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Abstract Watson (Q. J. Math. Oxford 10:266–276, 1939) published in 1939 the evaluation
of three integrals submitted to him, which had arisen from a problem in physics (van Pepye
in Physica 5:465–482, 1938). Over the years these integrals have continued to occur in other
aspects of physics such as random walk problems. This article reviews these integrals and
generalisations over the past 70 years.

Keywords Cubic LN curve · Convolution curve · Minkowski sum · Offsets · Linear
normal map · G-1 Bezier approximation · Error estimate

1 Introduction

This is a short history of three triple integrals and their generalisations which first appeared
some seventy years ago. It provides an example of how physicists and mathematicians like
to elaborate particular results and extend them to more general areas. In doing so new tech-
niques are developed which eventually become standard methods. It is also an example of
how chance plays a part in bringing together researchers with knowledge in different fields
who collaborate to produce results which might not otherwise have been obtained. This
will be a rather personal account as many hundreds of papers and articles concerning these
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but quickly realised this was a step in the wrong direction for me. So instead I studied intermolecular
forces in rare gas crystals which at that time was another interest of Cyril. Thus I never became part of
that wonderful school of statistical mechanics built by Cyril at Kings. However, I always remained in
contact with various members of that group and worked together whenever our interests coincided.
Lately a collaboration resulting in some joint work on Watson integrals occurred. It is allowable to
reminisce and review when celebrating a 90th anniversary, hence the following.
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integrals have been published, and it is not possible in limited space to refer to every contri-
bution, so at the start I apologise to authors whose work I do not cite.

The three original integrals are

WB = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

1 − cosx cosy cos z
, (1.1)

WF = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

3 − cosx cosy − cosy cos z − cos z cosx
, (1.2)

WS = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

3 − cosx − cosy − cos z
. (1.3)

They made their first appearance in a paper on magnetic anisotropy by van Pepye [1] in
1938. The integrals emerged when dealing with three well-known cubic structures formed
by real crystals, namely the body centered (B), the face-centered (F) and the simple cubic
(S) lattices. Van Pepye was a student of the Dutch physicist H.A. Kramers, and clearly these
integrals intrigued the latter. He sent them on to R.H. Fowler, the son-in-law of Rutherford,
in Cambridge and then. . . Well let Watson [2] in his own words describe how the problem
reached him.

‘The problem of evaluating them was proposed by Kramers to R.H. Fowler who commu-
nicated them to G.H. Hardy. The problem then became common knowledge first in Cam-
bridge and subsequently in Oxford, whence it made the journey to Birmingham without
difficulty.’

Whatever the motive was for this last somewhat barbed comment, Watson found closed
forms for these integrals and they are now universally known by his name. They will now
be referred to as WI. The first, as Watson acknowledged, is fairly well-known. Indeed
van Pepye himself had evaluated it and the result can be traced back to Kummer [3, 4];
also its generalisation is simple to find Maradudin et al. [5] so the closed form for this more
general version of (1.1) is now given. We have

WB(wb) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

wb − cosx cosy cos z
= 4

π2
K2

(√√√√1

2
− 1

2

√
1 − 1

w2
b

)
, (1.4)

when wb = 1

WB(1) = 4

π2
K2

(
1√
2

)
= 1

4π3
�4

(
1

4

)
= 1.39320 39297 . . . , (1.5)

where K is the complete elliptic integral of the first kind.
As complete elliptic integrals of the first kind play a primary role in all aspects of WI

and their generalisations it is apposite here to give a short account of them. The complete
elliptic integral of the first kind is defined by

K(k) :=
∫ π/2

0

dt

(1 − k2 sin2 t)1/2
=

∫ 1

0

dx

[(1 − x2)(1 − k2x2)]1/2
, (1.6)

for 0 ≤ k < 1. k is known as the modulus. The complementary modulus k′ is defined by the
relation k2 +k′2 = 1 and we write K(k′) := K ′(k). K and iK ′ play the equivalent roles in the
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theory of the Jacobian elliptic functions as does π/2 in the theory of the circular functions,
namely they are quarter periods. An important property of K(k) is that it can be expressed
as a hypergeometric function, namely

K(k) = π

2
2F1

(
1

2
,

1

2
;1 : k2

)
= π

2

∞∑
n=0

(2n)!
22n(n!)2

k2n, (1.7)

which will later be seen as crucial in further analysis.
Although (1.1) and its generalisation were easily solved, (1.2) and (1.3) were a different

matter. Watson’s [2] approach was to use an inspired sequence of changes of variable and
integrations to reduce the triple integrals to single integrals involving K . Then using expan-
sions of K and K ′ he had obtained himself 30 years previously—Watson [6]—he was able
to evaluate these last integrals. One should go to the original paper to admire the ingenuity
displayed in finding (1.8) and to enjoy the brilliance of his derivation of (1.9). His results
are

WF =
√

3

π2
K2

(√
3 − 1

2
√

2

)
= 3�6( 1

3 )

214/3π4
= 0.44822 03944 . . . , (1.8)

WS = 4(18 + 12
√

2 − 10
√

3 − 7
√

6)

π2
K2

[
(2 − √

3)(
√

3 − √
2)

] = 0.50546 20197. (1.9)

It will be observed that whereas WB and WF were expressed in terms of gamma functions,
this was not done for WS . This had to await a later investigation.

The next appearance of WI in the literature (though not by name) followed almost im-
mediately. In an odd paper by McCrea and Whipple [7], they took up the problem of the
“Drunkards Walk” in three dimensions. The strangeness of the paper was not in its content,
but in the complete oblivion of the authors of any other work in this field. There were only
two references given. The first was to a note of McCrea in the Mathematical Gazette [8], in
which he had considered the two dimensional square lattice, and as a kind of an afterthought
a paper by Courant, Friedrichs and Lewy [9] which had been brought to their attention. The
problem may be formulated as follows. An intoxicated person drops his housekeys under a
lamppost—the origin. Suppose the lamppost is one of an infinite number of posts equally
spaced along a line. The inebriate staggers from lamppost to lamppost with an equal prob-
ability of going to the right or left while looking for the keys. What is the probability that
he or she will return to the origin? The same question may be asked if the lampposts form
a two dimensional square array or a three dimensional cubic array. In fact this problem was
first discussed by Pòlya [10]. He showed that in the one and two dimensional cases the prob-
ability of return to the origin was one, i.e the keys would eventually be found. However, in
three dimensions the probability was less than one, but Pòlya did not find a value for it.

This problem is mirrored in one dimension exactly by tossing a coin heads or tails, in
two dimensions by throwing a tetrahedral die and in three dimensions by casting a common
six-sided die. Stewart [11] discusses this in some detail. He points out that in tossing a
fair coin the starting point is equal numbers of heads and tails. As one continues tossing
an imbalance between numbers of heads and tails will occur, but no matter how large this
imbalance becomes if you carry on flipping the coin the imbalance will eventually correct
itself. Similarly in throwing an unbiased tetrahedral die, the digits 1, 2, 3 and 4 have an equal
probability of 1/4 of appearing. As before one starts with equal numbers of the 4 digits, and
again as one continues throwing, deviations from the initial state will appear. But as in the
coin case if one continues to throw the four sided die, the state of equal numbers for the
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four digits will eventually reoccur. However in throwing an ordinary 6-sided die each of
the digits 1–6 has a probability of 1/6 of occurring. Starting from equal numbers of the six
digits imbalances will develop, but the probability of returning to equal numbers of the six
digits is less than one. He actually credits Ulam as proving this but gives no reference, but
I think Pòlya [10] must be credited as being first with this result.

However, it was McCrea and Whipple who first set out to find a value for this proba-
bility. Clearly they did not know of Pòlya’s paper for no reference to him is made, but they
succeeded in showing that the probability of return to the origin was 1−1/3WS ! (I have con-
verted their result into the notation used here. All authors in this field use their own symbols.
So all formulae given here are translations of their results into notation consistent with that
used in this place.) Just as McCrea and Whipple were unaware of Pòlya they also were in ig-
norance of Watson, and it is interesting to follow their attempt to evaluate 3WS . They rapidly
reduced WS to a single integral from π/6 to π/2 of a complete elliptic integral multiplied
by an angular factor and then resorted to numerical integration. Such was the inaccuracy
of their computation that they only gave the value to two significant figures, 3WS = 1.53,
which compared to the value 1.51638606 found from (1.9) is woefully out. They thus found
the probability of returning to the origin was 0.34—surprisingly small. This seems to be the
very first numerical evaluation of this probability.

A much more accurate result was found by Domb [12] in a completely different manner
with no reference to WS whatsoever. He calculated directly the probability of the return to
the origin, pn, after n steps. For n odd you cannot return to your starting point and thus
p2n+1 = 0. For small n, p2n can be calculated exactly from a rather complex formula. In
this way he directly calculated p2 . . . p18, then applying Euler-McLaurin summation to the
asymptotic formula for p2n he obtained the excellent estimate for the equivalent of 3WS

of 1.51639 giving 0.34054 for the probability of return to the origin. If we use the more
accurate value of Watson, the probability of return to the origin is 0.340537330.

Now the Courant paper referred to by McCrea and Whipple was actually a seminal paper
on how limiting forms of difference equations could equal the solution of the equivalent
differential equation. It was noted that the random walk problem was set up as a difference
equation and the solution was none other than the Green’s function of the equation �u = 0.
This idea was elaborated on by Duffin [13] who considered an infinite lattice in which every
point was connected to its nearest neighbour by a unit resistance. If a current is introduced at
some lattice point, then it will split equally among all connections and so on at every lattice
point and this again mimics the random walk problem. Duffin then considered an infinite
simple cubic lattice in which every lattice point is labelled (l,m,n) where each of (l,m,n)

may take on every integer value from −∞ to ∞. A unit current is introduced into the source
point (0,0,0). The Green’s function G(l,m,n) is defined by the solution to

DG(0,0,0) = −1, DG(l,m,n) = 0 otherwise

where D is the difference operator corresponding to the Laplacian differential operator � in
three dimensions. The solution is found to be

G(l,m,n) = 1

π3

∫ π

0

∫ π

0

∫ π

0

cos lx cosmy cosnz

3 − cosx − cosy − cos z
dx dy dz. (1.10)

This result was ascribed to Courant [14]. A similar result was then obtained by Davies [15]
without reference to Duffin or Courant. Davies noted that the resistance between the source
point and a point infinitely far away was just G(0,0,0). This of course is just the Watson
integral (1.3). Also the resistance between the source point and any other point (l,m,n)
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on the lattice was Rl,m,n = G(0,0,0) − G(l,m,n). An excellent modern account of the
relationship between random walks on lattices and resistance networks has been given by
Doyle and Snell [16].

The association of WI as special values of Green’s functions of a particular lattice has
led to the term Green’s function being applied to simple generalisations of WI. Thus it has
became customary to refer to any integral of the form

1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

w − φ(cosx, cosy, cos z)
, (1.11)

where φ(cosx, cosy, cos z) is some ternary trigonometric polynomial, as a lattice Green’s
function. However, it would be better to think about objects having the form (1.11) as func-
tions of a complex variable w. What Watson had done was to evaluate the original integrals
at a certain critical value of w relevant to each integral, where the integrand became infinite
at the origin. It thus became a challenge to extend his analysis to general w, i.e. to evaluate

WF (wf ) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

wf − cosx cosy − cosy cos z − cos z cosx
, (1.12)

WS(ws) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

ws − cosx − cosy − cos z
. (1.13)

Then (1.12) defines a single-valued analytic function in the wf plane, provided that a cut
is made along the real axis −1 < wf ≤ 3. A similar property holds for (1.13) provided the
cut on the real axis is made for −3 < ws ≤ 3. Also rather than having a different w for each
lattice many authors considered a modified form of WI namely

P (u) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

1 − u
d
φ(cosx, cosy, cos z)

, (1.14)

where d is the number of terms in φ. Sometimes it will be more convenient to deal with P .
It was the evaluation of such quantities that has exercised investigators from the mid 1950’s
to present times.

The first extension of Watson’s result was achieved by Montroll [17]. He considered the
integral

WS(2 + α,α) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

2 + α − α cosx − cosy − cos z
(1.15)

and following exactly the same path as Watson, Montroll found

WS(2 + α,α) = 25/2
√

k1k2K(k1)K(k2)√
απ2

, (1.16)

where

k1 = 1

2α

[
(
√

4 + 2α − 2)(2
√

1 + α − √
4 + 2α)

]
,

k2 = 1

2α

[
(
√

4 + 2α + 2)(2
√

1 + α − √
4 + 2α)

]
.
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Although this indicated that further generalisations might be possible, no new methods were
introduced and the chances of improving on Watson’s ingenuity seemed small. Thus two
big advances were made when Iwata [18] produced a closed form solution for WF (wf ), and
Joyce [19, 20] who further generalised WF , but more importantly found a closed form for
WS(ws).

2 Solutions for WF (wf ), WF (αf ,wf ) and WS(ws)

Iwata’s method of finding a closed form for (1.12) was as follows. He copied Watson in
reducing the triple integral to a single integral but in an entirely different fashion. He made
use of two successive well-known integrations, and then solved this last integral in such a
way that this now has become a standard integration. The first integration was accomplished
using the established result

∫ π

0

dz

a − b cos z
= π√

a2 − b2
, (2.1)

which after integrating (1.12) over z gives

WF (wf )

= 1

π2

∫ π

0

∫ π

0

dx dy√
(wf − cosx cosy + cosx + cosy)(wf − cosx cosy − cosx − cosy)

.

Then substituting cosy = u, and after some re-arrangement one obtains

WF (wf ) =
∫ π

0

dx√
cos2 x − 1

∫ 1

−1

du√
(

wf +cosx

cosx−1 − u)(
wf −cosx

cosx+1 − u)(1 − u2)

. (2.2)

The standard result
∫ 1

−1

du√
(a − u)(b − u)

(
1 − u2

) = 2√
(a − 1)(b + 1)

K(k), (2.3)

where

k2 = 2(a − b)

(a − 1)(b + 1)

is now employed on (2.2) and after some algebra WF (wf ) is obtained as a single integral
namely

WF (wf ) = 2

π2(wf + 1)

∫ π

0
K

[
2
√

wf + cos2 x

(wf + 1)

]
dx. (2.4)

There are a number of other ways in which this integral may be expressed, thus

WF (wf ) = 2

π2(wf + 1)

∫ π

0
K(

√
A + B cosx)dx,

A = 4wf + 2

(wf + 1)2
, B = 2

(wf + 1)2
, (2.5)
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WF (wf ) = 2

π2(wf + 1)

∫ π

0
K

(√
a2 cos2 x + b2 sin2 x

)
dx,

a = 2
√

wf + 1

wf + 1
, b = 2

√
wf

wf + 1
. (2.6)

Iwata chose to work with (2.6) using the representation of K as a hypergeometric function,
thus

∫ π

0
K

(√
a2 cos2 x + b2 sin2 x

)
dx

= π

2

∞∑
n=0

(2n)!
22n(n!)2

∫ π

0

(
a2 cos2 x + b2 sin2 x

)n
dx. (2.7)

The integral on the RHS of (2.7) can be evaluated as an infinite sum, and the double sum
so produced was identified as F4, an Appell hypergeometric function of two variables—
Whittaker and Watson [21, p. 300]. In this case a theorem derived by Bailey [22] showed that
this F4 was in fact the product of two complete elliptic integrals. It is more straightforward
to express the result in terms of (2.5) so

∫ π

0
K(

√
A + B cosx)dx = 2K(k+)K(k−),

where

2k2
± = 1 ±

√
A2 − B2 −

√
(1 − A)2 − B2. (2.8)

This result may now be accepted as a standard form. Hence for WF (wf ) we have

WF (wf ) = 4

π2(wf + 1)
K(kf +)K(kf −),

2k2
f ± = 1 ± 4

√
wf

(wf + 1)3/2
− (wf − 1)

√
wf − 3

(wf + 1)3/2
.

(2.9)

A further advance was made by Joyce [19] who published a generalisation of Iwata. Thus
he solved

WF (αf ,wf ) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

wf − αf cosx cosy − cosy cos z − cos z cosx
, (2.10)

the solution being

WF (αf ,wf ) = 4

π2(wf + αf )
K(k+)K(k−),

where

2k2
±(αf ,wf ) = 1 ± 4αf wf

(wf + αf )2

(
1 + 1

wf αf

)1/2

− (wf − αf )

(wf + αf )2

[
wf + (2 − αf )

]1/2[
wf − (2 + αf )

]1/2
. (2.11)
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His analysis involved showing that WF (αf ,wf ) could be expressed as
∫ ∞

0
J0(at)J0(bt)J0(t)dt, (2.12)

where a and b are functions of wf and αf , and J0 is a Bessel function. A theorem of Bailey
[23] then enabled (2.12) to be evaluated directly. Joyce indicated that he would describe
the process in detail later but he never did! Instead 32 years later under the prompting of
colleagues the result was republished, but shown to be derived by Iwata’s method. We are
assured that the promised other proof will be forthcoming.

Rather interestingly in his evaluation of WS Watson [2] had employed the same strategy
as Iwata in evaluating his last integral using Appell and Bailey, but his result was confined
to a special case. Also Iwata ends his paper with the remark that WS might have a similar
result to (2.6). Now one can be assured that Iwata must have tried his technique on WS(ws),
since the latter looks a considerably simpler form than WF (wf ), but if indeed one performs
the first two integrations one obtains

WS(ws) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

ws − cosx − cosy − cos z

= 1

π2

∫ π

0

2

ws − cosx
K

(
2

ws − cosx

)
. (2.13)

This form was actually obtained by Tikson [24]. However, this does not succumb to Iwata’s
approach and it seems that a different technique was required to obtain a closed form for
WS(ws). This was accomplished by Joyce [20] in a classic paper, and a brief description of
his method is now given.

The procedure used by Joyce was entirely different to that of Iwata. He began by consid-
ering the P form of the simple cubic

PS(u) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

1 − 1
3u(cosx + cosy + cos z)

=
(

3

u

)
WS

(
3

u

)
. (2.14)

By expanding the integrand in (2.14) in powers of u a power series for P (u) was found.
Thus

PS(u) =
∞∑

n=0

pnu
2n (|u| < 1), (2.15)

where

pn = 1

π3

∫ π

0

∫ π

0

∫ π

0

[
1

3
(cosx + cosy + cos z)

]2n

dx dy dz. (2.16)

In the theory of random walks the coefficient pn gives the probability that a random walker
will return to his starting point (not necessarily for the first time) after a walk of 2n steps
on a SC lattice. For n → ∞ the behaviour of pn was described by an asymptotic formula
given by Domb [12], which showed that the range of validity of (2.15) could be extended to
|u| = 1. So that PS(1) which is equal to 3WS may be written as

PS(1) =
∞∑

n=0

pn. (2.17)
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Joyce then proceeded to find a closed form for pn and establish a three term recurrence
relation amongst the pn. This enabled him to construct the following third order differential
equation for PS

4x2(x − 1)(x − 9)
d3PS

dx3
+ 12x

(
2x2 − 15x + 9

)d2PS

dx2

+ 3
(
9x2 − 44x + 12

)dPS

d
x + 3(x − 2)PS = 0, (2.18)

where x = u2. A remarkable result of Appell [25] allowed this third order equation to be re-
duced to a second order equation and the solutions of this were identified as Heun functions.
Then applying various standard transformation to these, they were turned into hypergeomet-
ric functions and finally produced the important result

WS(ws) = 2

π2ws

√
4 − 3t

1 − t
K(k+)K(k−)

2k2
± = 1 ± 1

2
v
√

4 − v − 1

2
(2 − v)

√
1 − v

2w2
s t = w2

s + 3 −
√

(w2
s − 9)(w2

s − 1), v = t/(t − 1).

(2.19)

I have set out here in a few words an investigation which occupies almost 40 printed pages,
and once again suggest that the original paper be viewed in order to appreciate the effort put
into obtaining (2.19).

3 The Watson Integrals Between 1970 and 2000

In the years that followed Iwata’s solution for WF (wf ) several authors—e.g. Glasser [26],
Hioe [27], Rashid [28], Montaldi [29] investigated increasingly complex forms of (1.11).
All succumbed to Iwata’s method. As an example we give Glasser’s [26] result of (1.11) for

φ = cosx cosy cos z + cosx cosy + cosy cos z + cos z cosx

+ cosx + cosy + cos z (3.1)

with solution

1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

w − φ
= 4

π2(w + 1)
K2(k), where k2 = 1

2

[
1 −

(
w − 7

w + 1

)1/2]
. (3.2)

What real lattice this represents is open to question, but it is a tribute to Iwata’s approach
that such a complex integral was evaluated by his method.

At around this time the present author stumbled accidentally into WI and helped in mak-
ing an unconvincing first contribution. To explain how this occurred more information on
complete elliptic integrals needs to be given. It had been shown by Abel that when

K ′(k)

K(k)
= a + b

√
N

c + d
√

N
, (3.3)
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with a, b, c, d , N all integers, then k is a root of an algebraic equation with integral coeffi-
cients which could be solved in radicals. In the particular case where K ′/K = √

N the k(N)

are called singular values and for convenience K[k(N)] will be denoted by K[N ]. Now it
has long been known for N = 1,3 and 4 that K[N ] can be expressed in terms of gamma
functions of rational arguments, the values for K[1] and K[3] having been found by Legen-
dre [21, p. 524]. Now the result given in (1.5) for WB contains the square of K(1/

√
2) which

is indeed equal to K[1], and the result (1.6) for WF contains the square of K({√3−1}/2
√

2)

which is K[3]. Of course Watson knew this, hence his translation of the results in terms of
K into gamma functions. However, the K involved in WS is actually K[6] and its expres-
sion in gamma functions was unknown. Glasser and Wood [30] had actually given K[2]
for which k = √

2 − 1 in terms of gamma functions. This might have been extracted from
a result of Ramanujan [31] who actually found the complete elliptic integral of the second
kind for k = √

2 − 1, but no one seems to have noticed. Now in investigating properties of
the following double sums

∞∑
(m,n�=0,0)

(am2 + bmn + cn2)−s ,

a comparatively straightforward procedure was found for finding K[N ] in terms of � func-
tions for many N—Zucker [32]. Indeed K[N ] for N = 1, . . . ,16 (excluding N = 14 which
did not succumb to this technique) were thus evaluated. On speaking to Joyce about this
he sent me a paper by Selberg and Chowla [33] which proved that all K[N ] could—with
sufficient labour—be evaluated in terms of gamma functions, but they had only given ex-
plicit values for N = 5 and N = 7. Thus the values found were new and included N = 6.
However, at that time I had never heard of WI. Fortunately a colleague knew a great deal
about them and together we found—Glasser and Zucker [34]—

WS = 4
√

6

π2
�

(
1

24

)
�

(
5

24

)
�

(
7

24

)
�

(
11

24

)
, (3.4)

which unfortunately was wrong—a factor of 384π had been omitted! Now I am sure every
one at some time has experienced a wrong sign in a calculation or has lost a factor of 2
somewhere, but 384π requires an explanation. The reason is depressingly simple. The result
found for the square of K[6] was

K2[6] = (
√

2 − 1)(
√

3 + √
2)(2 + √

3)�( 1
24 )�( 5

24 )�( 7
24 )�( 11

24 )

384π
(3.5)

and when this was substituted into (1.9) the fact that

(18 + 12
√

2 − 10
√

3 − 7
√

6 )(
√

2 − 1)(
√

3 + √
2 )(2 + √

3 )

dramatically collapsed to
√

6 made us forget the 384π in the denominator of (3.5) in the
desire to publish quickly. So the correct result is

WS =
√

6

96π3
�

(
1

24

)
�

(
5

24

)
�

(
7

24

)
�

(
11

24

)
, (3.6)
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as is pointed out by everyone who quotes the original. Later, Borwein and Zucker [35],
making use of the surprising relation

�( 1
24 )�( 11

24 )

�( 5
24 )�( 7

24 )
= √

3(2 + √
3 )1/2

allowed the reduction of (3.4) to the even more compact form

WS = (
√

3 − 1)

96π3

[
�

(
1

24

)
�

(
11

24

)]2

. (3.7)

A more substantial improvement to the theory was made by Joyce [36, 37]—which consid-
erably simplified Iwata’s result (2.9) for WF (wf ) and his own expression (2.19) for WS(ws).
In both cases the original results appeared as the products of two complete elliptic integrals
with different moduli. In the above referenced papers it was shown that the results could be
expressed as the square of a single K . In [37] by using the elliptic modular transformation
of order 3, the solutions were found in a particularly simple fashion. They are given below
in parametric form

WF (wf ) = 4ξ(1 − 3ξ)(1 + ξ)

(1 − ξ)3(1 + 3ξ)

[
2

π
K(k)

]2

, (3.8)

where

k2 = 16ξ 3

(1 − ξ)3(1 + 3ξ)
, ξ =

√
wf + 1 − √

wf√
wf − 3 + √

wf

,

WS(ws) = (1 − 9ξ 4)

ws(1 − ξ)3(1 + 3ξ)

[
2

π
K(k)

]2

, (3.9)

where

k2 = 16ξ 3

(1 − ξ)3(1 + 3ξ)
, ξ =

√
ws − √

w2
s − 1

ws + √
w2

s − 9
.

Now define the sets of points in the wf and ws cut planes by Cf and Cs respectively. There
has not been space to expand upon the regions of Cf and Cs over which Iwata’s and Joyce’s
original results were valid. Suffice it to say that their range was severely limited in those
sectors. The new results were valid for all of Cf and Cs .

The complicated structures of (3.8) and (3.9) may be simplified by applying various 2F1

transformation formulae to the complete elliptic integrals in these formulae. For example
Delves and Joyce [38] have shown that

WS(ws) = 2ws − √
w2

s − 9

w2
s + 3

[
2F1

(
1

8
,

3

8
;1 : t (ws)

)]2

, (3.10)

where

t (ws) = 16

(w2
s + 3)4

[
ws(w

2
s − 5) − (w2

s − 1)

√
w2

s − 9
]2

.
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This result may also be used to calculate WS(ws) at any point in Cs . For ws = 3 the original
Watson integral becomes

WS =
(

1

2

)[
2F1

(
1

8
,

3

8
;1 : 1

9

)]2

. (3.11)

Then making use of a famous result of Clausen [39] this may be written as

WS =
(

1

2

)[
3F2

(
1

4
,

1

2
,

3

8
;1,1 : 1

9

)]
. (3.12)

From this and (3.7) we find the striking result that

∞∑
n=0

(4n)!
(n!)4

1

(48)2n−1
=

√
3 − 1

π3

[
�

(
1

24

)
�

(
11

24

)]2

. (3.13)

4 The Singly Anisotropic Simple Cubic Lattice

The equation

WS(αs,ws) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

ws − αs cosx − cosy − cos z
, (4.1)

is a further generalisation of the original Watson integral WS . In terms of random walks on a
cubic lattice, the spacing between lattice points in one of the dimensions is different from the
other two. It might have been better to refer to (4.1) as the Watson integral for a tetragonal
lattice. The investigation of Delves and Joyce [38] in finding a closed form for (4.1) is an
exceptional work of analysis which again can only be described briefly here. The integrand
in (4.1) was expanded in powers of 1/ws and the resulting series integrated term by term.
Thus

wsWS(αs,ws) = y =
∞∑

n=0

μ2n(αs)z
n, (4.2)

where z = 1/w2
s and

μ2n = 1

π3

∫ π

0

∫ π

0

∫ π

0
(αs cosx + cosy + cos z)2ndx dy dz. (4.3)

An explicit expression was found for μ2n(αs) and a complex recurrence relation established
amongst μ2n+2(αs), μ2n(αs), μ2n−2(αs), μ2n−4(αs) and μ2n−6(αs). From this it was shown
that y was the solution of a sixth order differential equation L6(y) = 0 where L6 was an
extremely long and intricate operator. The authors then showed it is possible to express L6

as the product of a fourth order, L4, and a second order differential operator and to reveal
that y is the solution of L4 only. A further step then allowed the solutions of L4(y) = 0
to be expressed as a product of the solutions of two second order differential equations.
Then Schwarzian transformation theory enabled both these second order differential equa-
tions to be reduced to the standard Gauss hypergeometric differential equation. Finally the
hypergeometric functions which are solutions of these equations could be transformed by
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well-known quadratic transformations into complete elliptic integrals as in (1.9). The final
solution for y is given as

wsWS(αs,ws) = 2√
1 − (2 − αs)2z + √

1 − (2 + αs)2z

[
2

π
K(k+)

][
2

π
K(k−)

]
, (4.4)

where

2k2
± ≡ 2k2

±(αs, z) = 1 − [√
1 − (2 − αs)2z +

√
1 − (2 + αs)2z

]−3

×
[√

1 + (2 − αs)
√

z

√
1 − (2 + αs)

√
z +

√
1 − (2 − αs)

√
z

√
1 + (2 + αs)

√
z
]

×
{
±16z +

√
1 − α2

s z
[√

1 + (2 − αs)
√

z

√
1 − (2 + αs)

√
z

+
√

1 − (2 − αs)
√

z

√
1 + (2 + αs)

√
z
]}

. (4.5)

This is a few word summary of some 60 pages of analysis, and for the third time here
I recommend readers to view the original paper to appreciate the tenacity that went into
producing (4.4) and (4.5), to which the comment of Bornemann et al. [40] may be added.
“What a triumph of dedicated men; for such problems current computer algebra systems are
of little help.”

Is there a more direct approach to (4.5)? It turns out that there is, but it is doubtful
whether it would have been found without the inspiration of the known result. Going back
to Tikson’s result (2.12), and putting in the anisotropy does not complicate the last integral
by very much. In fact doing the first two integrals following Iwata one obtains

WS(αs,ws) = 1

π2

∫ π

0

2

ws − αs cosx
K

(
2

ws − αs cosx

)
dx. (4.6)

But now the following substitution is now made,

cosx = ws cosψ + αs

ws + αs cosψ
, (4.7)

and a much simplified version of (4.6) appears, namely

WS(αs,ws) = 1√
w2

s − α2
s

2

π2

∫ π

0
K(C + D cosψ)dψ. (4.8)

where

C = 2ws

w2
s − α2

s

and D = 2αs

w2
s − α2

s

. (4.9)

Now in going through the first two steps of the Iwata process for the anisotropic face-centred
cubic lattice we arrived at

WF (αf ,wf ) = 1

(wf + αf )

2

π2

∫ π

0
K(

√
A + B cosx)dx, (4.10)
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where

A = 2(2αf wf + 1)

(wf + αf )2
and B = 2

(wf + αf )2
, (4.11)

and the similarity between (4.8) and (4.10) is evident. We have of course the solution of
(4.10) with (2.11), and it seemed natural to look for a solution to (4.8) along the same lines
as Iwata had done for (4.10). This was accomplished as follows. For convenience we write

I (A,B) = 2

π2

∫ π

0
K(

√
A + B cosx)dx,

J (C,D) = 2

π2

∫ π

0
K(C + D cosψ)dψ.

(4.12)

As Iwata did, the integrand of I (A,B) is expanded and integrated term by term to yield
a double series. However, instead of identifying this double series as an Appell hypergeo-
metric function, I (A,B) is represented by a Kampé de Feriet series. Doing the same thing
to J (C,D) yields a different Kampé de Feriet series, but by applying appropriate transfor-
mation formulae to the I (A,B) series it can be put into the form found for J (C,D). The
following remarkable connection formula was found.

J (C,D) = (1 − A + B)1/2I (A,B), (4.13)

where A and B are appropriate solutions of the simultaneous equations

C2 = − (A − B)(1 − A + B)

(1 − A + B)2
, D2 = 2B

(1 − A + B)2
. (4.14)

By finding relevant solutions for A and B and substituting into (4.13), after considerable
algebraic simplification a standard form for J (C,D) may now be established. It is

J (C,D) = 2√
(1 − D)2 − C2 + √

(1 + D)2 − C2

(
2

π

)
K(k+)K(k−), (4.15)

where

2k± = 1 − 1

C
[
√

(1 − D)2 − C2 +
√

(1 + D)2 − C2]−3

× 2
[
(C + D)

√
1 − (C − D)2 + (C − D)

√
1 − (C + D)2

]

× {±4C
√

C2 − D2 + [√
(1 + C)2 − D2 +

√
(1 − C)2 − D2

]}
. (4.16)

This can now take its place as a standard integration alongside the result for I (A,B). If
the values of C and D given in (4.9) are now substituted in the above, the result obtained
for WS(αs,ws) is precisely the same as that given by Delves and Joyce [38]. A further
consequence of the relationship between I (A,B) and J (C,D) is that a connection between
WF (αf ,wf ) and WS(αs,ws) may be found. Thus

WF (αf ,wf ) = − 2αs

[√w2
s − (2 + αs)2 + √

w2
s − (2 − αs)2]WS(αs,ws), (4.17)
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with

wf = − 1

4αs

{
(w2

s − 4 − α2
s ) +

√
w2

s − α2
s

[√
w2

s − (2 + αs)2 +
√

w2
s − (2 − αs)2

]

+
√

w2
s − (2 + αs)2

√
w2

s − (2 − αs)2
}
, (4.18)

and

αf = − 1

4αs

{
(w2

s − 4 − α2
s ) −

√
w2

s − α2
s

[√
w2

s − (2 + αs)2 +
√

w2
s − (2 − αs)2

]

+
√

w2
s − (2 + αs)2

√
w2

s − (2 − αs)2
}
. (4.19)

The following inverse connection formula can also be found.

wsWS(αs,ws) =
[

αf (wf + 2 − αf )(wf − 2 − αf )

wf (αf wf + 1)

]1/2

wf WF (αf ,wf ), (4.20)

where

w2
s = −αf wf (wf + 2 − αf )(wf − 2 − αf )

(αf wf + 1)2
, αs = wf + αf

αf wf + 1
. (4.21)

Thus we require either the result for WF (αf ,wf ) or the result for WS(αs,ws) for the other
to be determined. All is explained in detail in a paper of Joyce,Delves and Zucker [41]. The
‘final problem’ yet to be solved is

WS(αs,βs,ws) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

ws − αs cosx − βs cosy − cos z
. (4.22)

The latter might be referred to as the Watson integral for the doubly anisotropic cubic lattice
or the Watson integral for an orthorhombic lattice. The difficulties encountered so far in
attempted solutions of this three parameter problem seem insuperable. Even attempts at
reducing it to a Montroll type two parameter exercise namely

WS(1 + αs + βs) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dx dy dz

1 + αs + βs − αs cosx − βs cosy − cos z
(4.23)

have not yielded any success.

5 The Green’s Function of the Simple Cubic Lattice

Recently some significant progress has been made in finding exact product forms for certain
forms of

G(l,m,n;αs,ws) = 1

π3

∫ π

0

∫ π

0

∫ π

0

cos lx cosmy cosnz

ws − αs cosx − cosy − cos z
dx dy dz. (5.1)

A series of papers by Joyce and Delves [42, 43] and Delves and Joyce [44, 45] have gone
into great detail in presenting their results, and these are briefly summarised here.
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The new results depend on a beautiful extrapolation of Iwata’s result for I (A,B). To see
how this extrapolation is best presented we have

I (A,B) = 2

π2

∫ π

0
K(

√
A + B cosx)dx = 1

π

∫ π

0
2F1

(
1

2
,

1

2
;1 : A + B cosx

)
dx. (5.2)

This may be taken to be a special case of

In(t;A,B) = 1

π

∫ π

0
2F1(t,1 − t;1 : A + B cosx) cosnx dx, (5.3)

where clearly Iwata’s I (A,B) is I0(
1
2 ;A,B). Now Delves and Joyce [45] found a closed

form for In(t;A,B) namely

In(t;A,B) = (t)n(1 − t)n

(n!)2

[
1

2B
(
√

1 − A − B − √
1 − A + B)2

]

× 2F1(t,1 − t;n + 1 : θ+)2F1(t,1 − t;n + 1 : θ−) (5.4)

where (t)n is the Pochhammer symbol given by �(t + n)/�(n) and

2θ± = 1 ±
√

A2 − B2 −
√

(1 − A)2 − B2. (5.5)

This remarkable expression was first obtained by the application of a Lie group addition
formula applicable to 2F1 first obtained by Miller [46]. It was later confirmed by generalising
Iwata’s original approach. For some particular choices of (l,m,n) the Fourier transform of
the Green’s function may be reduced to an elliptic integral. Some of these elliptic integrals
correspond to Miller’s form and the Green’s function can be evaluated in a few pages of
hand calculation. For example, WS(2n,n,n;αs,ws) was shown to be

WS(2n,n,n;αs,ws) =
(

1

w2
s + 4 − α2

s

) 1
2

× 1

π

∫ π

0
2F1

[
1

4
,

3

4
;1 : 8

(2w2
s − α2

s + α2
s cosx)

(w2
s + 4 − α2

s )
2

]
cos(nx)dx. (5.6)

(It is noteworthy that in obtaining (5.6) the authors met a complex trigonometric integral
whose solution as an elliptic integral was found in Jacobi [47]. An alternative procedure
originated in Cayley [48, 49] combined with an 2F1 transformation of Goursat [50]. When
stuck go to the experts.)

Equation (5.6) is clearly of the form (5.4) and thus the following closed form is obtained

WS(2n,n,n;αs,ws) =
(

1

w2
s + 4 − α2

s

) 1
2 ( 1

4 )n(
3
4 )n

(n!)2

×
[

1

8αs

(√
w2

s − (2 − αs)2 −
√

w2
s − (2 + αs)2

)2
]2n

× 2F1

(
1

4
,

3

4
;n + 1 : η+

)
2F1

(
1

4
,

3

4
;n + 1 : η−

)
, (5.7)
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where

2η± = 1 + ws

(w2
s + 4 − α2

s )
2

[
±16

√
w2

s − α2
s

− (w2
s − 4 − α2

s )

√
w2

s − (2 − α)2
√

w2
s − (2 + α)2

]
. (5.8)

Similarly

wsWS(n,n,n;1,ws) = 1

π

∫ π

0
2F1

[
1

3
,

2

3
;1 : 27

4w3
s

(ws + cosx)

]
cos(nx)dx, (5.9)

gives the closed form

wsWS(n,n,n;1,ws) = ( 1
3 )n(

2
3 )n

(n!)2

[
1

3
(ws −

√
w2

s − 9)

]3n

× 2F1

(
1

3
,

2

3
;n + 1 : ξ+

)
2F1

(
1

3
,

2

3
;n + 1 : ξ−

)
, (5.10)

with

ξ±(ws) = 1

8w2
s

[
4w2

s + (9 − 4w2
s )

√
1 − 9

w2
s

± 27

√
1 − 1

w2
s

]
. (5.11)

Interestingly if in (5.7) and (5.10) n is made zero and ws put equal to 3, two new formulae
for the original Watson integral WS may be obtained. Along with (1.9) we have

WS = (18 + 12
√

2 − 10
√

3 − 7
√

6)

[
2F1

(
1

2
,

1

2
;1 : {(2 − √

3)(
√

3 − √
2)

}2
)]2

=
(

1

2

)[
2F1

(
1

8
,

3

8
;1 : 1

9

)]2

=
(

1

2

)[
2F1

(
1

4
,

3

4
;1 : (

√
2 − 1)2

6

)]2

=
(√

2

3

)[
2F1

(
1

3
,

2

3
;1 : (2 − √

2)2

4

)]2

= (
√

3 − 1)

96π3

[
�

(
1

24

)
�

(
11

24

)]2

. (5.12)

I believe it was Littlewood who once remarked “All equations are identities.” Does (5.12)
support or give the lie to this statement?

6 Generalisations and Recent Manifestations of Watson Integrals

One obvious generalisation of WI is to higher dimensions. A recent survey by Guttmann [51]
is an excellent source of information on these objects. Guttmann notes that for 2-d lattices
WI are given in terms of a single K . For 3-d lattices the solutions appear as products of two
complete elliptic integrals K(k+)K(k−). It appears that this occurs because the underlying
third order ordinary differential equation (ODE) obeyed by these lattices has the almost-
magical Appell (1880) [25] reduction property allowing their solution to be expressed in
terms of an associated second order ODE. For 4-d lattices it appears that the underlying
ODE’s are all of the Calabi-Yau type. This is true for all 5-d lattices as well except for the
5-d FCC lattice.
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Let us consider the 4-d simple cubic lattice in more detail. We have

WS,4d(ws) = 1

π4

∫ π

0

∫ π

0

∫ π

0

∫ π

0

dx dy dz dt

ws − cosx − cosy − cos z − cos t
. (6.1)

It’s P form is

PS,4d(u) = 1

π4

∫ π

0

∫ π

0

∫ π

0

∫ π

0

dx dy dz dt

1 − u
4 u(cosx + cosy + cos z + cos t)

=
(

4

u

)
WS

(
4

u

)
. (6.2)

Now it has been shown that the d-dimensional diamond (D) lattice is simply related to the
(d +1) dimensional hypercubic lattice via an Abel transform—Guttmann and Prellberg [52],
Glasser and Montaldi [53]. The D lattice has not been previously discussed since in 3-d the
analysis involved is identical to the FCC case. In terms of their respective P functions we
have

1

4u + 4
PD,3d

(
4

1 + u

)
= 1

4u
PF,3d

(
3

u

)
. (6.3)

As can be seen when u = 3 the two are identical apart from a numerical factor. Since every-
thing about the 3-d diamond lattice is known, this suggests an interesting approach to the
4-d simple cubic lattice. Indeed it may be shown that the 4-d simple cubic P form may be
expressed as a single integral—Guttmann [51]—namely

PS,4d(u) = 8

π3

∫ 1

0

K(k+)K(k−)√
1 − t2

dt, where

k± = 1

2
± 1

4
u2t2

√
4 − u2 ∗ t2 − 1

4
(2 − u2t2)

√
1 − u2t2. (6.4)

A single integral for WS,4d(ws) was obtained by the author by doing two integrals following
Iwata and a third integral as detailed by Joyce and Zucker [54] leading to

WS,4d(ws) = 8

π3

∫ π

0

K2(k2)p
√

(1 − p2)(1 − 9p2)

(1 − p)3(1 + 3p)
dt, (6.5)

where

γ = ws − cos t, p2 = γ − √
γ 2 − 1

γ + √
γ 2 − 9

, and k2 = 16p3

(1 − p)3(1 + p)
.

Both (6.4) and (6.5) will easily provide numerical values for any ws and u, but one is no
closer to a closed form evaluation.

It has already been noted in Sect. 2 that Bessel functions are connected to WI. For exam-
ple it is simple to express WS as a single integral as follows. First put WS

WS = 1

π3

∫ ∞

0

∫ π

0

∫ π

0

∫ π

0
et(−3+cosx+cosy+cosz) dx dy dz dt, (6.6)
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and since

1

π

∫ π

0
et cosx dx = I0(t), (6.7)

then

WS =
∫ ∞

0
e−3t I 3

0 (t)dt, (6.8)

where I0(t) is a modified Bessel function of the first kind. Now in a recent investigation
Bailey et al. [55] have studied integrals of the form

cn,k =
∫ ∞

0
tkKn

0 (t)dt and tn,2k+1 =
∫ ∞

0
t2k+1I 2

0 (t)Kn−2
0 (t)dt, (6.9)

amongst many others. Here K0 is a modified Bessel function of the second kind and should
not be confused with a complete elliptic integral of the first kind. These integrals arose from
certain Feynmann diagrams, and connections with WI in 3-d have been found though some
are still conjectures. Thus it has been established that

c3,0 =
∫ ∞

0
K3

0 (t)dt = π3

2
WF (3), (6.10)

and conjectured that

t5,1 =
∫ ∞

0
tI 2

0 (t)K3
0 (t)dt = π2WF (15). (6.11)

Also Broadhurst [56] has proved

∫ ∞

0
tI 2

o (t)K2
0 (t)K0(2t)dt = π2

12
WF (3). (6.12)

This may just be the tip of an iceberg and many other similar results possibly remain to be
discovered.

Another appearance of WI is in the field of Mahler measures. The connection arises since
the integrals may be expressed as the derivative with respect to the appropriate complex
variable w of a logarithmic form. For example,

WS(ws) = d

dws

1

π3

∫ π

0

∫ π

0

∫ π

0
log(ws − cosx − cosy − cos z)dx dy dz. (6.13)

These logarithmic integrals are involved in the calculation of the total number of spanning
trees on a hypercubic lattice (Rosengren [57]), and in the theory of collapsing branch poly-
mers (Madras et al. [58]). A rapid way of evaluating these integrals in all dimensions was
devised by Joyce and Zucker [59]. The definition of a Mahler measure, m, of an n-variable
polynomial P (z1, . . . , zn) is (the P here is not to be confused with a modified WI)

m[P (z1, . . . , zn)] =
∫ ∞

0
· · ·

∫ ∞

0
log

∣∣P (
e2πiθ1 , . . . , e2πiθn

)∣∣dθ1 · · ·dθn. (6.14)
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It was noted by Rogers [60] that two of the Mahler measures he was interested in namely

g1(u) = m

(
u + x + 1

x
+ y + 1

y
+ z + 1

z

)
,

g2(u) = m
[−u + 4 + (x + x−1)(y + y−1) + (y + y−1)(z + z−1)

+ (z + z−1)(x + x−1)
]

(6.15)

were closely related to the SC and FCC versions of WI. This clearly came as a surprise to
Rogers, as much as it did to the present author, who until now had zero knowledge of Mahler
measures. The appearance of WI in these unexpected places shows their ubiquitous nature,
and this seems an appropriate juncture to end this review.
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