Status of injection facility for Novosibirsk SCT-Factory

Alexey Petrenko, BINP

2019 Joint Workshop on Future charm-tau Factory, Sep. 26, 2019, Moscow.

http://www.inp.nsk.su/~petrenko/c-tau/Injector/GeoViews.html

2.5 GeV electron linac

http://www.inp.nsk.su/~petrenko/c-tau/Injector/e-linac/FODO/Twiss.html

2.5 GeV electron linac

Positron production system

Positron distribution after the solenoid (Pavel Martyshkin):

http://www.inp.nsk.su/~petrenko/c-tau/Injector/p-linac/Martyshkin/

Losses during transition to quadrupole focusing:

Similar system at KEK

Full 1.5 GeV e+ linac:

Debuncher:

Debuncher:

Damping ring (scaled down <u>CLIC Pre-Damping Ring</u>)

Damping times: $\tau_x = 7.2 \text{ ms}, \tau_s = 3.5 \text{ ms}$ Equilibrium emittance: $\varepsilon_x = 6.3 \text{ nm}$ (including IBS)

http://www.inp.nsk.su/~petrenko/c-tau/Injector/damping_ring/Twiss.html

Scaling down CLIC Pre-Damping Ring

Damping ring optical functions

http://www.inp.nsk.su/~petrenko/c-tau/Injector/damping ring/Twiss.htm

13.0

13.2

Initial beam size at $\varepsilon_x = 1500$ nm, $\varepsilon_y = 1300$ nm and $\sigma(\Delta p/p) = 0.01$

Summary

With 4.8 nC (3e10 e-), 2.5 GeV electron beam on target we get 5 nC e+ after the solenoid at 200 MeV, 3.5 nC before the damping ring and 3.0 nC e+ captured by the damping ring:

With 3.0 nC (2e10) e+ per shot it will take 10 Hz linac to get the required 2e11 e+/sec. With 7 ms damping time we can have even faster linac, 20 Hz $_{16}$ operation will give a factor of two safety margin.