Чем сильнее поле и чем быстрее вращение, тем эффективнее тор мозится пульсар.
- О Все это удалось установить еще в конце 1960-х начале 1970-х гг.
- О Сам механизм излучения пульсаров неизвестен до сих пор.
- Как энергия вращения (точнее, ее малая часть) переходит в импульсы ЭМ излучения – не ясно.

Нейтронная звезда с магнитосферой. Схематично показаны силовые линии магнитного поля нейтронной звезды, ось магнитного диполя которой наклонена к оси вращения.

Рентгеновские барстеры

- О Многие НЗ входят в состав двойных систем. В тесных двойных системах с нейтронными звездами возможны уникальные явления.
- Если магнитное поле НЗ не очень большое (< 10¹⁰ Гс), то при перетекании вещества на НЗ оно накапливается на ей поверхности (заметим, что оно находится в вырожденном состоянии), и при превышении некоторого критического значения плотности и температуры на поверхности НЗ происходит термоядерный взрыв.
- О При этом продукты вспышки образуют расширяющуюся атмосферу, которая не отделяется от звезды в виде оболочки, а вновь сжимается.
- Эти взрывы наблюдаются в виде регулярных **рентгеновских барстеров** (или вспыхивающих рентгеновских источников).

Рентгеновские пульсары

- О При наличии очень сильного магнитного поля нейтронной звезды ($10^{12} \div 10^{14} \, \Gamma c$) в тесной двойной системе возможен такой тип аккреции на H3, при котором газ нормальной звезды, вмороженный в поле, падает вдоль линий индукции в область магнитных полюсов H3.
- О Избыток момента импульса передается звезде через магнитное поле.
- О Скорости падения на поверхность НЗ порядка сотен тысяч км/с, и на небольшие области поверхности НЗ (сотни квадратных метров) обрушивается колоссальный поток вещества и энергии (порядка 100 кг/с на квадратный сантиметр).
- \circ Температура плазмы в области падения при этом может достигать $10^9 \div 10^{10} \ \mathrm{K}$.
- O Выделяющаяся энергия излучается в форме жестких квантов, и на поверхности НЗ в районе магнитных полюсов образуются два горячих «рентгеновских» пятна.
- О Сильное магнитное поле делает излучение этих пятен неизотропным.
- О Поскольку магнитная ось в общем случае не совпадает с осью вращения, за время одного оборота НЗ вокруг оси далекий наблюдатель будет регистрировать один или два импульса рентгеновского излучения.