
THE FORMAL POWER SERIES FOR LOG e*e*

BY KARL GOLDBERG

1. Introduction. That log e*e can be expressed as a sum of x, y, and the
commutators (xy yx, and so on) of x and y was first shown by J. E. Campbell
[2] in 1898, H. F. Baker [1] in 1905, and F. Hausdorff [7] in 1906. The expansion
in terms of the commutators has been used in such fields as group theory [8]
and differential equations [9].
To this day the determination of the coefficients of the commutators is

difficult; only scattered results are available when the degree of the commutator
is greater than six.

It might be useful, therefore, to investigate log e% as a formal power series
in the non-commuting variables x and y, with the hope that the information
gained in such an investigation will be of use in the problem of the commutator
coefficients. An algorithm due to E. B. Dynkin [3] may prove useful for this
purpose. See also D. Finkelstein [4] who gives an expression for log e%, in
terms of certain symbolic operators, which may be regarded either as a commu-
tator or a power series expansion.
The major result of this paper is a formula for the coefficients in the formal

power series stated in two different ways. Theorem 1 gives these coefficients
in terms of certain fixed polynomials, and any specified coefficient may be
computed easily from this form. Theorem 2 gives a generating function for these
coefficients from which certain coefficients are obtained as sum of Bernoulli
numbers.

2. Statement of the Theorems. In a formal power series in non-commutative
variables x and y the general term beginning with a power of x is

(1) Wx Wx(sl
where sls: s, 0 and (xvy) denotes x if m is odd and y’m if m is even.
W is similarly defined.

In the formal power series for log e*e we denote the coefficient of
W (sl, s) by cx c. (s, s), and that of W by c.
The main theorems of this paper can now be stated"

THEOREM 1.

t"’(t 1)"G.,(t) G,(t) dtCx(Sl Sin) (-- 1)n--lcy

m’ [m/2], m"where n ,. s, [(m 1)/2] and the polynomials G.(t)
are defined recursively by G(t) 1 and sG.(t) d/dt t(t 1)G._(t) for s 2,
3, .... Alsoc, c if m is odd.
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The polynomials Gs(t) are related to the homogeneous "Euler Polynomials"
Rs(x, y) by the relation s! G.(t) R.(t, 1). The properties of these poly-
nomials have been developed at length by G. Frobenius [6] and J. Worpitzky
[12].

THEOREM 2. The generating function for c. is given by

E E Cx(Sl,
i---1 Si-I

1)(e eZi) -1

An interesting fact which these theorems make evident is that the coefficient
c(sl s.) is left invariant by any permutation of the si Furthermore if
misoddc c,andifnisevenc c. Thereforec(si, ,s,) 0
when m is odd and 7_-1 s is even.
To illustrate the consequences of these theorems we shall prove

THEOREM 3.

Cx(S S2 s !s2 \ /

where B is the k Bernoulli number in the usual notation (B 1/2).

3. A General Lemma. The usual definitions hold for the formal power series
of e and log (1 + u) so that log e% -_ (- 1)-u/q where u e% 1, xy/i!j! with i, j 0, 1, but i + j 0.
To determine the coefficient c in log e% we must find the coefficient of W

in (e% 1) ’, multiply by (- 1)-l/q, and sum over all positive integers q.
It is clear that the main problem is that of finding the coefficient of W in

(e% 1) ’, and we proceed to attack this problem in a somewhat generalized
fashion.
To be precise we may consider all our operations performed in the free associ-

ative ring over the rationals generated by the non-commuting variables x and y.
Let

u f(x)f(y) 1 where f(x) 1+ ax, airational

and let U(W) denote the coefficient of W (as defined in (1)) in u.
To determine U(W) we shall find all possible decompositions of W into

products of q elements of the type xiy with i, j >_ 0 but i + j 0 and sum
their contributions (products of aa) to U(W). Clearly all products enter
into the computation since all elements of this type are found in u.

Consider the general decomposition of W

(2) W,(s,

X
dxt xdx,r w. y’ (xvy)d....
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where di >_ 1 and w is either the element x"iy’/1’’ or the product of two
elements: x

If p of the w are single elements rather than the product of two elements
then the total number of elements in the decomposition is

q =rl +r-p

where rl r are the lengths of the partitions

(3) s d, + +dr, with d 1, for i 1,... ,m.

This decomposition gives a contribution of7 ’1 a, to U(W). The
sum of such contributions over all decompositions of W(Sl s) with a
fixed q will yield U(W) exactly.
We begin by fixing rl r and letting the d range over all values such

that (3) holds. Define
r)(4) a a a

summed over all partitions s d + + dr with d 1.
Then7a) is the total of all possible contributions to U(W) of decompo-

sitions (2) with fixed rl, r, p of the w single elements andr p q.
Now fix p, define r p + q, and allow r r to range over all values

such that

(5) r r + +r with r 1

and define
(r) (r)(6)

summed over 11 prtitions r r + + r, r 1.
This is the total contribution to U(W) of 11 decompositions (2) restricted

by (5) with fixed number, p r q, of single elements mong the w
Finally we must find wht wlues r cn take nd how mny wys it cn tke

ech wlue.
In the first place since ech d is t least 1 we hve

with equality when d 1 for all i, j. Furthermore since each r is at least 1
we have

with equality when r 1 for all i.
On the other hand there are m’ [m/2] of the w so that there are (’) different

ways for there to be p single elements among the w. This means that r p + q
in m’

(7:.) ways.
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This completes our discussion of the determination of U(W) and we sum
up in

LEMMA 1.

Ar( )U(Wx) --r- r- q

vhere m’ [m/2] and A r(s s) is defined in (6).

As an immediate corollary t5 Lemma 1 we have

COROLLARY 1.

( )U(N)
r-

.where m" [(m 1)/2], since our engire argument for ghe eoeeieng of
carries over for hag of W exeepg ghag in he decomposition of W here are
only [(m 1)/2] possible ambiguous elements.

Since m m" when m is odd i follows

Cooa 2. U() U,(W) if m i odd.

rom all of ghis ig is clear ghag ghe arrangemeng of ghe is immagerial go ghe

eoeeien of W(i ) in (f(z)f() 1) .
4. Two More General Lemmas. Lemma 1 is useful as an explicit starting

point for the proof of our theorems, but it is not useful in itself since the function
A is rarely known in closed form.
However the definition (6) of At(s1 s) can be compared with the

i) tO obtain a generating functionproduct of polynomials with coefficients
for U,(W) that will lead to our main theorems.

Define polynomials G,(t) by

(7) G,(t) (- 1)-a)gi-1.

o(i)zSSince () as defined in (4) has the obvious generating function.
(f(z) 1) we have as a generating function for G,(t)

(8) e,(t)z" l(1 f(-z))

which supplies an alternative definition for these polynomials. When defined
in this manner the polynomials G,(t) are the derivatives of Faber polynomials.
See M. Schiffer [10] and I. Schur [11] for the definitions and some properties of
the Faber polynomials.
Using (7) the product of G.,(t) for i 1, m can be expressed in terms

of A(s s)"

G.,(t) (-1)-A(s,, ,s)t where n ,s,.
=1
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We shall express =1 Uq(Wx)(- t) q-1 iIl terms of this product and then
integrate with respect to in the interval from 0 to i to get Z---i (--" 1) q-i Uq(W:)/q.
This is the coefficient, call it 5(sl s,.), of W in log f(x)f(y) since it is clear
that U,,(W) 0 for q > n.

Using the formula of Lemma 1 we get

u(w)(t)- m’ A(s, ,s)(-t)
=a = r q

(,, )(-"- _-
,= r q

A(s, s)(- t)"-’(. t-’)’

(- 1)"-(t 1)’t-’- (- )"-A(s, .)t-.
The third step goes through if we change the index of summation in the sum

at the far right from q to q* r q in which case the sum extends
from q* r n 0 to q* r 1 m 1 m form 1. Clearly
m’ r q 0 so that the sum actually extends from 0 to m’ to give (1 t-)’.
Now if we integrate as indicated above we get

LnMMA 2.

e(s, s) (- 1)"-’ (t )’t-’-’G,(t) G,(t) dt
0

where 5 is the coecieut of W in log f(x)f(y), n =s, m [m/2], and the
polynomials G,(t) are defined by (7) or (8).

Also (from the corollaries to Lemma 1) we have

(9) G(s,, s) )"-f (t- 1)""t .(t) G.(t) dt

where 6,, is the coecient of W, in log f(x)f(y) and m" [(m 1)/2]; and 6
6 ( m is odd.

Later the generating function described in (8), with f(z) e, will yield
the properties of the polynomials G. (t) that will translate Lemma 2 into Theorem
1. However, for the moment, we wish to retain our generality to prove

LEMMA 3. The generating function for the coecieut 6 of W in log f(x)f (y) is

(, ,,)z; z:-

log f(z)(f(z,))’ (f(z) 1)(f(z) f(zi)) -.
i1 ii
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We prove Lemma 3 from Lemma 2 by multiplying (Sl s.) by (-
(- zl) (-z.)’" and performing the sum indicated by the lemma to obtain
the product of the generating functions of the polynomials G.(t) under the
integral of Lemma 2. The generating function for is then

(t 1)"t-’’-{(1 f(zl))- t} -1 {(1 f(z,))-’ t} -1 dt.

Note that f {(1 f(z)) -1 t} -1 dt log f(z) so that it will be simple
to integrate this expression by partial fractions.

Let the integrand equal 7=1 D, {(1 f(zi)) -1 t} -1 where D, is in-
dependent of t. Then the integral is 71 D log f(z).
To find D we begin by equating our two expressions for the integrand and

multiplying both sides by the product of the generating functions for the poly-
nomials G,(t) to get

D I-’[ l(l f(z))-’-- t} (t- 1)"’t"-’’-.
i=1

If we let (1 f(z,))- this equation reduces o

Z
mtD, {(1 f(z))- (1 f(z,))- (f(3) (1 f(z,)) 1--m

or

D, (f(z3)" 1-I (1 f(z))(f(z) f(z,)) -1

which proves Lemma 3.
We can achieve even greater generality by exactly the same procedure if we

wish the generating function of the coefficients in log f(x)f* (y) where f* (0) 1.
The only change that is necessary in the formula of Lemma 3 is to replace
f(z2) by f*(z2) for i 1, m’. However such an expansion of the scope
of this lemma is not useful for obtaining the main results of this paper.

5. Proofs of Theorem 1 and Theorem 2. Consider the formula of Lemma 3.
If we set f(z) e, we get Theorem 2 directly.
To prove Theorem 1 consider equation (9) in Lemma 2. Since m m’ +

m" + 1 we have (- 1)n-1 Cu f ’ (t 1) ’n-’n’-I G..(t) G,,(t) dt. There-
fore it is sufficient to show that c, (-1)- c, and that sG,(t) d/dt t(t 1)
G._l(t) with G(t) 1 when f(z) e since every other statement in Theorem
1 carries over from Lemma 2.
That c, (- 1)-1 c is easily proved. Since (e*e) (e-*e-*) (e-*e-*) (e*e) 1

we have

log e% -log e-*e-.
Consider the coefficient of W, in the expressions on each side of this equation.
On the left it is c,. On the right it is -(- 1)" (-1)"c or (- 1) "-1 c,.
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To prove the recursion for Go(t) consider (8) with f(z) e’. Clearly Gl(t) 1
as we can show by dividing both sides by z and then letting z go to 0.
On the other hand first take the derivative with respect to z to get

sG.(t)z"-1 e-’(1 e-’)-2{(1 e-)-I t} -2.

Secondly multiply both sides of the original equation by t(t 1) and take the
derivative with respect to to get

e-’) -2t(t 1)G.(t)z" -1 -}- e-"(1 {(1 e-’)

Comparing these results we get

d
.-1

sG’(t)z’-l 1 + .2- t(t- 1)G._l(t)z

which proves the recursion formula and, therefore, Theorem 1.

6. Proof of Theorem 3.
2 is

For m 2 the generating function given in Theorem

c.(sl, s2)z’lz zleZ’(e 1)(e e2)-’

(10) + ze"(e’" 1)(e" e")-
--Z2 + (e" 1)(Z2 z)(e"-" 1) -1

The generaging funegion of ghe Bernoulli numbers is [; 7]

so that

(Z Zl)(ez’-z" 1)-1 Z B, (z2 zl)’
i=o i!

(--1) ’-" i B Zl Z2

-o -o j

When multiplied by e 1 Y-I z/]c! this equation becomes

(11)

k,=l

where we have let sl i j and s ] -t- j so that j s2 k and i s +
s,. k in the second step.
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Comparing equations (10) and (11) we will get Theorem 3 if the right hand
side of (11) when restricted by si 0 is equal to z

Since

k
,_ =0 for > 1

(see [5; 28]) we have
82 Z2

as we wished to show to complete the proof of Theorem 3.
This theorem is the principal example of the use of our main theorems that

we have made to date. Other general formulas of some interest will be published
elsewhere.

7. Computation of the Coeffcients. At times it is desirable to compute
some coefficients directly. The form of Theorem 1 facilitates such computation.

First we make a list of the different powers (si) appearing among the elements
whose coefficients are desired and compute the polynomials G,,(t) corresponding
to them. The computation of the polynomials can be made from the recursion
formula since both polynomial multiplication by 1 and formal differentiation
of a polynomial are simple operations to perform. An alternative method is
to use a table of Stirling numbers of the second kind S;) since these numbers
are defined essentially in the same way as the a ;) which are the coefficients in
G(t); they are related by s! ) j! S).
Then for each coefficient c(s s) we compute the polynomial H71

G,,(t), multiply by ’ (t l)’" and integrate as indicated in Theorem 1 using
the fact that fo F(l t)’dt p !q !/(p + q 1)!when p and q are non-negative
integers.

This process may be facilitated by considering G.(t) as a polynomial in
T t(t- 1) ifsisoddort 1/2timesapolynomialinTifsiseven. We can
show that this is possible directly from the generating function for G(t):

and

t}-’+ {( -e)-
(2t- 1){e(e- 1)2- + t}-’

G.-,(t)z"’’ l( e-’)-’ t}-’ {( e’)-’

--(e_ 1)(e- 1)-lle(e 1) t+ t} -
Since (t 1/2) T - :- and ’ (t 1) ’’ T’"t"’-’’’ where m’ m" is

either 0 or 1, there will be three types of integrals to evaluate in our calculations"
(1) f, Tdt (- 1)’p !p !/(2p -]-- 1) !; (2) f tT’dt (- 1)’p !p !/2(2p -- 1) !;
and (3) t(t 1/2)Tdt (- 1)" (p + 1)!p!/2(2p -- 3)!.
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However the length or degree of the polynomials will be cut by a factor of
two with a respective decrease in the difficulty of multiplying them together.

In this manner we calculated all the coefficients up to those for degree ten in
less than three hour by hand.
For higher degrees it would be wise to use an electronic computer. The

procedure we have described can be standardized and programmed for computer
use; the chief difficulty is that computation with rationals is unavoidable until
some idea of the factorization of the denominators of the coefficients is known.
However for the small degrees, n

_
10, all the denominators for the same degree

n divide the denominator of (Bn-1 Bn_2)/n! and this may be the general case.
It may be of some interest that this paper is the result of generalizing the

algorithms used in the original program written for the National Bureau of
Standards Eastern Automatic Computer for computing the coefficients in the
formal power series for log e*e*.
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