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PREFACE

Welcome to Mysteries of the Equilateral Triangle (MOTET), my collection
of equilateral triangular arcana. While at first sight this might seem an id-
iosyncratic choice of subject matter for such a detailed and elaborate study, a
moment’s reflection reveals the worthiness of its selection.

Human beings, “being as they be”, tend to take for granted some of their
greatest discoveries (witness the wheel, fire, language, music,...). In Mathe-
matics, the once flourishing topic of Triangle Geometry has turned fallow and
fallen out of vogue (although Phil Davis offers us hope that it may be resusci-
tated by The Computer [70]). A regrettable casualty of this general decline in
prominence has been the Equilateral Triangle.

Yet, the facts remain that Mathematics resides at the very core of human
civilization, Geometry lies at the structural heart of Mathematics and the
Equilateral Triangle provides one of the marble pillars of Geometry. As such,
it is the express purpose of the present missive, MOTET, to salvage the serious
study of the equilateral triangle from the dustbin of Mathematical History [31].

Like its musical namesake, MOTET is polyphonic by nature and requires
no accompaniment [10]. Instead of being based upon a sacred Latin text,
it rests upon a deep and abiding mathematical tradition of fascination with
the equilateral triangle. The principal component voices are those of mathe-
matical history, mathematical properties, Applied Mathematics, mathemati-
cal recreations and mathematical competitions, all above a basso ostinato of
mathematical biography.

Chapter 1 surveys the rich history of the equilateral triangle. This will
entail a certain amount of globetrotting as we visit Eastern Europe, Egypt,
Mesopotamia, India, China, Japan, Sub-Saharan Africa, Ancient Greece, Is-
rael, Western Europe and the United States of America. This sojourn will
bring us into contact with the religious traditions of Hinduism, Buddhism,
Judaism, Christianity and Scientology. We will find the equilateral triangle
present within architecture, sculpture, painting, body armour, basket weaving,
religious icons, alchemy, magic, national flags, games, insects, fruits and veg-
etables, music, television programs and, of course, Mathematics itself. N.B.:
Circa 1000 A.D., Gerbert of Aurillac (later Pope Sylvester II) referred to
the equilateral triangle as “mother of all figures” and provided the formula
A ≈ s2 ·3/7 which estimates its area in terms of the length of its side to within
about 1% ( N. M. Brown, The Abacus and the Cross, Basic, 2010, p. 109).

Chapter 2 explores some of the mathematical properties of the equilateral
triangle. These range from elementary topics such as construction procedures
to quite advanced topics such as packing and covering problems. Old chestnuts
like Morley’s Theorem and Napoleon’s Theorem are to be found here, but so
are more recent rarities such as Blundon’s Inequality and Partridge Tiling.
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Many of these plums may be absorbed through light skimming while others
require considerable effort to digest. Caveat emptor : No attempt has been
made either to distinguish between the two types or to segregate them.

In Chapter 3, we take up the place of the equilateral triangle in Applied
Mathematics. Some of the selected applications, such as antenna design and
electrocardiography, are quite conventional while others, such as drilling a
square hole and wrapping chocolates, are decidedly unconventional. I have
based the selection of topics upon my desire to communicate the sheer breadth
of such applications. Thus, the utilization of the equilateral triangle in detect-
ing gravitational waves, the construction of superconducting gaskets, cartog-
raphy, genetics, game theory, voting theory et cetera have all been included.

The subject of Chapter 4 is the role of the equilateral triangle in Recre-
ational Mathematics. Traditional fare such as dissection puzzles appear on the
menu, but so do more exotic delicacies such as rep-tiles and spidrons. Devo-
tees of the work of Martin Gardner in this area will instantly recognize my
considerable indebtedness to his writings. Given his extensive contributions to
Recreational Mathematics, this pleasant state of affairs is simply unavoidable.

Chapter 5 contains a collection of olympiad-caliber problems on the equi-
lateral triangle selected primarily from previous Mathematical Competitions.
No solutions are included but readily available collections containing complete
solutions are cited chapter and verse. Unless otherwise attributed, the source
material for the biographical vignettes of Chapter 6 was drawn from Biograph-
ical Dictionary of Mathematicians [144], MacTutor History of Mathematics
[230] and Wikipedia, The Free Encyclopedia [330]. Finally, we bid adieu to the
equilateral triangle by taking a panoramic view of its many manifestations in
the world about us. Thus, MOTET concludes with a Gallery of Equilateral
Triangles that has been appended and which documents the multifarious and
ubiquitous appearances of the equilateral triangle throughout the natural and
man-made worlds.

I owe a steep debt of gratitude to a succession of highly professional Interli-
brary Loan Coordinators at Kettering University: Joyce Keys, Meg Wickman
and Bruce Deitz. Quite frankly, without their tireless efforts in tracking down
many times sketchy citations, whatever scholarly value may be attached to
the present work would be substantially diminished. Also, I would like to
warmly thank my Teachers: Harlon Phillips, Oved Shisha, Ghasi Verma and
Antony Jameson. Each of them has played a significant role in my mathemat-
ical development and for that I am truly grateful. Once again, my loving wife
Barbara A. (Rowe) McCartin has lent her Mathematical Artistry to the cover
illustration thereby enhancing the appearance of this work.

Brian J. McCartin
Fellow of the Electromagnetics Academy

Editorial Board, Applied Mathematical Sciences
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Chapter 1

History of the Equilateral
Triangle

The most influential Mathematics book ever written is indisputably Eu-
clid’s The Elements [164]. For two and a half millenia, it has been the Mathe-
matician’s lodestone of logical precision and geometrical elegance. Its influence
was even felt in the greatest physics book ever written, Newton’s Principia
Mathematica [227]. Even though Newton certainly discovered much of his me-
chanics using calculus, he instead presented his results using the geometrical
techniques of Euclid and even the organization of the text was chosen to model
that of The Elements. It should be pointed out, however, that The Elements
has been scathingly criticised by Russell [260] on logical grounds.

As is evident from the Frontispiece, at the very outset of The Elements
(Book I, Proposition I), Euclid considers the construction of an equilateral tri-
angle upon a given line segment. However, this is far from the first appearance
of the equilateral triangle in human history. Rather, the equilateral triangle
can be found in the very earliest of human settlements.

(a) (b) (c)

Figure 1.1: Mesolithic House at Lepenski Vir (6000 B.C.): (a) Photo of Base
of House. (b) Geometry of Base of House. (c) Sloped Thatched Walls. [289]

1



2 History

Lepenski Vir, located on the banks of the Danube in eastern Serbia, is an
important Mesolithic archeological site [289]. It is believed that the people of
Lepenski Vir represent the descendents of the early European hunter-gatherer
culture from the end of the last Ice Age. Archeological evidence of human
habitation in the surrounding caves dates back to around 20,000 B.C. The
first settlement on the low plateau dates back to 7,000 B.C., a time when the
climate became significantly warmer.

Seven successive settlements have been discovered at Lepenski Vir with
remains of 136 residential and sacral buildings dating from 6,500 B.C. to 5,500
B.C.. As seen in Figure 1.1(a), the base of each of the houses is a circular
sector of exactly 60◦ truncated to form a trapezoid. The associated equilateral
triangle is evident in Figure 1.1(b). Figure 1.1(c) presents an artist’s rendering
of how the completed structure likely appeared. The choice of an equilateral
triangular construction principle, as opposed to circular or rectangular, at such
an early stage (“Stone Age”) of human development is really quite remarkable!

Figure 1.2: Snefru’s Bent Pyramid at Dahshur

A fascination with the equilateral triangle may also be traced back to
Pharaonic Egypt. Snefru (2613-2589 B.C.), first pharaoh of the Fourth Dy-
nasty, built the first non-step pyramid. Known as the Bent Pyramid of Dahshur,
it is shown in Figure 1.2. It is notable in that, although it began with a slant an-
gle of 60◦ (which would have produced an equilateral triangular cross-section),
the base was subsequently enlarged resulting in a slant angle of approximately
54◦ (which would have produced equilateral triangular faces) but, due to struc-
tural instability, was altered once again part-way up to a slope of 43◦.

Later pyramids, such as the Great Pyramid of Khufu/Cheops (2551-2528
B.C.) at Giza (see Figure 1.3), were built with a more conservative slope of
approximately 52◦. Although this pyramid is believed to be built based upon
the golden mean [118, pp. 161-163], a construction based upon the equilateral
triangle [115] has been proposed (see Figure 1.4).

Moving to the Fertile Crescent between the Tigres and Euphrates, we en-
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Figure 1.3: Great Pyramid of Khufu
at Giza

Figure 1.4: Great Pyramid Cross-
Section [115]

Figure 1.5: Old Babylonian Clay
Tablet BM 15285 [259]

Figure 1.6: Iron Haematite Babylo-
nian Cylinder [206]
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counter the sister-states of Babylonia and Assyria who competed for dominance
over what is now Iraq. Babylonia was a land of merchants and agriculturists
presided over by a priesthood. Assyria was an organized military power ruled
by an autocratic king.

Old Babylonian clay tablet BM 15285 is a mathematical “textbook” from
southern Mesopotamia dating back to the early second-millenium B.C. The
portion shown in Figure 1.5 contains a problem which is believed to have
involved an approximate construction of the equilateral triangle [259, pp. 198-
199]. The iron haematite Babylonian cylinder of Figure 1.6 prominently dis-
plays an equilateral triangle as what is believed to be a symbol of a sacred
Trinity [206, p. 605]. Such cylinders were usually engraved with sacred fig-
ures, accompanied by a short inscription in Babylonian cuneiform characters,
containing the names of the owner of the seal and of the divinity under whose
protection he had placed himself.

Figure 1.7: Asshur-izir-pal [250] Figure 1.8: Triangular Altar [250]

Figure 1.7 shows a stele of the Assyrian King Asshur-izir-pal excavated at
Nimrud [250, p. 97]. In front of this figure, marking the object of its erection, is
an equilateral triangular altar with a circular top. Here were laid the offerings
to the divine monarch by his subjects upon visiting his temple. Figure 1.8
shows another triangular Assyrian altar excavated at Khorsabad [250, p. 273].

Moving further East, we encounter Hinduism which is the largest and in-
digenous religious tradition of India [157]. The name India itself is derived
from the Greek Indus which is further derived from the Old Persian Hindu.
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Figure 1.9: Kali Yantra Figure 1.10: Chennai Temple [201]

A yantra is a Hindu mystical diagram composed of interlocking geometrical
shapes, typically triangles, used in meditation when divine energy is invoked
into the yantra by special prayers. Figure 1.9 shows the yantra of Kali (Ka-
lika), Hindu goddess associated with eternal energy. It is composed of five
concentric downward-pointing equilateral triangles surrounded by a circular
arrangement of eight lotus flowers. The five equilateral triangles symbolize
both the five senses and the five tattvas (air, earth, fire, water and spirit).

The ancient Marundheeswarar Temple of Lord Shiva in Thiruvanmayur,
South Chennai has a series of pillars with beautiful geometric designs and
mathematical motifs [201]. Figure 1.10 displays a pattern of three overlapping
equilateral triangles surrounding a central four-petalled flower. These three
equilateral triangles are connected by a Brunnian link in that no two of them
are linked together but the three are collectively linked; if one of the triangles
is removed then the other two fall apart. These pillars are located near the
sanctum of the goddess Tripurasundari, “belle of the three cities”. The implied
triad of this motif is pregnant with symbolism. The archetypal mantra Aum
has three parts; the yogi’s three principal nadis (bodily energy channels) of
the ida, the pengala and the sushumna form a core tantric triad; the three
sakthis (powers) derived from the goddess are the iccha (desire), the gnana
(knowledge) and the kriya (action); and, of course, there is the triad of Brahma
(The Creator), Vishnu (The Preserver) and Shiva (The Destroyer).

Reaching the Orient, in traditional Chinese architecture, windows were
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Figure 1.11: Chinese Window Lattices [91]

made of a decorative wooden lattice with a sheet of rice paper glued to the in-
side in order to block the draft while letting in the light. Iconographic evidence
traces such lattices all the way back to 1000 B.C. during the Chou Dynasty.
They reached their full development during the Qing Dynasty beginning in
1644 A.D. when they began to display a variety of geometrical patterns [217].
Figure 1.11 displays two such examples with an equilateral triangular motif
[91].

The Three Pagodas of Chongsheng Monastery are an ensemble of three
independent pagodas arranged at the vertices of an equilateral triangle located
near the town of Dali in the Yunnan Province of China (Figure 1.12). Unique
in China, legend has it that the Three Pagodas were built to deter natural
disasters created by dragons [333]. The main pagoda, known as Qianxun
Pagoda, was built during 824-840 A.D. by King Quan Fengyou of the Nanzhao
state. Standing at 227 feet, it is one of the highest pagodas of the Tang Dynasty
(618-907 A.D.). This central pagoda is square-shaped and is composed of
sixteen stories, each story with multiple tiers of upturned eaves. There is a
carved shrine containing a white marble sitting Buddha statue at the center
of each facade of every story. The body of the pagoda is hollow from the
first to the eighth story and was used to store sculptures and documents. The
other two sibling pagodas, built around one hundred years later, stand to
the northwest and southwest of Qianxun Pagoda. They are both solid and
octagonal with ten stories and stand to a height of 140 feet. The center of
each side of every story is decorated with a shrine containing a Buddha statue.

During the Edo period (1603-1867), when Japan isolated itself from the
western world, the country developed a traditional Mathematics known as
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Figure 1.12: The Three Pagodas (900 A.D.)

Figure 1.13: Japanese Mathematics:
Wasan [299]

Figure 1.14: Japanese Chainmail:
Hana-Gusari [329]
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Wasan which was usually stated in the form of problems, eventually appearing
in books which were either handwritten with a brush or printed from wood
blocks. The problems were written in a language called Kabun, based on
Chinese, which cannot be readily understood by modern Japanese readers
even though written Japanese makes extensive use of Chinese characters [111].
One such problem due to Tumugu Sakuma (1819-1896) is illustrated in Figure
1.13. The sides AB, BC and CA of an equilateral triangle ABC pass through
three vertices O, L and M of a square. Denoting the lengths of OA, LB and
MC by a, b and c, respectively, show that a = (

√
3 − 1)(b + c) [299]. F.

Suzuki has subsequently generalized this problem by replacing the square by
an isosceles triangle [300]. (See Recreation 27: Sangaku Geometry.)

Chainmail is a type of armour consisting of small metal rings linked together
in a pattern to form a mesh. The Japanese used mail (kusari) beginning in
the Nambokucho period (1336-1392). Two primary weave patterns were used:
a square pattern (so gusari) and a hexagonal pattern (hana gusari). The base
pattern of hana gusari is a six-link equilateral triangle (Figure 1.14) thereby
permitting polygonal patterns such as triangles, diamonds and hexagons [329].
These were never used for strictly mail shirts, but were instead used over
padded steel plates or to connect steel plates. The resulting mail armour
provided an effective defense against slashing blows by an edged weapon and
penetration by thrusting and piercing weapons.

Figure 1.15: African Eheleo Funnel [140]

The equilateral triangle appears in many other human cultures. In order
to illustrate this, let us return for a moment to the African continent. A
pyramidal basket, known as eheleo in the Makhuwa language, is woven in
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regions of Sub-Saharan Africa such as the North of Mozambique, the South
of Tanzania, the Congo/Zaire region and Senegal [140]. In Mozambique and
Tanzania, it is used as a funnel in the production of salt. As seen in Figure
1.15, the funnel is hung on a wooden skeleton and earth containing salt is
inserted. A bowl is placed beneath the funnel, hot water is poured over the
earth in the funnel, saltwater is caught in the bowl and, after evaporation, salt
remains in the bowl. The eheleo basket has the form of an inverted triangular
pyramid with an equilateral triangular base and isosceles right triangles as its
three remaining faces.

Figure 1.16: Parthenon and Equilateral Triangles [54]

We turn next to the cradle of Western Civilization: Ancient Greece. Figure
1.16 shows the portico of the Parthenon together with superimposed concentric
equilateral triangles, each successive triangle diminished in size by one-half
[54]. This diagram “explains” the incscribing rectangle, the position of the
main cornice, the underside of the architrave, and the distance between the
central columns.

The Pythagorean Tetraktys is shown in Figure 1.17, which is from Robert
Fludd’s Philosophia Sacra (1626), where the image shows how the original
absolute darkness preceded the Monad (1), the first created light; the Dyad (2)
is the polarity of light (Lux) and darkness (Tenebrae), with which the Humid
Spirit (Aqua) makes a third; the combination of the four elements (Ignis, Aer,
Aqua, Terra) provides the foundation of the world. To the Pythagoreans, the
first row represented zero-dimensions (a point), the second row one-dimension
(a line defined by two points), the third row two-dimensions (a plane defined by
a triangle of three points) and the fourth row three-dimensions (a tetrahedron



10 History

Figure 1.17:
Pythagorean Tetraktys

Figure 1.18: Neopy-
thagorean Tetraktys

Figure 1.19: Triangular
Numbers

defined by four points). Together, they symbolized the four elements: earth,
air, fire and water. The tetraktys (four) was seen to be the sacred decad (ten)
in disguise (1+2+3+4=10). It also embodies the four main Greek musical
harmonies: the fourth (4:3), the fifth (3:2), the octave (2:1) and the double
octave (4:1) [148].

For neophythagoreans [276], the tetraktys’ three corner dots guard a hexagon
(6, symbolizing life) and the hexagon circumscribes a mystic hexagram (two
overlapping equilateral triangles, upward-pointing for male and downward-
pointing for female, denoting divine balance) enclosing a lone dot (Figure 1.18).
This dot represents Athene, goddess of wisdom, and symbolizes health, light
and intelligence. The tetraktys is also the geometric representation of the
fourth of the triangular numbers ∆n = n(n+1)

2
(Figure 1.19).

Figure 1.20: Hebrew
Tetragrammaton

Figure 1.21: Arch-
bishop’s Coat of Arms

Figure 1.22: Tarot
Card Spread

The tetraktys has also been passed down to us in the Hebrew Tetragramma-
ton of the Kabbalah (Figure 1.20) and the Roman Catholic archbishop’s coat
of arms (Figure 1.21). The tetraktys is also used in one Tarot card reading ar-
rangement (Figure 1.22). The various positions provide a basis for forecasting
future events.
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Figure 1.23: Platonic Triangles: (a) Earth. (b) Water. (c) Air. (d) Fire. [176]

In his Timaeus, Plato symbolizes ideal or real Earth as an Equilateral Tri-
angle [176, pp. 16-17] (Figure 1.23). A Platonic (regular) solid is a convex
polyhedron whose faces are congruent regular polygons with the same number
of faces meeting at each vertex. Thus, all edges, vertices and angles are con-
gruent. Three of the five Platonic solids have all equilateral triangular faces
(Figure 1.24): the tetrahedron (1), octahedron (3) and icosahedron (4) [66].
Of the five, only the cube (2) can fill space. The isosahedron, with its twenty
equilateral triangular faces meeting in fives at its twelve vertices, forms the
logo of the Mathematical Association of America. By studying the Platonic
solids, Descartes discovered the polyhedral formula P = 2F + 2V − 4 where P
is the number of plane angles, F is the number of faces, and V is the number
of vertices [3]. Euler independently introduced the number of edges E and
wrote his formula as E = F + V − 2 [252].

Figure 1.24, which was derived from drawings by Leonardo da Vinci, has
an interesting history [44]. Because Leonardo was born on the wrong side
of the blanket, so to speak, he was denied a university education and was
thus “unlettered”. This meant that he did not read Latin so that most for-
mal learning was inaccessible to him. As a result, when he was middle-aged,
Leonardo embarked on an ambitious program of self-education that included
teaching himself Latin. While in the employ of Ludovico Sforza, Duke of Mi-
lan, he made the fortuitous acquaintance of the famous mathematician Fra
Luca Pacioli. Pacioli guided his thorough study of the Latin edition of Eu-
clid’s Elements thereby opening a new world of exploration for Leonardo. Soon
after, Leonardo and Fra Luca decided to collaborate on a book. Written by
Pacioli and illustrated by Leonardo, De Divina Proportione (1509) contains an
extensive review of proportion in architecture and anatomy, in particular the
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Figure 1.24: Five Platonic Solids
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golden section, as well as detailed discussions of the Platonic solids. It contains
more than sixty illustrations by Leonardo including the skeletal forms of the
Platonic solids of Figure 1.24. It is notable that this is the only collection of
Leonardo’s drawings that was published during his lifetime. Remarkably, this
work was completed contemporaneously with his magnificent The Last Supper.

Figure 1.25: Thirteen Archimedean Solids

An Archimedean (semiregular) solid is a convex polyhedron composed of
two or more regular polygons meeting in identical vertices. Nine of the thir-
teen Archimedean solids have some equilateral triangular faces (Figure 1.25):
truncated cube (1), truncated tetrahedron (2), truncated dodecahedron (3),
cuboctahedron (8), icosidodecahedron (9), (small) rhombicuboctahedron (10),
(small) rhombicosidodecahedron (11), snub cube (12) and snub dodecahedron
(13) [66]. Of the thirteen, only the truncated octahedron (5) can fill space.
Archimedes’ work on the semiregular solids has been lost to us and we only
know of it through the later writings of Pappus.
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Figure 1.26: Eight Convex Deltahedra

Figure 1.27: Two Views of Almost-Convex 18-Sided “Deceptahedron” [134]

Figure 1.28: Non-Convex 8-Sided Deltahedron [134]



History 15

A deltahedron is a polyhedron whose faces are congruent non-coplanar
equilateral triangles [322]. Although there are infinitely many deltahedra,
Freudenthal and van der Waerden showed in 1947 that only eight of them
are convex, having 4 (tetrahedron), 6 (triangular dipyramid), 8 (octahedron),
10 (pentagonal dipyramid), 12 (dodecadeltahedron), 14 (tetracaidecadeltahe-
dron), 16 (heccaidecadeltahedron) and 20 (icosahedron) faces (Figure 1.26)
[66]. These, together with the cube and dodecahedron, bring the number of
convex polyhedra with congruent regular faces up to ten. The absence of an
18-sided convex deltahedron is most peculiar. Figure 1.27 displays two views
of an 18-sided deltahedron due to E. Frost that is so close to being convex
that W. McGovern has named it a “deceptahedron” [134]. In addition to the
octahedron, there is the non-convex 8-sided deltahedron shown in Figure 1.28
[134]. Whereas the regular octahedron has four edges meeting at each of its six
vertices, this solid possesses two vertices where three edges meet, two vertices
where four edges meet and two vertices where five edges meet.

Figure 1.29: The Three Regular Tilings of the Plane

One of the three regular tilings of the plane is comprised of equilateral
triangles (Figure 1.29). Six of the eight semiregular tilings of the plane have
equilateral triangular components (Figure 1.30). Study of such tilings was
inaugurated in the Harmonice Mundi of Johannes Kepler [156].

Figure 1.30: The Eight Semiregular Tilings of the Plane
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(a) (b) (c)

Figure 1.31: Hexagram: (a) Magic Hexagram. (b) Star of David. (c) Chinese
Checkers

A hexagram is a six-pointed star, with a regular hexagon at its center,
formed by combining two equilateral triangles (Figure 1.31). Throughout the
ages and across cultures, it has been one of the most potent symbols used in
magic [49]. The yantra of Vishnu, the Supreme God of the Vishnavite tradition
of Hinduism, contains such a hexagram [193]. Mathematically, a normal magic
hexgram (Figure 1.31(a)) arranges the first 12 positive integers at the vertices
and intersections in such a way that the four numbers on each line sum to the
magic constant M = 26 [87, p. 145]. This can be generalized to a normal
magic star which is an n-pointed star with an arrangement of the consecutive
integers 1 thru 2n summing to a magic number of M = 4n + 2 [308].

The Star of David (Figure 1.31(b)) is today generally recognized as a sym-
bol of Jewish identity. It is identified with the Shield of David in Kabbalah,
the school of thought associated with the mystical aspect of Rabbinic Judaism.
Named after King David of ancient Israel, it first became associated with the
Jews in the 17th Century when the Jewish quarter of Vienna was formally
distinguished from the rest of the city by a boundary stone having a hexagram
on one side and a cross on the other. After the Dreyfus affair in 19th Century
France, it became internationally associated with the Zionist movement. With
the establishment of the State of Israel in 1948, the Star of David became
emblazoned on the Flag of Israel [278].

Figure 1.31(c) contains the playing board for the inappropriately named
Chinese Checkers. The game was invented not in ancient China but in Ger-
many by Ravensburger in 1893 under the name “Stern-Halma” as a variation
of the older American game of Halma. “Stern” is German for star and refers
to the star-shaped board in contrast to the square board of Halma. In the
United States, J. Pressman & Co. marketed the game as “Hop Ching Check-
ers” in 1928 but quickly changed the name to “Chinese Checkers” as it gained
popularity. This was subsequently introduced to China by the Japanese [236].
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Figure 1.32: The Last Supper (Da Vinci: 1498)

Figure 1.33: Supper at Emmaus
(Pontormo: 1525)

Figure 1.34: Christ of Saint John of
the Cross (Dali: 1951)
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The equilateral triangle is a recurring motif in Christian Art [222]. Front
and center in this genre is occupied by Leonardo da Vinci’s The Last Sup-
per (see Figure 1.32). Begun in 1495 and finished in 1498, it was painted on
the rear wall of the Refectory at the Convent of Santa Maria delle Grazie.
This mural began to deteriorate in Leonardo’s own lifetime. Its most recent
restoration took twenty years and was only completed in 1999. In this great
masterpiece, the body of Jesus is a nearly perfect equilateral triangle symbol-
izing the Trinity. The serene calm of this sacred figure anchors the utter chaos
which has been unleashed by His announcement of the upcoming betrayal by
one of the attending apostles. The theme of Trinity is further underscored by
Leonardo’s partitioning of the apostles into four groups of threes.

The role of the equilateral triangle is even more explicit in Jacopo Pon-
tormo’s 1525 painting Supper at Emmaus (see Figure 1.33). Not only is the
figure of Jesus an equilateral triangle but a radiant triangle with a single eye
hovers above Christ’s head. This symbolizes the all-seeing Eye of God with
the triangle itself representing the Holy Trinity of God the Father, God the
Son and God the Holy Spirit. This painting portrays the occasion of the first
appearance of Christ to two disciples after His Resurrection.

In Salvador Dali’s 1951 Christ of Saint John of the Cross (see Figure 1.34),
the hands and feet of Our Lord form an equilateral triangle symbolizing Father,
Son and Holy Spirit. It depicts Jesus Christ on the cross in a darkened sky
floating over a body of water complete with a boat and fishermen. It is devoid
of nails, blood and crown of thorns because Dali was convinced by a dream
that these features would mar his depiction of the Saviour. This same dream
suggested the extreme angle of view as that of the Father. The name of the
painting derives from its basis in a drawing by the 16th Century Spanish friar
Saint John of the Cross.

The equilateral triangle was frequently used in Gothic architectural design
[30]. Figure 1.35 presents a transveral section of the elevation of the Cathedral
(Duomo) of Milan drawn by Caesare Caesariano and published in his 1521
Italian translation of Vitruvius’ De Architectura. Caesariano was a student of
da Vinci and one of the many architects who produced designs for the Milan
Cathedral over the nearly six centuries of its construction from 1386 to 1965.
Even though this design was ultimately abandoned, it is significant in that
it is one of the rare extant plans for a Gothic cathedral. It clearly shows
the application of ad triangulum design which employs a lattice of equilateral
triangles to control placement of key features and proportions of components.
This technique is combined with one utilizing a system of concentric circles
[285]. It is clear that the equilateral triangle was an important, although by no
means the only, geometric design element employed in the the construction of
the great Gothic cathedrals. This ad triangulum design principle was adopted
by Renaissance artists, particularly in their sacred paintings.
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Figure 1.35: Milan Cathedral (Caesariano: 1521) [142]
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Figure 1.36: Gothic Mason’s Marks [142]

In the Gothic Masons Guilds [142], the Companion (second degree of initi-
ation) received a personal mason’s mark at the end of his probationary period.
This seal, which would be his sign or password for the remainder of his life,
was not secret and would be used to identify his work and to gain admission
when visiting other lodges. Many of the mason’s marks used by these master
builders to identify themselves and their work were based upon the equilateral
triangle [142, pp. 119-123] (Figure 1.36).

Figure 1.37: Heraldic Cross of the Knights Templar

The Order of the Temple (The Knights Templar) was organized in France
at the commencement of the First Crusade in 1096 A.D. [15]. They trained
like modern day commandos and battled to the death. The Knights Templar
battled like demons for hundreds of years throughout the various Crusades,
meeting their end at Acre, their last stronghold in the Holy Lands, in 1291.
Most of them were butchered by the Moslems and the survivors made their
way to France where their Order was eventually suppressed by the Catholic
Church. The remaining Knights Templar became affiliated with Freemasonry.
The Heraldic Cross of the Knights Templar (a.k.a. cross formée, Tatzenkreuz,
Iron cross, Maltese cross, Victoria cross) is comprised of an arrangement of
four equilateral triangles joined at a common vertex (Figure 1.37).
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Figure 1.38: Masonic Royal Arch Jewel

Freemasonry is a fraternal organization that arose in the late 16th to early
17th Centuries [174]. Freemasonry uses metaphors of stonemasons’ tools and
implements to convey a system of beliefs based upon charitable work, moral
uprightness and fraternal friendship. It has been described as a “society with
secrets” rather than a secret society. The private aspects of Freemasonry con-
cern the modes of recognition amongst members and particular elements within
their rituals. Both Wolfgang Amadeus Mozart and George Washington were
prominent Freemasons and Masonic Lodges still exist today. The equilateral
triangle is used in Freemasonry as the symbol of the Grand Architect of the
Universe [29] (Figure 1.38).

Figure 1.39: Rosicrucian Cross

Rosicrucianism (The Brotherhood of the Rosy Cross), on the other hand,
was a truly secret society which arose roughly contemporaneously in Germany
in the early 17th Century [50]. At times referred to as the College of Invisibles,
this secret brotherhood of alchemists and sages sought to transform the arts,
sciences, religion, and political and intellectual landscape of Europe. It is
believed likely that both Kepler and Descartes were Rosicrucians [3]. There are
several modern day groups that have styled themselves after the Rosicrucians.
The equilateral triangle is also used in the symbolism of the Rosicrucians
(Figure 1.39).
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Figure 1.40: Vesica Piscis

The vesica piscis (“fish’s bladder”) [204] (Figure 1.40) was the central di-
agram of Sacred Geometry for the Christian mysticism of the Middle Ages.
It was the major thematic source for the Gothic cathedrals such as that
at Chartres. Renaissance artists frequently surrounded images of Jesus and
framed depictions of the Virgin Mary with it [285]. Its intimate connection
with

√
3 is revealed by the presence of the equilateral triangles in Figure 1.40.

It in fact predates Christianity [170] and is known in India as mandorla (“al-
mond”). It was used in early Mesopotamia, Africa and Asia as a symbol of
fertility. To the Pythagoreans, it symbolized the passage of birth. Figure 1.41
shows the image of Jesus Christ enclosed in a vesica piscis from a medieval
illuminated manuscript. Such images allude to his life as a “fisher of men”.

Figure 1.41: Jesus Christ

Utilizing a vesica piscis and a large triangle within it that is further subdi-
vided, Figure 1.42 reveals the tripartite structure of many naturally occurring
objects [271].
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Figure 1.42: Three-Part Harmony [271]
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Figure 1.43: Alchemical Symbols

Alchemy is an ancient practice concerned with changing base metals into
gold, prolonging life and achieving ultimate wisdom. In particular, alchemy is
the predecessor of modern inorganic chemistry [154]. Alchemy has been widely
practiced for at least 5,000 years in ancient Egypt, Mesopotamia, India, Persia,
China, Japan, Korea, the classical Greco-Roman world, the medieval Islamic
world, and medieval Europe up to the 17th Century. (Isaac Newton devoted
considerably more of his writing to alchemy than to physics and Mathematics
combined! [328]) The alchemical symbols for the four elements (Earth, Wind,
Air and Fire) are all composed of equilateral triangles (Figure 1.43).

Figure 1.44: Scientology Symbol

Fascination with the equilateral triangle persists to this day. The Church
of Scientology [207] was founded by science fiction author L. Ron Hubbard in
1953 based upon his principles of Dianetics [187]. It counts among its adherents
the movie stars John Travolta and Tom Cruise as well as the musicians Chick
Corea and Edgar Winter. The Scientology Symbol is the letter S together
with two equilateral triangles (Figure 1.44). The upper (KRC) triangle sym-
bolizes knowledge, responsibility and control while the lower (ARC) triangle
symbolizes affinity, reality and communication.
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Figure 1.45: Augmented Triad [218]

An equilateral triangle on the circle-of-fifths [218] produces a musical chord
known as an augmented triad (Figure 1.45). Unlike other kinds of triads, such
as major, minor and diminished, it does not naturally arise in a diatonic scale.
However, the augmented triad does occur in the tonal music of Classical com-
posers such as Haydn, Beethoven and Brahms. The augmented triad has also
been used by Romantic composers such as Liszt and Wagner to suspend tonal-
ity. Schubert lead the way in organizing many pieces, such as his Wanderer
Fantasy, by descending major thirds which is the component interval of the
augmented triad. Jazz musicians, such as Miles Davis and John Coltrane,
have freely used chord progressions utilizing downward root movement by ma-
jor thirds as a substitute for the traditional ii − V − I progression.

(a) (b)

Figure 1.46: Equilateral Triangular Sculpture: (a) Intuition by J. Robinson.
(b) H. S. M. Coxeter holding a model of G. Odom’s 4-Triangle Sculpture. [61].
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Modern sculpture has not been immune to the influence of the equilat-
eral triangle. A hollow triangle is defined as the planar region between two
homothetic and concentric equilateral triangles, i.e. a flat triangular ring [61].

Intuition by Australian sculptor John Robinson (Figure 1.46(a)) is com-
posed of three such triangular rings forming a structure in which certain points
on two outer edges of each ring fit into two inner corners of the next, in cyclic
order. The topology of the assembly is that of the “Borromean rings” (all
three triangles are linked, but no pair is linked), and its symmetry group is
C3, cyclically permuting the three hollow triangles. H. Burgiel et al. [37] have
shown that, for the structure to be realizable in three dimensions, the ratio
of the edge length of the outer triangle to the inner triangle must lie strictly
between one and two. In fact, Robinson utilized a ratio of (2

√
6+1)/3 ≈ 1.966.

Independently, American artist George Odom assembled four such triangu-
lar rings (with edge ratio 2:1) to form a rigid structure in which the midpoints
of the three outer edges of each ring fit into inner corners of the three remain-
ing rings (Figure 1.46(b)). The four rings are mutually interlocked and the
symmetry group is the octahedral group O or S4: 24 rotations permuting the
4 hollow triangles in all of the 4! possible ways.

Figure 1.47: Gateway Arch

As an example of the equilateral triangle in contemporary architecture,
consider the Gateway Arch shown in Figure 1.47. (For other examples see
the Gallery of Equilateral Triangles in Appendix A.) It is part of the Jeffer-
son National Expansion Memorial on the Saint Louis riverfront. Each leg is
an equilateral triangle with sides 54 feet long at ground level and tapering
to 17 feet at the top. The stainless-steel-faced Arch spans 630 feet between
the outer faces of its equilateral triangular legs at ground level and its top
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soars 630 feet into the sky. The interior of the Arch is hollow and contains
a tram transport system leading to an observation deck at the top. This is
complemented by two emergency stairwells of 1076 steps each. The Arch has
no real structural skeleton. Its inner and outer steel skins are joined to form a
composite structure which provides its strength and permanence.

(a) (b) (c)

Figure 1.48: Star Trek : (a) Planet Triskelion in Trinary Star System M24α
.

(b) Triskelion Battlefield. (c) Kirk confronts the Providers.

Pop culture has also felt the sway of the equilateral triangle. In the 1960’s
cult classic Star Trek, the 1968 episode The Gamesters of Triskelion (Figure
1.48) sees Captain Kirk, Lieutenant Uhura and Ensign Chekov beamed to the
planet Triskelion which orbits one of a trinary star system (a). There they
must do battle with combatants kidnapped from other worlds on a hexagonal
battlefield with three spiral arms surrounding a central equilateral triangle (b);
all this to satisfy the yearn for wagering of the three disembodied Providers
who rule Triskelion from their equilateral triangular perch (c).

In the 1990’s science fiction epic Babylon 5, the Triluminary was a crystal
shaped as an equilateral triangle with a small chip at its center. The holiest
of relics in Minbari society, it was a multifaceted device. Its primary function
was to glow in the presence of the DNA of the Minbari prophet Valen. Its use
brought the Earth-Minbari War to an end when it indicated that Commander
Jeffrey Sinclair of Earth had Valen’s DNA and thus a Minbari soul thereby
prompting a Minbari surrender. (Unlike Humans, Minbari do not kill Minbari!)
A Triluminary (there were three of them in existence) was also used to induct
a new member into the ruling Grey Council of Minbar. As shown in Figure
1.49(a), Minbari Ambassador Delenn uses a Triluminary as part of a device
which transforms her into a Human-Minbari hybrid in order to foster mutual
understanding between the two races. The Triluminary is emblematic of the
Minbari belief in the Trinity. As Zathras (caretaker of the Great Machine on
Epsilon III) explains to Sinclair, Delenn and Captain John Sheridan: three
castes, three languages, the Nine of the Grey Council (three times three), “All
is three, as you are three, as you are one, as you are the One”. Sinclair then
travels back in time one thousand years, uses the Triluminary (Figure 1.49(b))
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(a) (b)

Figure 1.49: Triluminary (Babylon 5 ): (a) Delenn. (b) Sinclair.

to become Valen (“a Minbari not born of Minbari”), and leads the forces of
Light to victory over the Shadows.

Figure 1.50: Symbol of the Deathly Hallows (Harry Potter)

Figure 1.50 displays the symbol of the Deathly Hallows (composed of an
equilateral triangle together with incircle and altitude) from the book/film
Harry Potter and the Deathly Hallows which represents three magical items:
the Elder Wand, the Resurrection Stone and the Cloak of Invisibility. He who
unites the Hallows is thereby granted the power to elude Death.

In retrospect, one is struck by the universal appeal of the equilateral tri-
angle. Its appearances date back to the beginnings of recorded history and
interest in it has transcended cultural boundaries. Since the equilateral trian-
gle may be studied using only the rudiments of Mathematics, there is a certain
temptation to dismiss it as mathematically trivial. However, there are aspects
of the equilateral triangle that are both mathematically deep and stunningly
beautiful. Let us now explore some of the many facets of this glistening jewel!



Chapter 2

Mathematical Properties of the
Equilateral Triangle

Figure 2.1: Equilateral Triangle and Friends

Property 1 (Basic Properties). Given an equilateral triangle of side s:

perimeter (p) 3s

altitude (a) s
√

3
2

area (A) s2
√

3
4

inradius (r) s
√

3
6

circumradius (R) s
√

3
3

incircle area (Ar) s2 π
12

circumcircle area (AR) s2 π
3

29
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The relation R = 2r, which is a consequence of the coincidence of the
circumcenter (intersection of perpendicular bisectors) and the incenter (inter-
section of angle bisectors) with the centroid (intersection of medians which
trisect one another), is but an outer manifestation of the hidden inner rela-
tions of Figure 2.1. It immediately implies that the area of the annular region
between the circumcircle and the incircle is three times the area of the latter.
In turn, this leads directly to the beautiful relation that the sum of the shaded
areas equals the area of the incircle!

(a) (b) (c)

Figure 2.2: Construction of Equilateral Triangle: (a) Euclid [164]. (b) Hopkins
[185]. (c) Weisstein [320].

Property 2 (Construction of Equilateral Triangle). An equilateral may
be constructed with straightedge and compass in at least three ways.

1. Figure 2.2(a): Let AB be a given line segment. With center A and radius
AB, construct circle BCD. With center B and radius BA, construct
circle ACE. From their point of intersection C, draw line segments CA
and CB. ∆ABC is equilateral [164].

2. Figure 2.2(b): Given a circle with center F and radius FC, draw the arc
DFE with center C and radius CF . With the same radius, and D and
E as centers, set off points A and B. ∆ABC is equilateral [185].

3. Figure 2.2(c): Draw a diameter OP0 of a circle and construct its perpen-
dicular bisector P3OB; bisect OB in point D and extend the line P1P2

through D and parallel to OP0. ∆P1P2P3 is then equilateral [320].

Property 3 (Rusty Compass Construction). Some compasses are rusty,
so that their opening cannot be changed. Given such a rusty compass whose
opening is at least half the given side length AB (so that the constructed circles
intersect), it is possible to extend the Euclidean construction to a corresponding
five-circle construction [237].
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A B

D

E F

C

Figure 2.3: Five-Circle Rusty Compass Construction

All five circles in Figure 2.3 have the same radius. The first two are centered
at the given points A and B. These two circles intersect at two points. Call
one of them D and make it the center of a third circle which intersects the
first two circles at two new points E and F (in addition to A and B) which
again serve as centers of two additional circles. These last two circles intersect
at D and one additional point, C. ∆ABC is equilateral. This follows since
the central angle BFD is, by construction, equal to 60◦, so that the inscribed
angle BCD is equal to half of that, or 30◦. The same is true of angle ACD,
so that angle BCA is equal to 60◦. By symmetry, triangle ABC is isosceles
(AC = BC) thereby making ∆ABC equilateral. According to Pedoe [237, p.
xxxvi], a student stumbled upon this construction while idly doodling in class,
yet it has generated considerable research in rusty compass constructions.

Figure 2.4: Equation of Equilateral Triangle [320]

Property 4 (Equation of Equilateral Triangle). An equation for an equi-
lateral triangle with R = 1 (s =

√
3) (Figure 2.4) [320]:

max (−2y, y − x
√

3, y + x
√

3) = 1.
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Figure 2.5: Trisection Through Bisection

Property 5 (Trisection Through Bisection). In an equilateral triangle,
the altitudes, angle bisectors, perpendicular bisectors and medians coincide.

These three bisectors provide the only way to divide an equilateral triangle
into two congruent pieces using a straight-line cut (Figure 2.5 left). Interest-
ingly, these very same bisectors, suitably constrained, also provide the only two
trisections of the equilateral triangle into congruent pieces using just straight-
line cuts (Figure 2.5 center and right).

Figure 2.6: Triangular Numbers

Property 6 (Triangular Numbers). The first six triangular numbers are
on display in Figure 2.6. They are defined as:

∆n =
n

∑

k=1

k =
n(n + 1)

2
=

(

n + 1
2

)

.

As such, ∆n solves the “handshake problem” of counting the number of
handshakes in a room full of n + 1 people if each person shakes hands once
with each other person. They are closely related to other figurate numbers
[55]. For example, the sum of two consecutive triangular numbers is a square
number with the sum being the square of their difference:

∆n + ∆n−1 = 1 + 3 + 5 + · · · + (2n − 1) = n2 = (∆n − ∆n−1)
2.
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Also, the sum of the first n triangular numbers is the nth tetrahedral number:

n
∑

k=1

∆k =
n(n + 1)(n + 2)

6
.

The triangular numbers are also subject to many beautiful recurrence relations
such as:

∆2
n+∆2

n−1 = ∆n2 , 3∆n+∆n−1 = ∆2n, 3∆n+∆n+1 = ∆2n+1, ∆2
n+1−∆2

n = (n+1)3.

Finally, the triangular number ∆n = n + (n − 1) + · · · + 2 + 1 is the additive
analog of the multiplicative factorial n! = n · (n − 1) · · · 2 · 1 [320].

(a) (b) (c)

Figure 2.7: Equitriangular Unit of Area: (a) ETU. (b) Equilateral Area. (c)
Scalene Area. [255]

Property 7 (Equitriangular Unit of Area). Motivated by the identity
∆n + ∆n−1 = n2, W. Roberts has introduced [255] the equitriangular unit of
area (etu) shown in Figure 2.7(a).

Naturally, the area of an equilateral triangle of side n is then equal to n2

etu, as seen in Figure 2.7(b). Referring to Figure 2.7(c), the area of a scalene
triangle is simply ab etu where a is the 60◦ altitude of the vertex above base b.

Property 8 (Viviani’s Theorem). For any point inside an equilateral tri-
angle, the sum of the distances to the sides is equal to the height of the triangle.
(Figure 2.8: PE + PF + PG = h.)

The same is true if the point lies outside the triangle so long as signed
distances are employed [322]. Conversely, if inside a triangle there is a circular
region in which the sum of the distances from any point to the sides of the
triangle is constant then the triangle is equilateral [48].

Property 9 (Ternary Diagram). Viviani’s Theorem implies that lines par-
allel to the sides of an equilateral triangle provide (homogeneous/barycentric/
areal/trilinear) coordinates [275] for ternary diagrams for representing three
quantities A, B, C whose sum is a constant (which can be normalized to unity).
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Figure 2.8: Viviani’s Theorem Figure 2.9: Ternary Diagram

With reference to Figure 2.9, each variable is assigned to a vertex as well
as to the clockwise-adjacent edge. These diagrams are employed in petrology,
mineralogy, metallurgy and other physical sciences to portray the composition
of systems composed of three species. In population genetics, it is called the
de Finetti diagram and, in game theory, it is called the simplex plot. Ample
specific instances will be provided in Chapter 3: Applications.

Figure 2.10: Ellipsoidal Shape [243]

Property 10 (Ellipsoidal Shape). The shape of an ellipsoid with semi-axes
a, b and c depends only on the ratios a : b : c. In order to visualize the variety
of these shapes, we may consider a, b and c as homogeneous coordinates ([256,
pp. 16-20], [257, pp. 179-190]) of a point (a, b, c) in a plane and consider
only that part of this plane where a ≥ b ≥ c ≥ 0. These inequalities delimit a
triangle which can be made equilateral by a suitable choice of coordinate system
(Figure 2.10) [243, p. 37].
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The points of this triangle are in one-to-one correspondence with the dif-
ferent ellipsoidal shapes. The interior points correspond to non-degenerate
ellipsoids with three different axes, the boundary points to ellipsoids of revo-
lution or to degenerate ellipsoids. The three vertices represent the sphere, the
circular disk and the “needle” (segment of a straight line), respectively.

Figure 2.11: Morley’s Theorem

Property 11 (Morley’s Theorem). The adjacent pairs of the trisectors of
the interior angles of a triangle always meet at the vertices of an equilateral
triangle [178] called the first Morley triangle (Figure 2.11).

If, instead, the exterior angle trisectors are used then another equilateral
triangle is formed (the second Morley triangle) and, moreover, the intersections
of the sides of this triangle with the external trisectors form three additional
equilateral triangles [322].

Property 12 (Fermat-Torricelli Problem). In 1629, Fermat challenged
Torricelli to find a point whose total sum of distances from the vertices of a
triangle is a minimum [224]. I.e., determine a point X (Fermat point) in a
given triangle ABC such that the sum XA + XB + XC is a minimum [178].

If the angle at one vertex is greater than or equal to 120◦ then the Fermat
point coincides with this vertex. Otherwise, the Fermat point coincides with
the so-called (inner) isogonic center (X in Figure 2.12) which may be found by
constructing outward pointing equilateral triangles on the sides of ∆ABC and
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Figure 2.12: Fermat Point

connecting each vertex of the original triangle to the new vertex of the opposite
equilateral triangle. These three segments are of equal length and intersect at
the isogonic center where they are inclined at 60◦ to one another. At the
isogonic center, each side of the original triangle subtends an angle of 120◦.
Also, the isogonic center lies at the common intersection of the circumcircles of
the three equilateral triangles [322]. The algebraic sum of the distances from
the isogonic center to the vertices of the triangle equals the length of the equal
segments from the latter to the opposite vertices of the equilateral triangles
[189].

Property 13 (Largest Circumscribed Equilateral Triangle). If we con-
nect the isogonic center of an arbitrary triangle with its vertices and draw lines
through the latter perpendicular to the connectors then these lines intersect to
form the largest equilateral triangle circumscribing the given triangle [189].
This is the antipedal triangle of the isogonic center with respect to the given
triangle.

Property 14 (Napoleon’s Theorem). On each side of an arbitrary triangle,
construct an equilateral triangle pointing outwards. The centers of these three
triangles form an equilateral triangle [178] called the outer Napoleon triangle
(Figure 2.13(a)).
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(a) (b) (c)

Figure 2.13: Napoleon’s Theorem [322, 178, 245]

If, instead, the three equilateral triangles point inwards then another equi-
lateral triangle is formed (the inner Napoleon triangle) and, moreover, the two
Napoleon triangles share the same center with the original equilateral triangle
and the difference in their areas is equal to the area of the original triangle
[322]. (See [71] for a most interesting conjectured provenance for this theorem.)
Also, the lines joining a vertex of either Napoleon triangle with the remote ver-
tex of the original triangle are concurrent (Figure 2.13(b)) [245]. Finally, the
lines joining each vertex of either Napoleon triangle to the new vertex of the
corresponding equilateral triangle drawn on each side of the original equilat-
eral triangle are conccurrent and, moreover, the point of concurrency is the
circumcenter of the original equilateral triangle (Figure 2.13(c)) [245].

(a) (b)

Figure 2.14: Parallelogram Properties [245].

Property 15 (Parallelogram Properties). With reference to Figure 2.14(a),
equilateral triangles BCE and CDF are constructed on sides BC and CD, re-
spectively, of a parallelogram ABCD. Since triangles BEA, CEF and DAF
are congruent, triangle AEF is equilateral [245]. With reference to Figure
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2.14(b) left/right, construct equilateral triangles pointing outwards/inwards on
the sides of an oriented parallelogram ABCD giving parallelogram XY ZW .
Then, if inward/outward pointing equilateral triangles are drawn on the sides
of oriented parallelogram XY ZW , the resulting parallelogram is just ABCD
again [182].

(a)

(b)

Figure 2.15: (a) Isodynamic (Apollonius) Points. (b) Pedal Triangle of First
Isodynamic Point

Property 16 (Pedal Triangles of Isodynamic Points). With reference
to ∆ABC of Figure 2.15(a), let U and V be the points on BC met by the
interior and exterior bisectors of ∠A. The circle having diameter UV is called
the A-Apollonian circle [6]. The B- and C-Apollonian circles are likewise
defined. These three Apollonian circles intersect at the first (J) and second
(J ′) isodynamic (Apollonius) points [116]. With reference to Figure 2.15(b),
connecting the feet of the perpendiculars from the first isodynamic point, I ′,
to the sides of ∆ABC produces its pedal triangle which is always equilateral
[189]. The same is true for the pedal triangle of the second isodynamic point.
This theorem generalizes as follows: The pedal triangle of any of the four
points A, B, C, I ′ with respect to the triangle formed by the remaining points is
equilateral [46, p. 303].

Property 17 (The Machine for Questions and Answers). In 2006, D.
Dekov created a computer program, The Machine for Questions and Answers,
and used it to produce The Computer-Generated Encyclopedia of Euclidean
Geometry which contains the following results pertinent to equilateral triangles
[73]. (Note: Connecting a point to the three vertices of a given triangle creates
three new triangulation triangles associated with this point. Also, deleting the
cevian triangle [6, p. 160] of a point with respect to a given triangle leaves
three new corner triangles associated with this point.)
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• The pedal triangle of the first/second isodynamic point is equilateral.

• The antipedal triangle of the inner/outer Fermat point is equilateral.

• The circumcevian triangle of the first/second isodynamic point is equi-
lateral.

• The inner/outer Napoleon triangle is equilateral.

• The triangle formed by the circumcenters of the triangulation triangles
of the inner/outer Fermat point is equilateral.

• The triangle formed by the nine-point centers of the triangulation trian-
gles of the inner/outer Fermat point is equilateral.

• The triangle formed by the first/second isodynamic points of the corner
triangles of the orthocenter is equilateral.

• The triangle of the inner/outer Fermat points of the corner triangles of
the Gergonne point is equilateral.

• The triangle formed by the first/second isodynamic points of the antice-
vian corner triangles of the incenter is equilateral.

• The triangle formed by the inner Fermat points of the anticevian corner
triangles of the second isodynamic point is equilateral.

• The triangle formed by the reflections of the first isodynamic point in
the sides of a given triangle is equilateral.

Property 18 (Musselman’s Theorem). In May 1932, J. R. Musselman
published a collection of results pertaining to the generation of equilateral trian-
gles from equilateral triangles [223]. In the results to follow, a positively/negatively
equilateral triangle P1P2P3 is one whose vertices rotate into each other in a
counterclockwise/clockwise direction, respectively.

• Connected with two given positively equilateral triangles of any size or
position, we can find three other equilateral triangles. Specifically, if
A1A2A3 and B1B2B3 are the vertices of the two given triangles then the
midpoints of {A1B1, A2B2, A3B3} are the vertices of an equilateral trian-
gle as are the midpoints of {A1B2, A2B3, A3B1} and {A1B3, A2B1, A3B2}.

• Connected with three given positively equilateral triangles of any size
or position with vertices A1A2A3, B1B2B3 and C1C2C3, we can find 18
other equilateral triangles. This we do as follows.
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– Combining by pairs in all possible, three, ways and connecting mid-
points as above, we obtain 9 equilateral triangles.

– Also, the centroids of the three triangles A1B1C1, A2B2C2, A3B3C3

themselves form an equilateral triangle. Moreover, the same is true
if we fix the Ai and successively permute the Bi and Ci, for a total
of 9 ways in which the Ai, Bi, Ci can be arranged so that the
centroids of the three resulting triangles form an equilateral triangle.
Incidentally, the centroid of each of the nine equilateral triangles
thus formed is the same point!

• If the above three positively equilateral triangles be now so placed in the
plane that A1B1C1 forms a positively equilateral triangle, then there exist
fifty-five equilateral triangles associated with this configuration! This we
establish as follows.

– First of all, the centroids of the three triangles B1C1A1, B2C2B1,
B3C3C1 form a positively equilateral triangle. To obtain the 9 equi-
lateral triangles that can be thus formed, keep the last letters, A1,
B1, C1, fixed and cyclically permute the remaining Bi and Ci. (E.g.,
the centroid of B1C2B1 is the point on the segment B1C2 one third
of the distance B1C2 from B1.)

– Secondly, the midpoints of B3C2, A2C3, A3B2 form an additional
equilateral triangle.

– Finally, the existence of fifty-five equilateral triangles connected
with the figure of three equilateral triangles, so placed in a plane
that one vertex of each also forms an equilateral triangle, is now
apparent. Taking the four given equilateral triangles in (six) pairs,
each pair produces 3 additional equilateral triangles, or 18 in all. If
we take the equilateral triangles in (four) triples, each triple yields
9 additional equilateral triangles, or 36 in all. Finally, there is the
additional equilateral triangle just noted, thus making a total of 55
equilateral triangles which be easily constructed.

• Given two positively equilateral triangles, A1B1C1 and A2B2C2, of any
size or position in the plane, if we construct the positively/negatively
equilateral triangles A1A2A3, B1B2B3 and C1C2C3 then A3B3C3 is itself
a positively equilateral triangle.

Property 19 (Distances from Vertices). The symmetric equation

3(a4 + b4 + c4 + d4) = (a2 + b2 + c2 + d2)2

relates the side of an equilateral triangle to the distances of a point from its
three corners [129, p. 65]. Any three variables can be taken for the three
distances and solving for the fourth then gives the triangle’s side.
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The simplest solution in integers is 3, 5, 7, 8. One of a, b, c, d is divisible
by 3, one by 5, one by 7 and one by 8 [159, p. 183], although they need not
be distinct: (57,65,73,112) & (73,88,95,147).

Figure 2.16: Largest Inscribed Square [138]

Property 20 (Largest Inscribed Square). Figure 2.16 displays the largest
square that can be inscribed in an equilateral triangle [138]. Its side is of length
2
√

3 − 3 ≈ 0.4641 and its area is 21 − 12
√

3 ≈ 0.2154.

This is slightly smaller than the largest inscribed rectangle which can be
constructed by dropping perpendiculars from the midpoints of any two sides
to the third side. The feet of these perpendiculars together with the original
two midpoints form the vertices of the largest inscribed rectangle whose base is
half the triangle’s base and whose area is half the triangle’s area,

√
3

8
≈ 0.2165.

Moreover, this is the maximum area rectangle that fits inside the triangle
regardless of whether or not it is inscribed.

Property 21 (Triangle in Square). The smallest equilateral triangle in-
scribable in a unit square (Figure 2.17 left) has sides equal to unity and area

equal to
√

3
4

≈ 0.4330. The largest such equilateral triangle (Figure 2.17 right)

has sides of length
√

6 −
√

2 ≈ 1.0353 and area equal to 2
√

3 − 3 ≈ 0.4641.
[214]

The more general problem of fitting the largest equilateral triangle into a
given rectangle has been solved by Wetzel [326].
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Figure 2.17: Inscribed Triangles: Smallest (Left) and Largest (Right) [214]

(a)

(b)

Figure 2.18: Syzygies: (a) Length Equals Area. (b) Related Constructions.
[138]
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Property 22 (Syzygies). (a) As can be concluded from the previous two
Properties, M. Gardner has observed [138] that length of the side of the largest
square that fits into an equilateral triangle of side 1 is the same as the area
of the largest equilateral triangle that fits inside a unit square, in both cases
2
√

3−3. Subsequently, J. Conway gave the dissection proof illustrated in Figure
2.18(a). The area of the shaded parallelogram is equal to 2

√
3 − 3, the length

of the side of the inscribed square, and may be dissected into three pieces as
shown which fit precisely into the inscribed equilateral triangle. (b) B. Cipra
discovered [138] that the endpoints of the baseline which constructs the largest
square in the equilateral triangle also mark the points on the top of the larger
square that are the top corners of the two maximum equilateral triangles that fit
within the unit square (Figure 2.18(b)). Thus, juxtaposing these two diagrams
produces a bilaterally symmetrical pattern illustrating the intimate connections
between these two constructions.

(d)

Figure 2.19: Equilateral Triangles and Triangles: (a)-(c) Three Possible Con-
figurations. (d) Equal Equilateral Triangles. [188]

Property 23 (Equilateral Triangles and Triangles). In 1964, H. Stein-
haus [292] posed the problem of finding a necessary and sufficient condition on
the six sides a, b, c, a′, b′, c′ for triangle T ′ with sides a′, b′, c′ to fit in triangle T
with sides a, b, c. In 1993, K. Post [247] succeeded by providing 18 inequalities
whose disjunction is both necessary and sufficient. Post’s proof hinges on the
theorem that if one triangle fits within a second in any way whatsoever, then it
also fits is such a way that one of its sides lies on a side of the containing tri-
angle. Jerrard and Wetzel [188] have given geometric conditions for the more
specialized problems of how large an equilateral triangle can fit into a given
arbitrary triangle and how small an equilateral triangle can contain a given
arbitrary triangle.

By Post’s Theorem, the largest equilateral triangle ∆in that fits in the
given equilateral triangle T = ABC does so with one side along a side of T ,
and T fits in the smallest equilateral triangle ∆out that contains it with one
of its sides along a side of ∆out. Defining sin to be the side of ∆in and sz

in to



44 Mathematical Properties

be the side of the largest equilateral triangle ∆z
in that fits in T with one side

along side z ∈ {a, b, c} of T , we have that sin = max {sa
in, s

b
in, s

c
in}. Likewise,

defining sout to be the side of ∆out and sz
out to be the side of the smallest

equilateral triangle ∆z
in containing T with one side along side z ∈ {a, b, c} of

T , we have that sout = min {sa
out, s

b
out, s

c
out}. They establish the surprising fact

that ∆in and ∆out always rest on the same side of T . Curiously, the area of
T is the geometric mean of the areas of ∆z

in and ∆z
out for each side z of T

and thus of the areas of ∆in and ∆out. Figures 2.19(a-c) display the three
possible configurations where z is the longest, shortest and median side of T ,
respectively.

They also show that ∆in and ∆out always lie on either the longest or the
shortest side of T . If the median angle of T is at most 60◦ then they rest
on the longest side. Otherwise, there is a complicated condition involving the
median angle and its adjacent sides which determines whether they rest on the
longest or the shortest side of T . Along the way, they work out the ordering
relations among sa

in, s
b
in, s

c
in and sa

out, s
b
out, s

c
out which then permits the explicit

calculation of sin and sout. It follows that if an equilateral triangle ∆ of side s
and a triangle T are given, then ∆ fits within T precisely when s ≤ sin and T
fits within ∆ precisely when s ≥ sout. Finally, they establish that the isosceles
triangle with apex angle 20◦ is the unique nonequilateral triangle for which the
three inner/outer maximal equilateral triangles are congruent (Figure 2.19(d)).

(a) (b) (c) (d) (e)

Figure 2.20: Packings: (a) Squares in Triangle. (b) Triangles in Square. (c)
Circles in Triangle. (d) Triangles in Circle. (e) Triangles in Triangle. [110]

Property 24 (Packings). The packing of congruent equilateral triangles,
squares and circles into an equilateral triangle, a square or a circle has re-
ceived considerable attention [110]. A sampling of some of the densest known
packings is offered by Figure 2.20: (a) 3 squares in an equilateral triangle
(Friedman 1997), (b) 3 equilateral triangles in a square (Friedman 1996), (c)
8 circles in an equilateral triangle (Melissen 1993), (d) 8 equilateral triangles
in a circle (Morandi 2008), (e) 5 equilateral triangles in an equilateral triangle
(Friedman 1997) [110]. The most exhaustively studied case is that of packing
congruent circles into an equilateral triangle [220, 150].



Mathematical Properties 45

(a) (b)
(c)

(d) (e)

Figure 2.21: Coverings: (a) Squares on Triangle. (b) Triangles on Square. (c)
Circles on Triangle. (d) Triangles on Circle. (e) Triangles on Triangle. [110]

Property 25 (Coverings). The covering of an equilateral triangle, a square
or a circle by congruent equilateral triangles, squares and circles has also re-
ceived a fair amount of attention [110]. A sampling of some of the known
optimal coverings is offered by Figure 2.21: (a) 3 squares on an equilateral tri-
angle (Cantrell 2002), (b) 4 equilateral triangles on a square (Friedman 2002),
(c) 4 circles on an equilateral triangle (Melissen 1997), (d) 4 equilateral tri-
angles on a circle (Green 1999), (e) 7 equilateral triangles on an equilateral
triangle (Friedman 1999) [110].

Property 26 (Covering Properties). A convex region that contains a con-
gruent copy of each curve of a specified family is called a cover for the family.
The following results concern equilateral triangular covers.

• Every plane set of diameter one can be completely covered with an equi-
lateral triangle of side

√
3 ≈ 1.7321 [178].

• The smallest equilateral triangle that can cover every triangle of diameter
one has side (2 cos 10◦)/

√
3 ≈ 1.1372 [325].

• The smallest triangular cover for the family of all closed curves of length
two is the equilateral triangle of side 2

√
3/π ≈ 1.1027 [114], a result that

follows from an inequality published in 1957 by Eggleston [94, p. 157].

• The smallest equilateral triangle that can cover every triangle of perime-
ter two has side 2/m0 ≈ 1.002851, where m0 is the global minimum of
the the trigonometric function

√
3 · (1+sin x

2
) · sec (π

6
− x) on the interval

[0, π/6] [325].

Property 27 (Blaschke’s Theorem). The width of a closed convex curve
in a given direction is the distance between the two closest parallel lines, per-
pendicular to that direction, which enclose the curve. Blaschke proved that any
closed convex curve whose minimum width is 1 unit or more contains a circle
of diameter 2/3 unit. An equilateral triangle contains just such a circle (its
incircle), so the limit of 2/3 is the best possible [322].
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Figure 2.22: Euler Line Cuts Off Equilateral Triangle

Property 28 (Euler Line Cuts Off Equilateral Triangle). If a triangle
is not equilateral then the orthocenter (intersection of altitudes), the centroid
(intersection of medians) and the circumcenter (intersection of perpendicular
bisectors) are collinear [58]. (For an equilateral triangle, these three points
coincide.) Many other important points associated with a triangle, such as the
nine-point center, also lie on this so-called Euler line [6]. In a triangle with a
60◦ angle, the Euler line cuts off an equilateral triangle [28] (see Figure 2.22).

Property 29 (Incircle-Triangle Iteration). Let ∆A0B0C0 be arbitrary. Let
the points of contact with its incircle be A1, B1, C1. Let the points of contact of
∆A1B1C1 with its incircle be A2, B2, C2, and so on. This sequence of triangles
shrinks by a factor of 1/2 at each iteration and approaches equiangularity in
the limit [47].

Property 30 (Excentral Triangle Iteration). The bisector of any interior
angle of a triangle and those of the exterior angles at the other two vertices
are concurrent at a point outside the triangle. These three points are called
excenters and they are the vertices of the excentral triangle. Commencing
with an arbitrary triangle, construct its excentral triangle, then construct the
excentral triangle of this excentral triangle, and so on. These excentral triangles
approach an equilateral triangle [189].
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Figure 2.23: Abutting Equilateral Triangles [179]

Property 31 (Abutting Equilateral Triangles). Equilateral triangles of
sides 1, 3, 5, . . . , 2n − 1, . . . are placed end-to-end along a straight line
(Figure 2.23). The vertices which do not lie on the line all lie on a parabola
and their focal radii are all integers [179].

Figure 2.24: Circumscribing Rectangle [181]

Property 32 (Circumscribing Rectangle). Around any equilateral triangle
ABC, circumscribe a rectangle PBQR (Figure 2.24). In general, each side of
ABC cuts off a right triangle from the rectangle. The areas of the two smaller
right triangles always add up to the area of the largest one (X = Y +Z) [181].
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Figure 2.25: Equilic Quadrilateral [181]

Property 33 (Equilic Quadrilaterals). With reference to Figure 2.25, a
quadrilateral ABCD is equilic if AD = BC and ∠A + ∠B = 120◦. Figure
2.26(a): The midpoints P , Q and R of the diagonals and the side CD always
determine an equilateral triangle. Figure 2.26(b): If an equilateral triangle
PCD is drawn outwardly on CD then ∆PAB is also equilateral [181].

(a)
(b)

Figure 2.26: (a) Equilic Midpoints. (b) Equilic Triangles. [181]

Property 34 (The Only Rational Triangle). If a triangle has side lengths
which are all rational numbers and angles which are all a rational number of
degrees then the triangle must be equilateral [55]!

Property 35 (Six Triangles). From an arbitrary point in an equilateral
triangle, segments to the vertices and perpendiculars to the sides partition the
triangle into six smaller triangles A, B, C, D, E, F (see Figure 2.27 left).
Claim [183]:

A + C + E = B + D + F.
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Figure 2.27: Six Triangles [183]

Drawing three additional lines through the selected point which are parallel
to the sides of the original triangle partitions it into three parallelograms and
three small equilateral triangles (Figure 2.27 right). Since the areas of the
parallelograms are bisected by their diagonals and the equilateral triangles by
their altitudes,

A + C + E = x + a + y + b + z + c = B + D + F.

Figure 2.28: Pompeiu’s Theorem [184]

Property 36 (Pompeiu’s Theorem). If P is an arbitrary point in an equi-
lateral triangle ABC then there exists a triangle with sides of length PA, PB,
PC [184].

Draw segments PL, PM , PN parallel to the sides of the triangle (Figure
2.28). Then, the trapezoids PMAN , PNBL, PLCM are isosceles and thus
have equal diagonals. Hence, PA = MN , PB=LN , PC = LM and ∆LMN
is the required triangle. Note that the theorem remains valid for any point P
in the plane of ∆ABC [184] and that the triangle is degenerate if and only if
P lies on the circumcircle of ∆ABC [267].
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Figure 2.29: Random Point [177]

Property 37 (Random Point). A point P is chosen at random inside an
equilateral triangle. Perpendiculars from P to the sides of the triangle meet
these sides at points X, Y , Z. The probability that a triangle with sides PX,
PY , PZ exists is equal to 1

4
[177].

As shown in Figure 2.29, the segments satisfy the triangle inequality if and
only if the point lies in the shaded region whose area is one fourth that of the
original triangle [122]. Compare this result to Pompeiu’s Theorem!

Property 38 (Gauss Plane). In the Gauss (complex) plane [81], ∆ABC is
equilateral if and only if

(b − a)λ2
± = (c − b)λ± = a − c; λ± := (−1 ± ı

√
3)/2.

For λ±, ∆ABC is described counterclockwise/clockwise, respectively.

Property 39 (Gauss’ Theorem on Triangular Numbers). In his diary
of July 10, 1796, Gauss wrote [290]:

“EΥPHKA! num = ∆ + ∆ + ∆.”

I.e., “Eureka! Every positive integer is the sum of at most three triangular
numbers.”

As early as 1638, Fermat conjectured much more in his polygonal number
theorem [319]: “Every positive integer is a sum of at most three triangular
numbers, four square numbers, five pentagonal numbers, and n n-polygonal
numbers.” (Alas, his margin was once again too narrow to hold his proof!)
Jacobi and Lagrange proved the square case in 1772, Gauss the triangular case
in 1796, and Cauchy the general case in 1813 [320].
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Figure 2.30: Equilateral Shadows [180]

Property 40 (Equilateral Shadows). Any triangle can be orthogonally pro-
jected onto an equilateral triangle [180]. Moreover, under the inverse of this
transformation, the incircle of the equilateral triangle is mapped to the “mid-
point ellipse” of the original triangle with center at the triangle centroid and
tangent to the triangle sides at their midpoints (Figure 2.30).

Note that this demonstrates that if we cut a triangle from a piece of paper
and hold it under the noonday sun then we can always position the triangle
so that its shadow is an equilateral triangle.

Figure 2.31: Fundamental Theorem of Affine Geometry [33]

Property 41 (Affine Geometry). All triangles are affine-congruent [33]. In
particular, any triangle may be affinely mapped onto any equilateral triangle
(Figure 2.31).

This theorem is of fundamental importance in the theory of Riemann sur-
faces. E.g. [288, p. 113]:

Theorem 2.1 (Riemann Surfaces). If an arbitrary manifold M is given
which is both triangulable and orientable then it is possible to define an analytic
structure on M which makes it into a Riemann surface.
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Figure 2.32: Largest Inscribed Triangle and Least-Diameter Decomposition of
the Open Disk [4]

Property 42 (Largest Inscribed Triangle). The triangle of largest area
that is inscribed in a given circle is the equilateral triangle (Figure 2.32) [249].

Property 43 (Planar Soap Bubble Clusters). An inscribed equilateral
triangle (Figure 2.32) provides a least-diameter smooth decomposition of the
open unit disk into relatively closed sets that meet at most two at a point [4].

Property 44 (Jung’s Theorem). Let d be the (finite) diameter of a planar
set and let r be the radius of its smallest enclosing circle. Then, [249]

r ≤ d√
3
.

Since the circumcircle is the smallest enclosing circle for an equilateral triangle
(Figure 2.32), this bound cannot be diminished.

Property 45 (Isoperimetric Theorem for Triangles). Among triangles
of a given perimeter, the equilateral triangle has the largest area [191]. Equiv-
alently, among all triangles of a given area, the equilateral triangle has the
shortest perimeter [228].

Property 46 (A Triangle Inequality). If A is the area and L the perimeter
of a triangle then

A ≤
√

3L2/36,

with equality if and only if the triangle is equilateral [228].

Property 47 (Euler’s Inequality). If r and R are the radii of the inscribed
and circumscribed circles of a triangle then

R ≥ 2r,

with equality if and only if the triangle is equilateral [191, 228].
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Property 48 (Erdös-Mordell Inequality). Let R1, R2, R3 be the distances
to the three vertices of a triangle from any interior point P . Let r1, r2, r3 be
the distances from P to the three sides. Then

R1 + R2 + R3 ≥ 2(r1 + r2 + r3),

with equality if and only if the triangle is equilateral and P is its centroid
[191, 228].

Property 49 (Blundon’s Inequality). In any triangle ABC with circum-
radius R, inradius r and semi-perimeter σ, we have that

σ ≤ 2R + (3
√

3 − 4)r,

with equality if and only if ABC is equilateral [26].

Property 50 (Garfunkel-Bankoff Inequality). If Ai (i = 1, 2, 3) are the
angles of an arbitrary triangle, then we have

3
∑

i=1

tan2 Ai

2
≥ 2 − 8

3
∏

i=1

sin
Ai

2
,

with equality if and only if ABC is equilateral [331].

Property 51 (Improved Leunberger Inequality). If si (i = 1, 2, 3) are
the sides of an arbitrary triangle with circumradius R and inradius r, then we
have

3
∑

i=1

1

si

≥
√

25Rr − 2r2

4Rr
,

with equality if and only if ABC is equilateral [331].

Figure 2.33: Shortest Bisecting Path [161]

Property 52 (Shortest Bisecting Path). The shortest path across an equi-
lateral triangle of side s which bisects its area is given by a circular arc with
center at a vertex and with radius chosen to bisect the area (Figure 2.33) [228].
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Figure 2.34: Smallest Inscribed Triangle [57, 62]

This radius is equal to s ·
√

3
√

3
4π

[161] so that the circular arc has length

.673 . . . s which is much shorter than either the .707 . . . s length of the parallel
bisector or the .866 . . . s length of the altitude.

Property 53 (Smallest Inscribed Triangle). The problem of finding the
triangle of minimum perimeter inscribed in a given acute triangle [62] was
posed by Giulio Fagnano and solved using calculus by his son Giovanni Fagnano
in 1775 [224]. (An inscribed triangle being one with a vertex on each side of
the given triangle.) The solution is given by the orthic/pedal triangle of the
given acute triangle (Figure 2.34 left).

Later, H. A. Schwarz provided a geometric proof using mirror reflections
[57]. Call the process illustrated on the left of Figure 2.34 the pedal mapping.
Then, the unique fixed point of the pedal mapping is the equilateral triangle
[194]. That is, the equilateral triangle is the only triangle that maintains its
form under the pedal mapping. Also, the equilateral triangle is the only trian-
gle for which successive pedal iterates are all acute [205]. Finally, the maximal
ratio of the perimeter of the pedal triangle to the perimeter of the given acute
triangle is 1/2 and the unique maximizer is given by the equilateral triangle
[158]. For a given equilateral triangle, the orthic/pedal triangle coincides with
the medial triangle which is itself equilateral (Figure 2.34 right).

Property 54 (Closed Light Paths [57]). The walls of an equilateral tri-
angular room are mirrored. If a light beam emanates from the midpoint of a
wall at an angle of 60◦, it is reflected twice and returns to its point of origin
by following a path along the pedal triangle (see Figure 2.34 right) of the room.
If it originates from any other point along the boundary (exclusive of corners)
at an angle of 60◦, it is reflected five times and returns to its point of origin
by following a path everywhere parallel to a wall (Figure 2.35) [57].
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Figure 2.35: Closed Light Paths [57]

Figure 2.36: Erdös-Moser Configuration [235]

Property 55 (Erdös-Moser Configuration). An equilateral triangle of
side-length one is called a unit triangle. A set of points S is said to span
a unit triangle T if the vertices of T belong to S. n points in the plane are said
to be in strictly convex position if they form the vertex set of a convex polygon
for which each of the points is a corner. Pach and Pinchasi [235] have proved
that any set of n points in strictly convex position in the plane has at most
⌊2(n− 1)/3⌋ triples that span unit triangles. Moreover, this bound is sharp for
each n > 0.

This maximum is attained by the Erdös-Moser configuration of Figure 2.36.
This configuration contains ⌊(n − 1)/3⌋ congruent copies of a rhombus with
side-length one and obtuse angle 2π/3, rotated by small angles around one of
its vertices belonging to such an angle [235].

Property 56 (Reuleaux Triangle). With reference to Figure 2.37(a), the
Reuleaux triangle is obtained by replacing each side of an equilateral triangle by
a circular arc with center at the opposite vertex and radius equal to the length
of the side [125].
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(a) (b)

Figure 2.37: Curves of Constant Width: (a) Sharp Reuleaux Triangle. (b)
Rounded Reuleaux Triangle.

Like the circle, it is a curve of constant breadth, the breadth (width) being
equal to the length of the triangle side [291]. Whereas the circle encloses
the largest area amongst constant-width curves with a fixed width, w, the
Reuleaux triangle encloses the smallest area amongst such curves (Blaschke-
Lebesgue Theorem) [39]. (The enclosed area is equal to (π−

√
3)w2/2 [125]; by

Barbier’s theorem [39], the perimeter equals πw) Moreover, a constant-width
curve cannot be more pointed than 120◦, with the Reuleaux triangle being the
only one with a corner of 120◦ [249]. Like all curves of constant-width, the
Reuleaux triangle is a rotor for a square, i.e. it can be rotated so as to maintain
contact with the sides of the square, but the center of rotation is not fixed [241].
In the case of the Reuleaux triangle, the square with rounded corners that is
out swept out has area that is approximately equal to .9877 times the area of
the square. (See Application 25.) The corners of the Reuleaux triangle can
be smoothed by extending each side of the equilateral triangle a fixed distance
at each end and then constructing six circular arcs centered at the vertices
as shown in Figure 2.37(b). The constant-width of the resulting smoothed
Reuleaux triangle is equal to the sum of the two radii so employed [125].

Property 57 (Least-Area Rotor). The least-area rotor for an equilateral
triangle is formed from two 60◦ circular arcs with radius equal to the altitude
of the triangle [291] (which coincides with the length of the rotor [322]) (Figure
2.38). (The incircle is the greatest-area rotor [39].)

As it rotates, its corners trace the entire boundary of the triangle without
rounding of corners [125], although it must slip as it rolls [291].
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Figure 2.38: Least-Area Rotor Figure 2.39: Triangular Rotor

Property 58 (Equilateral Triangular Rotor). Obviously, the equilateral
triangle is a rotor for a circle. Yet, it can also be a rotor for a noncircular
cylinder.

Figure 2.39 shows the curve given parametrically as

x(t) = cos t + .1 cos 3t; y(t) = sin t + .1 sin 3t,

within which rotates an equilateral triangular piston [291]. (See Application
26.)

Figure 2.40: Kakeya Needle Problem [125]
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Property 59 (Kakeya Needle Problem). The convex plane figure of least
area in which a line segment of length 1 can be rotated through 180◦, returning
to its original position with reversed orientation, is an equilateral triangle with
altitude 1 (area 1/

√
3) [125].

The required rotation is illustrated in Figure 2.40. If the constraint of
convexity is removed then there is no such plane figure of smallest area [14,
pp. 99-101]!

(a) (b) (c)

Figure 2.41: Equilateral Triangular Fractals: (a) Koch Snowflake [133]. (b)
Sierpinski Gasket [314]. (c) Golden Triangle Fractal [314].

Property 60 (Equilateral Triangular Fractals). The equilateral triangle
is eminently suited for the construction of fractals.

In Figure 2.41(a), the Koch Snowflake is constructed by successively re-
placing the middle third of each edge by the other two sides of an equilateral
triangle [100]. Although the perimeter is infinite, the area bounded by the
curve is exactly 8

5
that of the initial triangle [133] and its fractal dimension

is log 4/ log 3 ≈ 1.2619 [322]. (The “anti-snowflake” curve is obtained if the
appended equilateral triangles are turned inwards instead of outwards, with
area 2

5
of the original triangle [66].) In Figure 2.41(b), the Sierpinski Gasket is

obtained by repeatedly removing (inverted) equilateral triangles from an initial
equilateral triangle [100]. Its fractal dimension is equal to log 3/ log 2 ≈ 1.5850.
In Figure 2.41(c), the Golden Triangle Fractal is generated from an initial
equilateral triangle by successively adding to any free corner at each stage an
equilateral triangle scaled in size by 1

φ
where φ = 1+

√
5

2
is the golden section

[314]. Its fractal dimension is equal to log 2/ log φ ≈ 1.4404.

Property 61 (Pascal’s Triangle). In 1654, Pascal published Traité du tri-
angle arithmétique wherein he intensively studied the Arithmetical Triangle
(PAT) shown in Figure 2.42(a), where each entry is the sum of its northwest-
ern and northeastern neighbors [93].
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(a) (b) (c)

Figure 2.42: Pascal’s Triangle (PT): (a) Arithmetical PT (1654). (b) Chinese
PT (1303) . (c) Fractal PT (1965).

It is in fact much older, appearing in the works of Mathematicians through-
out Persia, India and China. One such instance is shown in Figure 2.42(b),
which is taken from Chu shih-chieh’s Precious Mirror of the Four Elements of
1303. Can you find the mistake which is buried therein? (Hint: Look in Row
7, where rows are numbered beginning at 0.)

The mathematical treasures hidden within PAT are truly staggering, e.g.
the binomial coefficients and the triangular numbers, but we will focus our
attention on the following gem. Consider what happens when odd numbers
in PAT are darkened and even numbers are left blank. Extending PAT to
infinitely many rows and reducing the scale by one-half each time the number
of rows is doubled produces the previously encountered fractal, Sierpinski’s
Gasket (Figure 2.42(c)) [127]!

Property 62 (The Chaos Game). Equilateral triangular patterns can emerge
from chaotic processes.

Choose any point lying within an equilateral triangle, the vertices of which
are labeled 1 thru 3, and mark it with a small dot. Roll a cubic die to produce
a number n and set i = (n mod 3) + 1. Generate a new point located at
the midpoint of the segment connecting the previous dot with vertex i and
mark it with a small dot. Iterate this process k times always connecting the
most recent dot with the latest randomly generated vertex. The results for
(a) k = 100, (b) k = 500, (c) k = 1, 000 and (d) k = 10, 000 are plotted in
Figure 2.43. Voila, Sierpinski’s Gasket emerges from this chaotic process [239,
Chapter 6]!



60 Mathematical Properties

Figure 2.43: Chaos Game [239]

Figure 2.44: Equilateral Lattice [172]
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Property 63 (Equilateral Lattice). Let c denote the minimum distance
between two points in a unit lattice, i.e. one constructed from an arbitrary

parallelogram of unit area [172]. Then, c ≤
√

2√
3
, and this upper bound is

achieved by the lattice generated by a parallelogram that is composed of two
equilateral triangles (i.e. by a “regular rhombus”).

Moreover, for a given value of c, this lattice has the smallest possible gen-
erating parallelogram. Asymptotically, of all lattices with a given c, the lattice
composed of equilateral triangles has the greatest number of points in a given
large region. Finally, the lattice of equilateral triangles gives rise to the densest
packing of circles of radius c

2
(Figure 2.44) with density D = π

2
√

3
≈ .907.

Property 64 (No Equilateral Triangles on a Chess Board). There is
no equilateral triangle whose vertices are plane lattice points [96].

This was one of 24 theorems proposed in a survey on The Most Beauti-
ful Theorems in Mathematics [321]. It came in at Number 19. In general,
a triangle is embeddable in Z2 if and only if all of its angles have rational
tangents [17]. Of course, the equilateral triangle is embeddable in Zn (n ≥ 3):
{(1, 0, 0, . . . ), (0, 1, 0, . . . ), (0, 0, 1, . . . )}. M. J. Beeson has provided a complete
characterization of the triangles embeddable in Zn for each n [17].

Figure 2.45: Equilateral Triangular Mosaic [199]

Property 65 (Regular Tessellations of the Plane). The only regular tes-
sellations of the plane by polygons of the same kind meeting only at a vertex
are provided by equilateral triangles, squares and regular hexagons. If a vertex
of one polygon is allowed to lie on the side of another then the only such tes-
sellations are afforded by equilateral triangles (Figure 2.45) and squares [199,
pp. 199-202].
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Figure 2.46: Dirichlet Duality [232]

Property 66 (Triangular and Hexagonal Lattice Duality). The Dirich-
let (Voronoi) region associated with a lattice point is the set of all points closer
to it than to any other lattice point [232]. The regular hexagonal and equilat-
eral triangular lattices are dual to one another in the sense that they are each
other’s Dirichlet tessellation (Voronoi diagram) (Figure 2.46) [209].

Property 67 (From Tessellations to Fractals). An infinite sequence of
tessellating shapes based upon the equilateral triangle may give rise to a limiting
fractal pattern [234].

Begin by dissecting an equilateral triangle, the Level 0 tile, into sixteen
smaller copies, three of which are shown in Figure 2.47(a), by subdividing
each edge into fourths. Then, hinging these three as shown in Figure 2.47(b)
and rotating them counterclockwise as in Figure 2.47(c) produces the Level 1
tile of Figure 2.47(d). The same tripartite process of dissect, hinge and rotate
may be applied to this Level 1 tile to produce the Level 2 tile of Figure 2.48.
The dissection process is illustrated in Figure 2.49 and the net result of hinging
and rotating is on display in Figure 2.50. This process of dissection into 16
congruent pieces followed by hinge-rotation followed by a size reduction of one-
fourth (in length) leads to an infinite cascade of shapes (Level 3 is shown in
Figure 2.51) which lead, in the limit, to a self-similar fractal shape. Other Level
0 shapes based upon the equilateral triangle and square may be investigated
[234].
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(a) (b) (c) (d)

Figure 2.47: Level 1: (a) Dissect. (b) Hinge. (c) Rotate. (d) Tile. [234]

Figure 2.48: Level 2 Figure 2.49: Level 1 Tessellation

Figure 2.50: Level 2 Reprise Figure 2.51: Level 3
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(a)
(b) (c)

Figure 2.52: Propeller Theorem: (a) Symmetric Propellers. (b) Asymmetric
Propellers. (c) Triangular Hub. [138]

Property 68 (The Propeller Theorem). The Propeller Theorem states
that the midpoints of the three chords connecting three congruent equilateral
triangles which are joined at a vertex lie at the vertices of an equilateral triangle
(Figure 2.52(a)) [138].

In fact, the triangular propellers may even touch along an edge or overlap.
The Asymmetric Propeller Theorem states that the three equilateral triangles
need not be congruent (Figure 2.52(b)). The Generalized Asymmetric Pro-
peller Theorem states the propellers need not meet at a point but may meet
at the vertices of an equilateral triangle (Figure 2.52(c)). Finally, the General
Generalized Asymmetric Propeller Theorem states the the propellers need not
even be equilateral, as long as they are all similar triangles! If they do not
meet at a point then they must meet at the vertices of a fourth similar tri-
angle and the vertices of the triangular hub must meet the propellers at their
corresponding corners [138].

Figure 2.53: Tetrahedral Geodesics [305]
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Property 69 (Tetrahedral Geodesics). A geodesic is a generalization of
a straight line which, in the presence of a metric, is defined to be the (locally)
shortest path between two points as measured along the surface [305].

For example, the tetrahedron MNPQ of Figure 2.53(a) can be transformed
into the equivalent planar net of Figure 2.54(a) by cutting the surface of the
tetrahedron along the edges MN , MP and MQ, rotating the triangle MNP
about the edge NP until it is in the same plane as the triangle NPQ, and
then performing the analogous operations on the triangles MPQ and MQN .
Now, in Figure 2.53(a), let A be the point of triangle MNP which lies one
third of the way up from N on the perpendicular from N to MP ; and let B be
the corresponding point in triangle MPQ. Then, we obtain the geodesic (and
at the same time the shortest) line connecting A and B on the surface of the
tetrahedron, shown in Figure 2.53(b), by simply drawing the dashed straight
line connecting A to B in Figure 2.54(a). (The length of this geodesic is equal
to the length of the edge NQ of the tetrahedron, which we take to be 1.)
Figure 2.53(c) shows another geodesic connecting these same two points but
which is longer. From Figure 2.54(b), the length of this geodesic is equal to
2
√

3/3 ≈ 1.1547. This net is obtained by cutting the surface of the tetrahedron
along the edges MQ, MN and NP .

Figure 2.54: Transformation to Planar Net [305]

Property 70 (Malfatti’s Problem). In 1803, G. Malfatti proposed the prob-
lem of constructing three circles within a given triangle each of which is tangent
to the other two and also to two sides of the triangle, as on the right of Fig-
ure 2.55 [231]. He assumed that this would provide a solution to the “marble
problem”: to cut out from a triangular prism, made of marble, three circular
columns of the greatest possible volume (i.e., wasting the least possible amount
of marble).
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Figure 2.55: Malfatti’s Problem [231]

In 1826, J. Steiner published, without proof, a purely geometrical con-
struction while, in 1853, K. H. Schellbach published an elementary analytical
solution [84]. Then, in 1929, H. Lob and H. W. Richmond showed that, for
the equilateral triangle, the Malfatti circles did not solve the marble problem.
The correct solution, shown on the left of Figure 2.55, fills 11π

27
√

3
≈ 0.739 of the

triangle area while the Malfatti circles occupy only π
√

3
(1+

√
3)2

≈ 0.729 of that area

[2]. Whereas there is only this tiny 1% discrepancy for the equilateral triangle,
in 1965, H. Eves pointed out that if the triangle is long and thin then the
discrepancy can approach 2:1 [231]. In 1967, M. Goldberg demonstrated that
the Malfatti circles never provide the solution to the marble problem [322].
Finally, in 1992, V. A. Zalgaller and G. A. Los gave a complete solution to the
marble problem.

(a)

(b)

(c)

Figure 2.56: Group of Symmetries [108]

Property 71 (Group of Symmetries). The equilateral triangle and the reg-
ular tiling of the plane which it generates, {3}, possess three lines of reflectional
symmetry and three degrees of rotational symmetry as can be seen in Figure
2.56 [327].
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These isometries form the dihedral group of order 6, D3, and its group
table also appears in Figure 2.56 where ρi stands for rotations and µi for
mirror images in angle bisectors [108].

(a) (b)

Figure 2.57: Color Symmetry: (a) Fundamental Domain. (b) Perfect Coloring.
[190]

Property 72 (Perfect Coloring). Starting from a fundamental domain (de-
noted by I in Figure 2.57(a)), a symmetry tiling of the equilateral triangular tile
may be generated by operating on it with members of the group of isometries,
D3.

The five replicas so generated are labeled by the element of D3 that maps
it from the fundamental domain where, in our previous notation, R1 = µ1,
R2 = µ3, R3 = µ2, S = ρ2, S2 = ρ1. A symmetry of a tiling that employs only
two colors, say black and white, is called a two-color symmetry whenever each
symmetry of the uncolored tiling either transforms all black tiles to black tiles
and all white tiles to white tiles or transforms all black tiles to white tiles and all
white tiles to black tiles. When every symmetry of the uncolored tiling is also
a two-color symmetry, the coloring is called perfect. I.e., in a perfect coloring,
each symmetry of the uncolored tiling simply induces a permutation of the
colors in the colored tiling. A perfect coloring of the equilateral triangular tile
is on display in Figure 2.57(b) [190].

Property 73 (Fibonacci Triangle). Shade in a regular equilateral triangu-
lar lattice as shown in Figure 2.58 so that a rhombus (light) lies under each
trapezoid (dark) and vice versa. Then, the sides of successive rhombi form a
Fibonacci sequence (1,1,2,3,5,8,...) and the top, sides and base of each trape-
zoid are three consecutive Fibonacci numbers [315].
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Figure 2.58: Fibonacci Triangle [315]

Figure 2.59: Golden Ratio [253]
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Property 74 (Golden Ratio). With reference to Figure 2.59 left, let ABC
be an equilateral triangle inscribed in a circle, let L and M be the midpoints of
AB and AC, respectively, and let LM meet the circle at X and Y as shown;
then, LM/MY = φ where φ = (1+

√
5)/2 is the golden ratio (limiting ratio of

successive Fibonacci numbers) [253]. The pleasing design in Figure 2.59 right
may be readily produced, in which the ratio of the sides of the larger to the
smaller triangles is equal to φ.

This intriguing result was first observed by George Odom, a resident of the
Hudson River Psychiatric Center, in the early 1980s [254, p. 10]. Upon com-
municating it to the late H. S. M. Coxeter, it was submitted to the American
Mathematical Monthly as Problem E3007, Vol. 90 (1983), p. 482 with the
solution appearing in Vol. 93 (1986), p. 572.

(a) (b) (c)

Figure 2.60: (a) Bination of Equilateral Triangle. (b) Male Equilateral Spiral.
(c) Female Equilateral Spiral. [83]

Property 75 (Equilateral Spirals). E. P. Doolan has introduced the notion
of equilateral spirals [83].

Successive subdivision of an equilateral triangle by systematically connect-
ing edge midpoints, as portrayed in Figure 2.60(a), is called (clockwise) bi-
nation. (Gazalé [139, p. 111] calls the resulting configuration a “whorled
equilateral triangle”.) Retention of the edge counterclockwise to the new edge
produced at each stage produces a (clockwise) male equilateral spiral (Figure
2.60(b)). Replacement of each edge of such a male equilateral spiral by the
arc of the circumcircle subtended by that edge produces the corresponding
(clockwise) female equilateral spiral (Figure 2.60(c)).

Doolan has shown that the female equilateral spiral is in fact C1. Moreover,
both the male and female equilateral spirals are geometric in the sense that,
for a fixed radius emanating from the spiral center, the intersections with the
spiral are at a constant angle. Note that this is distinct from equiangularity in
that this angle is different for different radii. In addition, he has investigated
the “sacred geometry” of these equilateral spirals and shown how to construct
them with only ruler and compass.
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(a)

(b)
(c)

Figure 2.61: Padovan Spirals: (a) Padovan Whorl [138]. (b) Inner Spiral [293].
(c) Outer Spiral [139].

Property 76 (Padovan Spirals). Reminiscent of the Fibonacci sequence,
the Padovan sequence is defined as 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, . . . , where
each number is the sum of the second and third numbers preceding it [138].

The ratio of succesive terms of this sequence approaches the plastic number,

p = 3

√

1
2

+ 1
6

√

23
3

+ 3

√

1
2

− 1
6

√

23
3

≈ 1.324718, which is the real solution of

p3 = p + 1 [139]. The Padovan triangular whorl [139] is formed from the
Padovan sequence as shown in Figure 2.61(a). Note that each triangle shares
a side with two others thereby giving a visual proof that the Padovan sequence
also satisfies the recurrence relation pn = pn−1 + pn−5. If one-third of a circle
is inscribed in each triangle, the arcs form the elegant spiral of Figure 2.61(b)
which is a good approximation to a logarithmic spiral [293]. Beginning with a
gnomon composed of a “plastic pentagon” (ABCDE in Figure 2.61(c)) with
sides in the ratio 1 : p : p2 : p3 : p4, if we add equilateral triangles that grow in
size by a factor of p, then a truly logarithmic spiral is so obtained [139].

Property 77 (Perfect Triangulation). In 1948, W. T. Tutte proved that it
is impossible to dissect an equilateral triangle into smaller equilateral triangles
all of different sizes (orientation ignored) [309]. However, if we distinguish be-
tween upwardly and downwardly oriented triangles then such a “perfect” tiling
is indeed possible [310].

Figure 2.62, where the numbers indicate the size (side length) of the com-
ponents in units of a primitive equilateral triangle, shows a dissection into 15
pieces, which is believed to be the lowest order possible. E. Buchman [35] has
extended Tutte’s method of proof to conclude that no planar convex region
can be tiled by unequal equilateral triangles. Moreover, he has shown that
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Figure 2.62: Perfect Triangulation [310]

any nonequilateral triangle can be tiled by smaller unequal triangles similar to
itself.

Figure 2.63: Convex Tilings [294]

Property 78 (Convex Tilings). In 1996, R. T. Wainwright posed the ques-
tion: What is the largest convex area that can be tiled with a given number of
equilateral triangles whose sides are integers, where, to avoid trivially scaling
up the size of a given tiling, the sizes of the tiles are further constrained to
have no overall common divisor [294]?
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The best known such tiling with 15 equilateral triangles is shown in Figure
2.63 and has an area of 4,782 etus which is a considerable improvement over
the minimum order perfect triangulation with area of 1,374 etus.

Figure 2.64: Partridge Tiling [162]

Property 79 (Partridge Tiling). A partridge tiling of order n of an equi-
lateral triangle is composed of 1 equilateral triangle of side 1, 2 equilateral
triangles of side 2, and so on, up to n equilateral triangles of side n [162].

The partridge number of the equilateral triangle is defined to be the smallest
value of n for which such a tiling is possible. W. Marshall discovered the
partridge tiling of Figure 2.64 and P. Hamlyn showed that this is indeed the
smallest possible, and so the equilateral triangle has a partridge number of 9
[162].

Figure 2.65: Partition of an Equilateral Triangle [149]
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Property 80 (Partitions of an Equilateral Triangle). Let T denote a
closed unit equilateral triangle. For a fixed integer n, let dn denote the infimum
of all those x for which it is possible to partition T into n subsets, each subset
having a diameter not exceeding x. Recall that the diameter of a plane set
A is given by d(A) = supa,b∈A ρ(a, b) where ρ(a, b) is the Euclidean distance
between a and b. R. L. Graham [149] has determined dn for 1 ≤ n ≤ 15.
Figure 2.65 gives an elegant partition of T into 15 sets each having diameter
d15 = 1/(1 + 2

√
3).

Property 81 (Dissecting a Polygon into Nearly-Equilateral Trian-
gles). Every polygon can be dissected into acute triangles. On the other hand,
a polygon P can be dissected into equilateral triangles with (interior) angles
arbitrarily close to π/3 radians if and only if all of the angles of P are multi-
ples of π/3. For every other polygon, there is a limit to how close it can come
to being dissected into equilateral triangles [64, pp. 89-90].

Figure 2.66: Regular Simplex [60]

Property 82 (Regular Simplex). A regular simplex is a generalization of
the equilateral triangle to Euclidean spaces of arbitrary dimension [60]. Given
a set of n + 1 points in Rn which are pairwise equidistant (distance = d), an
n-simplex is their convex hull.

A 2-simplex is an equilateral triangle, a 3-simplex is a regular tetrahedron
(shown in Figure 2.66) , a 4-simplex is a regular pentatope and, in general, an
n-simplex is a regular polytope [60]. The convex hull of any nonempty proper
subset of the given n+1 mutually equidistant points is itself a regular simplex
of lower dimension called an m-face. The n + 1 0-faces are called vertices, the
n(n+1)

2
1-faces are called edges, and the n + 1 (n − 1)-faces are called facets.

In general, the number of m-faces is equal to

(

n + 1
m + 1

)

and so may be found
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in column m + 1 of row n + 1 of Pascal’s triangle. A regular n-simplex may
be constructed from a regular (n − 1)-simplex by connecting a new vertex to
all of the original vertices by an edge of length d. A regular n-simplex is so
named because it is the simplest regular polytope in n dimensions.

(a) (b)

Figure 2.67: Non-Euclidean Equilateral Triangles: (a) Spherical. (b) Hyper-
bolic. [318]

Property 83 (Non-Euclidean Equilateral Triangles). Figure 2.67 dis-
plays examples of non-Euclidean equilateral triangles.

On a sphere, the sum of the angles in any triangle always exceeds π radians.
On the unit sphere (with constant curvature +1 and area 4π), the area of
an equilateral triangle, A, and one of its three interior angles, θ, satisfy the
relation A = 3θ − π [318]. Thus, limA→0 θ = π/3. The largest equilateral
triangle, corresponding to θ = π, encloses a hemisphere with its three vertices
equally spaced along a great circle. I.e., limA→2π θ = π. Figure 2.67(a) shows a
spherical tessellation by the 20 equilateral triangles, corresponding to θ = 2π/5
and A = π/5, associated with an inscribed icosahedron. On a hyperbolic plane,
the sum of the angles in any triangle is always smaller than π radians. On
the standard hyperbolic plane, H2, (with constant curvature -1), the area and
interior angle of an equilateral triangle satisfy the relation A = π − 3θ [318].
Once again, limA→0 θ = π/3. Observe the peculiar fact that an equilateral
triangle in the standard hyperbolic plane (which is unbounded!) can never
have an area exceeding π. This seeming conundrum is resolved by reference to
Figure 2.67(b) where a sequence of successively larger equilateral hyperbolic
triangles are represented in the Euclidean plane. Note that, as the sides of the
triangle become unbounded, the angles approach zero while the area remains
bounded. I.e., limA→π θ = 0.
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(a)
(b) (c)

Figure 2.68: The Hyperbolic Plane: (a) Embedded Patch [302]. (b) Poincaré
Disk. (c) Thurston Model [20]. [138]

Property 84 (The Hyperbolic Plane). The crochet model of Figure 2.68(a)
displays a patch of H2 embedded in R3 [302].

As shown in Figure 2.68(b), it may also be modeled by the Poincaré disk
whose geodesics are either diameters or circular arcs orthogonal to the bound-
ary [33]. In this figure, the disk has been tiled by equilateral hyperbolic trian-
gles meeting 7 at a vertex. This tiling ultimately led to the Thurston model of
the hyperbolic plane shown in Figure 2.68(c) [20]. In this model, 7 Euclidean
equilateral triangles are taped together at each vertex so as to provide novices
with an intuitive feeling for hyperbolic space [318]. However, it is important
to note that the Thurston model can be misleading if it is not kept in mind
that it is but a qualitative approximation to H2 [20].

Property 85 (The Minkowski Plane). In 1975, L. M. Kelly proved the
conjecture of M. M. Day to the effect that a Minkowski plane with a regular
dodecagon as unit circle satisfies the norm identity [192]:

||x|| = ||y|| = ||x − y|| = 1 ⇒ ||x + y|| =
√

3.

Stated more geometrically, the medians of an equilateral triangle of side
length s are of length

√
3

2
· s just as they are in the Euclidean plane. Midpoint

in this context is interpreted vectorially rather than metrically.

Property 86 (Mappings Preserving Equilateral Triangles). Sikorska
and Szostok [281] have shown that if E is a finite-dimensional Euclidean space
with dim E ≥ 2 then f : E → E is measurable and preserves equilateral
triangles implies that it is a similarity transformation (an isometry multiplied
by a positive constant).

Since such a similarity transformation preserves every shape, this may be
paraphrased to say that if a measurable function preserves a single shape, i.e.
that of the equilateral triangle, then it preserves all shapes. In [282], they
extend this result to normed linear spaces.
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Figure 2.69: Delahaye Product

Property 87 (Delahaye Product). In his Arithmetica Infinitorum (1655),
John Wallis presented the infinite product representation

π

2
=

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· 8

9
· · · .

In 1997, Jean-Paul Delahaye [74, p. 205] presented the related infinite product

2π

3
√

3
=

3

2
· 3

4
· 6

5
· 6

7
· 9

8
· 9

10
· 12

11
· 12

13
· · · .

The presence of π together with
√

3 suggests that a relationship between the
circle and the equilateral triangle may be hidden within this formula.

We may disentangle these threads as follows. The left-hand-side expression,
pR

p
= 2π

3
√

3
, is the ratio of the perimeter of the circumcircle to the perime-

ter of the equilateral triangle. Introducing the scaling parameters σk :=√
(3k−1)(3k+1)

3k
, Delahaye’s product may be rewritten as

lim
k→∞

pR · σ2
1 · σ2

2 · · ·σ2
k · · ·

p
= 1.

Thus, if we successively shrink the circumcircle by multiplying its radius by
the factors, σ2

k (k = 1, . . . , ∞), then the resulting circles approach a limiting
position where the perimeter of the circle coincides with that of the equilateral
triangle (Figure 2.69).
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Property 88 (Grunsky-Motzkin-Schoenberg Formula). Suppose that
f(z) is analytic on the equilateral triangle, T , with vertices at 1, w, w2 where
w := exp (2πı/3). Then [69, p. 129],

∫ ∫

T

f ′′(z) dxdy =

√
3

2
· [f(1) + wf(w) + w2f(w2)].

While this chapter has certainly made a strong case for the mathematical
richness associated with the equilateral triangle, it runs the risk of leaving the
reader with the impression that it has only theoretical and aesthetic value or,
at best, is useful only within Mathematics itself. Nothing could be further
from the truth! In the next chapter, I will present a sampling of applications
of the equilateral triangle which have been selected to provide a feel for the
diversity of practical uses of the equilateral triangle for comprehending the
world about us that the human race has uncovered (so far).



Chapter 3

Applications of the Equilateral
Triangle

Figure 3.1: Equilateral Triangle Method in Surveying [34]

Application 1 (Surveying). In surveying, the Equilateral Triangle Method
[34] is used to measure around obstacles.

With reference to Figure 3.1, point B is set on the transit line as near the
obstacle as practicable but so that a line BC at 60◦ with the transit line can be
run out. The instrument is then set up at B, backsighted on A, and an angle of
120◦ laid off. The line BC is made long enough so that, when the instrument
is set up at C and 60◦ is laid off from it, CD will lie outside the obstacle. BC
is measured and CD is made equal to BC. If now the instrument is set up at
D and angle ∠CDE laid off equal to 120◦ then the line DE is the continuation
of the original transit line and BD = BC.

78
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Figure 3.2: North American Satellite Triangulation Network [53]

Figure 3.3: GPS Antenna [274]
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Application 2 (Satellite Geodesy). In satellite geodesy (the forerunner to
today’s GPS)[53], an equilateral triangle on the Earth (comprised of stations
at Aberdeen, MD; Chandler, MN; and Greenville, MS) with sides roughly 900
miles long was first used in 1962 to verify the accuracy of the satellite trian-
gulation concept.

With reference to Figure 3.2, the U.S. Coast and Geodetic Survey used
three specially designed ballistic cameras with associated electronic time syn-
chronization systems to track the motion of the NASA ECHO I communi-
cations satellite. These three observation stations were tied to the existing
triangulation network for the test. After several months of observations, it
was concluded that this process offered precision comparable to, or better
than, the existing conventional triangulation network. This allowed them to
use this process to strengthen the North American Network which includes
the continental United States and Alaska via Canada as well as the islands of
Antigua and Bermuda.

Application 3 (GPS Antenna). An equilateral triangular receiving antenna
can be used in the Global Positioning System (GPS) [274].

With reference to Figure 3.3, C. Scott has constructed a GPS receiving
antenna based upon an equilateral triangular blade monopole design which
approaches the broadband characteristics of a conical monopole. This in turn
gives very broad resonance and reasonable impedance matching. As the air-
craft receiver is not portable, this antenna is suitable for interfacing and de-
bugging in the laboratory.

Figure 3.4: “Bat’s Ear” Antenna [106]
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Application 4 (Biomimetic “Bat’s Ear” Antenna). A biomimetic an-
tenna in the shape of a bat’s ear may be constructed from an equilateral trian-
gular conducting plate that is curved and the base electrically connected to a
circular ground plane with a central monopole element [106].

With reference to Figure 3.4, J. A. Flint [106] has shown that, for certain
frequencies, this yields a higher gain and a radiation pattern with lower side
lobes than the equivalent circular ground mounted monopole and that a good
match can be retained at the coaxial input.

(a) (b)

Figure 3.5: (a) Principle of the Equilateral Triangle in Electrocardiography.
(b) Graphical Determination of the Electrical Axis of the Heart. [45]

Application 5 (Principle of the Equilateral Triangle in Electrocar-
diography). Einthoven’s Triangle of Electrocardiography (Figure 3.5(a)), with
vertices comprised of electrodes located on the left arm (LA), right arm (RA)
and left leg (LL), is used to determine the electrical axis of the heart [45].
Normally, this electrical axis is oriented in a right shoulder to left leg direc-
tion. Any significant deviation of the electrical axis from this orientation can
indicate ventricular hypertrophy (straining).

The electrical activity of the heart can be described by the movement of an
electrical dipole consisting of a negative and a positive charge separated by a
variable distance. The directed line segment joining these two charges is called
the cardiac vector. Its magnitude and direction can be described by three
vectors along the edges of an equilateral triangle, each vector representing the
potential difference, ei, across electrical leads connecting the electrodes (e1:
lead 1 from RA to LA; e2: lead 2 from RA to LL; e3: lead 3 from LA to LL).
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The ei are the projections of the cardiac vector onto the three sides of the
Einthoven Triangle and e1 − e2 + e3 = 0. Furthermore,

tan α =
2e2 − e1

e1

√
3

=
2e3 + e1

e1

√
3

=
e2 + e3

(e2 − e3)
√

3
,

where α is the angle of inclination of the electrical axis of the heart. Along the
corresponding edge of the triangle, a point a distance ei (measured from the
EKG) from the midpoint is marked off. The perpendiculars emanating from
these three points meet at a point inside the triangle. The vector from the
center of the Einthoven Triangle to this point of intersection represents the
cardiac vector. Its angle of inclination is then easily read from the graphical
device shown in Figure 3.5(b).

Figure 3.6: Human Elbow [88]

Application 6 (Human Elbow). Three bony landmarks of the human elbow
- the medial epicondyle, the lateral epicondoyle, and the apex of the olecranon
- form an approximate equilateral triangle when the elbow is flexed 90◦, and a
straight line when the elbow is in extension (Figure 3.6) [88].

Figure 3.7: Lagrange’s Equilateral Triangle Solution [171]
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Application 7 (Lagrange’s Equilateral Triangle Solution (Three-Body
Problem)). The three-body problem requires the solution of the equations of
motion of three mutually attracting masses confined to a plane. One of the few
known analytical solutions is Lagrange’s Equilateral Triangle Solution [171].

As illustrated in Figure 3.7 (m1 : m2 : m3 = 1 : 2 : 3), the particles
sit at the vertices of an equilateral triangle as this triangle changes size and
rotates. Each particle follows an elliptical path of the same eccentricity but
oriented at different angles with their common center of mass located at a focal
point of all three orbits. The motion is periodic with the same period for all
three particles. This solution is stable if and only if one of the three masses is
much greater than the other two. However, very special initial conditions are
required for such a configuration.

Figure 3.8: Lagrangian Points [1]

Application 8 (Lagrangian Points (Restricted Three-Body Problem)).
In the circular restricted three-body problem, one of the three masses is taken
to be negligible while the other two masses assume circular orbits about their
center of mass.

There are five points (Lagrangian points, L-points, libration points) where
the gravitational forces of the two large bodies exactly balance the centrifugal
force felt by the small body [1]. An object placed at one of these points
would remain in the same position relative to the other two. Points L4 and
L5 are located at the vertices of equilateral triangles with base connecting
the two large masses; L4 lies 60◦ ahead and L5 lies 60◦ behind as illustrated
in Figure 3.8. These two Lagrangian Points are (conditionally) stable under
small perturbations so that objects tend to accumulate in the vicinity of these
points. The so-called Trojan asteroids are located at the L4 and L5 points
of the Sun-Jupiter system. Furthermore, the Saturnian moon Tethys has two
smaller moons, Telesto and Calypso, at its L4 and L5 points while the Saturn-
Dione L4 and L5 points hold the small moons Helene and Polydeuces [296, p.
222].
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(a) (b)

Figure 3.9: (a) LISA (Laser Interferometer Space Antenna). (b) The LISA
Constellation’s Heliocentric Orbit. [117]

Application 9 (LISA and Gravitational Waves). Launching in 2020 at
the earliest, LISA (Laser Interferometer Space Antenna) [117] will overtake
the Large Hadron Collider as the world’s largest scientific instrument.

Einstein’s General Theory of Relativity predicts the presence of gravita-
tional waves produced by massive objects, such as black holes and neutron
stars, but they are believed to be so weak that they have yet to be detected.
This joint project of ESA and NASA to search for gravitational waves will
consist of three spacecraft arranged in an equilateral triangle, 5 million kilo-
meters (3.1 million miles or 1/30 of the distance to the Sun) on each side, that
will tumble around the Sun 20◦ behind Earth in its orbit (Figure 3.9(a)). The
natural free-fall orbits of the three spacecraft around the Sun will maintain this
triangular formation. The plane of the LISA triangle will be inclined at 60◦

to the ecliptic, and the triangle will appear to rotate once around its center in
the course of a year’s revolution around the Sun (Figure 3.9(b)). Each space-
craft will house a pair of free-floating cubes made of a gold-platinum alloy and
the distance between the cubes in different spacecraft will be monitored using
highly accurate laser-based techniques. In this manner, it will be possible to
detect minute changes to the separation of the spacecraft caused by passing
gravitational waves.

Application 10 (Ionocraft (“Lifter”)). An ionocraft or ion-propelled air-
craft (a.k.a. “Lifter”) is an electrohydrodynamic (EHD) device which utilizes
an electrical phenomenon known as the Biefeld-Brown effect to produce thrust
in the air, without requiring combustion or moving parts [101].

The basics of such ion air propulsion were established by T. T. Brown in
1928 and were further developed into the ionocraft by Major A. P. de Seversky
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(a)

(b)

Figure 3.10: (a) Ionocraft (“Lifter”). (b) Levitating Lifter. [101]

in 1964. It utilizes two basic pieces of equipment in order to take advantage of
the principle that electric current always flows from negative to positive: tall
metal spikes that are installed over an open wire-mesh grid. High negative
voltage is emitted from the spikes toward the positively charged wire grid, just
like the negative and positive poles on an ordinary battery. As the negative
charge leaves the spike arms, it pelts the surrounding air, putting a negative
charge on some of the surrounding air particles. Such negatively charged air
particles (ions) are attracted downward by the positively charged grid. In their
path from the ion emitter to the collector grid, the ions collide with neutral
air molecules - air particles without electric charge. These collisions thrust a
mass of neutral air downward along with the ions. When they reach the grid,
the negatively charged ions are trapped by the positively charged grid but the
neutral air particles that got pushed along flow right through the open grid
mesh, thus producing a downdraft beneath the ionocraft (ionic wind). The
ionocraft rides on this shaft of air, getting its lift just like a helicopter. The
simplest ionocraft is an equilateral triangular configuration (Figure 3.10(a)),
popularly known as a Lifter, which can be constructed from readily available
parts but requires high voltage for its successful operation. The Lifter works
without moving parts, flies silently, uses only electrical energy and is able to
lift its own weight plus an additional payload (Figure 3.10(b)).

Application 11 (Warren Truss). The rigidity of the triangle [152] has been
exploited in bridge design. The Warren truss (1848) [63] consists of longi-
tudinal members joined only by angled cross-members which form alternately
inverted equilateral triangular shaped spaces along its length (Figure 3.11).

This ensures that no individual strut, beam or tie is subject to bending
or torsional forces, but only to tension or compression. This configuration
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Figure 3.11: Warren Truss [63]

combines strength with economy of materials and can therefore be relatively
light. It is an improvement of the Neville truss which employs a spacing
configuration of isosceles triangles. The first bridge designed in this way was
constructed at London Bridge Station in 1850.

Application 12 (Flammability Diagram). Flammability diagrams [334]
show the regimes of flammability in mixtures of fuel, oxygen and an inert gas
(typically nitrogen).

The flammability diagram for methane appears in Figure 3.12. Prominent
features are the air-line together with its intersections with the flammability
region which determine the upper (UEL=upper explosive limit) and lower
(LEL=lower explosive limit) flammability limits of methane in air. The nose of
the flammability envelope determines the limiting oxygen concentration (LOC)
below which combustion cannot occur.

Application 13 (Goethe’s Color Triangle). In the Goethe Color Triangle
[145], the vertices of an equilateral triangle are labeled with the three primary
pigments, blue (A), yellow (B) and red (C).

The triangle is then further subdivided as in Figure 3.13 with the sub-
divisions grouped into primary (I), secondary (II) and tertiary (III) trian-
gles/colors. The secondary triangle colors represent the mix of the two adja-
cent primary triangle colors and the tertiary triangle colors represent the mix
of the adjacent primary color triangle and the non-adjacent secondary triangle
color. Goethe’s color psychology asserted that this triangle was a diagram of
the human mind and he associated each of its colors with a human emotion.
Subregions of the triangle are thus representative of a corresponding emotional
state.
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Figure 3.12: Flammability Diagram [334]

BLUE

RED YELLOW

I−A

I−BI−C

II−A II−B

II−C

III−A

III−BIII−C

Figure 3.13: Goethe’s Color Triangle [145]
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Figure 3.14: Maxwell’s Color Triangle [5]

Application 14 (Maxwell’s Color Triangle). The Maxwell Color Triangle
[5] is a ternary diagram of the three additive primary colors of light (red (R),
green (G), blue (B)).

As such, it displays the complete gamut of colors obtainable by mixing two
or three of them together (Figure 3.14). At the center is the equal energy point
representing true white. This triangle shows the quality aspect of psychophys-
ical color called chromaticity which includes hue and saturation but not the
quantity aspect comprised of the effective amount of light.

Application 15 (USDA Soil Texture Triangle). The Soil Texture Triangle
[72] is a ternary diagram of sand, silt and clay which is used to classify the
texture class of a soil.

The boundaries of the soil texture classes are shown in Figure 3.15. Land-
scapers and gardeners may then use this classification to determine appropriate
soil ammendments, such as adding organic matter like compost, to improve
the soil quality.

Application 16 (QFL Diagram). Clastic sedimentary rock is composed of
discrete fragments (clasts) of materials derived from other minerals. Such rock
can be classified using the QFL diagram [79].

This is a ternary diagram comprised of quartz (Q), feldspar (F) and lithic
(sand) fragments (L). The composition and provenance of sandstone is directly
related to its tectonic environment of formation (Figure 3.16).
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Figure 3.15: Soil Texture Triangle [72]

Figure 3.16: QFL (Clastic) Diagram [79]
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Figure 3.17: De Finetti Diagram (Genetics) [65]

Application 17 (De Finetti Diagram (Genetics)). De Finetti diagrams
[92] are used to display the genotype frequencies of populations where there are
two alleles and the population is diploid.

In Figure 3.17, the curved line represents the Hardy-Weinberg frequency
as a function of p. The diagram may also be extended to demonstrate the
changes that occur in allele frequencies under natural selection.

Figure 3.18: Fundamental Triangle (Game Theory) [312]

Application 18 (Fundamental Triangle (Game Theory)). Von Neu-
mann and Morgenstern [312] introduced the Fundamental Triangle (Figure
3.18) in their pathbreaking analysis of three-person game theory.

The imputation vector ~α = (α1, α2, α3) satisfies

αi ≥ −1 (i = 1, 2, 3); α1 + α2 + α3 = 0.

Thus, the shaded region of Figure 3.18 may be coordinatized as a ternary
diagram which can then be used to determine all solutions for essential zero-
sum three-person games. Furthermore, it may be adapted for the analysis of
essential nonzero-sum three-person games.
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(a)
(b)

Figure 3.19: Representation Triangle: (a) Ranking Regions. (b) Voting Para-
dox. [261]

Application 19 (Representation Triangle (Voting Theory)). According
to D. G. Saari [261], each of three candidates may be assigned to the vertex
of an equilateral “representation triangle” which is then subdivided into six
“ranking regions” by its altitudes (Figure 3.19(a)) [261].

Each voter ranks the three candidates. The number of voters of each type
is then placed into the appropriate ranking region (Figure 3.19(b)). The rep-
resentation triangle is a useful device to illustrate voting theory paradoxes and
counterintuitive outcomes. The two regions adjacent to a vertex correspond to
first place votes, the two regions adjacent to these second place votes, and the
two most remote regions third place votes. Geometrically, the left-side of the
triangle is closer to A than to B and so represents voters preferring A to B;
ditto for the five regions likewise defined. For the displayed example, C wins a
plurality vote with 42 first place votes. In so-called Borda voting, where a first
place vote earns two points, a second place vote earns one point and a third
place vote earns no points, B wins with a Borda count of 128. In Condorcet
voting, where the victor wins all pairwise elections, A is the Condorcet winner.
So, who really won the election [261]?

Application 20 (Error-Correcting Code). The projective plane of order
2, which is modeled by an equilateral triangle together with its incircle and
altitudes, is shown in Figure 3.20(a).

There are 7 points (numbered) and 7 lines (one of which is curved); each
line contains three points and each point lies on three lines. This is also known
as the Steiner triple-system of order 7 since each pair of points lies on exactly
one line. The matrix representation is shown in Figure 3.20(b) where the rows
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(a)

(b)
(c)

Figure 3.20: (a) Projective Plane of Order 2. (b) Binary Matrix Representa-
tion. (c) Hamming Code of Length 7. [286]

represent lines, the columns represent points and the presence of a 1 indicates
that a point lies on a line or, equivalently, a line contains a point (0 otherwise).
The Hamming code of length 7, which contains 8 codewords, is obtained by
taking the complement of the rows of this matrix and appending the zero
codeword (Figure 3.20(c)). It has minimum Hamming distance d = 4 and is a
single-error-correcting code [286].

Application 21 (Equilateral Triangle Rule (Speaker Placement)).
Stereo playback assumes a symmetrical loudspeaker and listener arrangement
with a 60◦ angle between the loudspeakers and corresponding to an equilateral
triangular configuration (Figure 3.21) [208].

Application 22 (Equilateral Triangular Microphone Placement). Hioka
and Hamada [173] have explored an algorithm for speaker direction tracking us-
ing microphones located at the vertices of an equilateral triangle (Figure 3.22).

In teleconferencing and remote lecturing systems, speaker direction track-
ing is essential for focusing the desired speech signal as well as steering the
camera to point at the speaker. For these applications, the accuracy should be
spatially uniform for omni-directional tracking and, for practical purposes, a
small number of microphones is desirable. Both of these objectives are achieved
by the integrated use of three cross-spectra from the equilateral triangular mi-
crophone array. Computer simulations and experimental measurements have
confirmed that this array possesses uniform omni-directional accuracy and does
not lose track of the speaker even if he/she moves abruptly.
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Figure 3.21: Equilateral Triangle Rule [280]

Figure 3.22: Equilateral Triangular Microphone Array [173]
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(a)

(b)

Figure 3.23: Loudspeaker Array: (a) Icosahedral Speaker. (b) Equilateral
Triangle Array. [13]

Application 23 (Icosahedral Speaker). The research team at The Center
for New Music and Audio Technologies (CNMAT) of UC-Berkeley, in collab-
oration with Meyer Sound of Berkeley, California, has created a compact 120-
channel approximately spherical loudspeaker for experiments with synthesis of
acoustic signals with real-time programmable directional properties.

These directional patterns can reproduce the complete radiative signature
of natural instruments or explore new ideas in spatial audio synthesis. A
special hybrid geometry is used that combines the maximal symmetry of a
twenty-triangular-faceted icosahedron (Figure 3.23(a)) with the compact pla-
nar packing of six circles on an equilateral triangle (Figure 3.23(b) shows the
resulting “billiard ball packing”.) [13].

Application 24 (Superconducting Sierpinski Gasket). In 1986, Gordon
et al. [147] reported on their experimental investigations of the properties of a
superconducting Sierpinski gasket (SG) network in a magnetic field.

Because of their dilational symmetry, statistical mechanical and transport
problems are exactly solvable on these fractals. Moreover, study of the SG
network is inherently interesting because of its lack of translational invariance
and its anomalous (fractal) dimensionalities. The experimental gaskets (Fig-
ure 3.24) were of tenth order with elementary triangles of area 1.38 µm2 and
produced excellent quantitative agreement with theoretical predictions.
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Figure 3.24: Superconducting Sierpinski Gasket [147]

Figure 3.25: Square Hole Drill (U. S. Patent 4,074,778) [242]
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Application 25 (Square Hole Drill). In 1978, U. S. Patent 4,074,778 was
granted for a “Square Hole Drill” based upon the Reuleaux triangle (Figure
3.25) [242].

The resulting square has slightly rounded corners but achieves approxi-
mately 99% of the desired area. It was not the first such drill granted a
patent: the Watts drill received U. S. Patent 1,241,176 in 1917!

Figure 3.26: Wankel Engine [303]

Application 26 (Wankel Engine). The Wankel non-reciprocating engine
(Figure 3.26) is a rotary internal combustion engine which has the shape of a
Reuleaux triangle inscribed in a chamber, rather than the usual piston, cylinder
and mechanical valves [303].

This rotary engine, found in Mazda automobiles, has 40% fewer parts and
thus far less weight. Within the Wankel rotor, three chambers are formed by
the sides of the rotor and the wall of the housing. The shape, size, and position
of the chambers are constantly altered by the rotation of the rotor.

Application 27 (Equilateral Triangular Anemometer). Anemometers
are used to measure either wind speed or air pressure, depending on the style
of anemometer [186].

The most familiar form, the cup anemometer, was invented in 1846 by
J. T. R. Robinson and features four hemispherical cups arranged at 90◦ angles.
An anemometer’s ability to measure wind speed is limited by friction along
the axis of rotation and aerodynamic drag from the cups themselves. For
this reason, more accurate anemometers feature only three cups arranged in
an equilateral triangle. Modern ultrasonic anemometers, such as that shown
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Figure 3.27: Ultrasonic Anemometer [317]

in Figure 3.27, have no moving parts. Instead, they employ bi-directional
ultrasonic transducers which act as both acoustic transmitters and acoustic
receivers. They work on the principle that, when sound travels against/with
the wind, the total transit time is increased/reduced by an amount dependent
upon the wind speed [317].

Application 28 (Natural Equilateral Triangles). Mother Nature has an
apparent fondness for equilateral triangles which is in evidence in Figure 3.28,
where its manifestation in both (a) the nonliving and (b) the living worlds is
on prominent display [54]. (See Appendix A for many more examples.)

Application 29 (Equilateral Triangular Maps). In 1913, B. J. S. Cahill
of Oakland, California patented his butterfly map which is shown in Figure
3.29(a) [132].

It is obtained by inscribing a regular octahedron in the Earth and then
employing gnomonic projection, i.e. projection from the globe’s center, onto
its eight equilateral triangular faces [132]. However, with the highest face
count (20) amongst regular polyhedra, the icosahedron has long been a fa-
vorite among cartographers. In 1943, distinguished Yale economist Irving
Fisher published his Likeaglobe map which is shown in Figure 3.29(b). It
is the product of gnomonic projection of the world to the twenty equilateral
triangular faces of an inscribed icosahedron [132]. In 1954, R. Buckminster
Fuller patented his Dymaxion Skyocean Projection World Map [113] which is
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(a)
(b)

Figure 3.28: Natural Equilateral Triangles: (a) High Altitude Snow Crystal.
(b) South American Butterfly Species. [54]

(a)
(b)

Figure 3.29: Equilateral Triangular Maps: (a) Cahill’s Butterfly Map (Octa-
hedron). (b) Fisher’s Likeaglobe Map (Icosahedron). [132]
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also based upon the icosahedron. It differs from Fisher’s Likeaglobe in having
the North and South poles on opposite faces at points slightly off center.

Figure 3.30: 3-Frequency Geodesic Dome [190]

Application 30 (Geodesic Dome). A geodesic dome is a (portion of a)
spherical shell structure based upon a network of great circles (geodesics) lying
on the surface of a sphere that intersect to form triangular elements [190].

Since the sphere encloses the greatest volume for a given surface area, it
provides for economical design (largest amount of internal space and minimal
heat loss due to decreased outer skin surface) and, because of its triangulated
nature, it is structurally stable. In its simplest manifestation [190], the twenty
triangular faces of an inscribed icosahedron are subdivided into equilateral
triangles by partitioning each edge into n (the “frequency”) segments. The
resulting vertices are then projected onto the surface of the circumscribing
sphere. The projected triangles are no longer congruent but are of two va-
rieties thereby producing vertices with a valence of either five or six. The
resulting geodesic structure has 12 5-valent vertices, 10(n2 − 1) 6-valent ver-
tices, 30n2 edges and 20n2 faces [152]. See Figure 3.30 for the case n = 3.
The geodesic sphere may now be truncated to produce a dome of the desired
height. Such geodesic domes were popularized in the architecture of R. Buck-
minster Fuller [113]. About 1960, biochemists employed electron microscopy
to discover that some viruses have recognizable icosahedral symmetry and look
like tiny geodesic domes [59].
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(a)
(b) (c) (d)

Figure 3.31: Sphere Wrapping: (a) Mozartkugel. (b) Petals. (c) Square Wrap-
ping. (d) Equilateral Triangular Wrapping. [75]

Application 31 (Computational Confectionery (Optimal Wrapping)
[75]). Mozartkugel (“Mozart sphere”) is a fine Austrian confectionery com-
posed of a sphere with a marzipan core (sugar and almond meal), encased in
nougat or praline cream, and coated with dark chocolate (Figure 3.31(a)).

It was invented in 1890 by Paul Fürst in Salzburg (Mozart’s birthplace)
and about 90 million of them are still made and consumed world-wide each
year. Each spherical treat is individually wrapped in a square of aluminum
foil. In order to minimize the amount of wasted material, it is natural to study
the problem of wrapping a sphere by an unfolded shape which will tile the
plane so as to facilitate cutting the pieces of wrapping material from a large
sheet of foil. E. Demaine et al. [75] have considered this problem and shown
that the substitution of an equilateral triangle for the square wrapper leads to
a savings in material. As shown in Figure 3.31(b), they first cut the surface of
the sphere into a number of congruent petals which are then unfolded onto a
plane. The resulting shape may then be enclosed by a square (Figure 3.31(c))
or an equilateral triangle (Figure 3.31(d)). Their analysis shows that the latter
choice results in a material savings of 0.1%. In addition to the direct savings
in material costs, this also indirectly reduces CO2 emissions, thereby partially
alleviating global warming. Way to go Equilateral Triangle!

Application 32 (Triangular Lower and Upper Bounds). Of all triangles
with a given area A, the equilateral triangle has the smallest principal frequency
Λ and the largest torsional rigidity P . Thus for any triangle, we have the lower
bound 2π

4
√

3·
√

A
≤ Λ and the upper bound P ≤

√
3A2

15
[243].

The principal frequency Λ is the gravest proper tone of a uniform elastic
membrane uniformly stretched and fixed along the boundary of an equilateral
triangle of area A. It has been rendered a purely geometric quantity by drop-
ping a factor that depends solely on the physical nature of the membrane. P is
the torsional rigidity of the equilateral triangular cross-section, with area A, of
a uniform and isotropic elastic cylinder twisted around an axis perpendicular
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(a)
(b)

Figure 3.32: Triangular Lower and Upper Bounds: (a) Vibrating Membrane.
(b) Cylinder Under Torsion. [243]

to the cross-section. The couple resisting such torsion is equal to θµP where
θ is the twist or angle of rotation per unit length and µ is the shear modu-
lus. So defined, P is a purely geometric quantity depending on the shape and
size of the cross-section. Figure 3.32(a) shows one of the vibrational modes
of a triangular membrane while Figure 3.32(b) shows the shear stress in the
cross-section of an equilateral triangular prism under torsion.
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Figure 3.33: Fundamental Mode [219]

Application 33 (Laplacian Eigenstructure). The eigenvalues and eigen-
functions of the Laplace operator, ∆ := ∂2

∂x2 + ∂2

∂y2 , on the equilateral triangle
play an important role in Applied Mathematics.
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The eigenstructure of the Laplacian arises in heat transfer, vibration theory,
acoustics, electromagnetics and quantum mechanics to name but a few of its
ubiquitous appearances in science and engineering. G. Lamé discovered explicit
formulas for the cases of Dirichlet and Neumann boundary conditions which
were later extended to the Robin boundary condition by B. J. McCartin [219].
Figure 3.33 shows the fundamental mode for the Dirichlet boundary condition.



Chapter 4

Mathematical Recreations

The impact of the equilateral triangle is considerably extended if we broaden
our scope to include the rich field of Recreational Mathematics [273].

Figure 4.1: Greek Symbol Puzzle [210]

Recreation 1 (Sam Loyd’s Greek Symbol Puzzle [210]). Draw the Greek
symbol of Figure 4.1 in one continuous line making the fewest possible number
of turns (going over the same line as often as one wishes).

The displayed solution commences at A and terminates at B with segment
AB traced twice. It requires only 13 turns (14 strokes). If no segment is traced
twice then 14 turns are necessary and sufficient. This same puzzle appeared
in [87].

103
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Figure 4.2: Dissected Triangle [86]

Recreation 2 (H. E. Dudeney’s Dissected Triangle [86]). Cut a paper
equilateral triangle into five pieces in such a way that they will fit together and
form either two or three smaller equilateral triangles, using all the material in
each case.

In Figure 4.2, diagram A is the original triangle, which for the sake of
definiteness is assumed to have an edge of 5 units in length, dissected as shown.
For the two-triangle solution, we have region 1 together with regions 2, 3, 4 and
5 assembled as in diagram B. For the three-triangle solution, we have region
1 together with regions 4 and 5 assembled as in diagram C and regions 2 and
3 assembled as in diagram D. Observe that in diagrams B and C, piece 5 has
been turned over which was not prohibited by the statement of the problem.

(a) (b)

Figure 4.3: (a) Triangle Dissection. (b) Triangle Hinged Dissection. [85]

Recreation 3 (H. E. Dudeney’s Haberdasher’s Puzzle [85]). The Hab-
erdasher’s Puzzle [85] concerns cutting an equilateral triangular piece of cloth
into four pieces that can be rearranged to make a square.
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With reference to Figure 4.3(a): Bisect AB in D and BC in E; produce the
line AE to F making EF equal to EB; bisect AF in G and describe arc AHF;
produce EB to H, and EH is the length of the side of the required square; from
E with distance EH, describe the arc HJ, and make JK equal to BE; now from
the points D and K drop perpendiculars on EJ at L and M. The four resulting
numbered pieces may be reassembled to form a square as in the Figure. Note
that AD, DB, BE, JK are all equal to half the side of the triangle [97]. Also,
LJ=ME [66]. As shown in Figure 4.3(b), the four pieces can be hinged in such a
way that the resulting chain can be folded into either the square or the original
triangle. Dudeney himself displayed such a table made of polished mahogany
and brass hinges at the Royal Society in 1905 [85]. An incorrect version of this
dissection appeared as Steinhaus’ Mathematical Snapshot #2 where the base
is divided in the ratio 1:2:1 (the correct ratios are approximately 0.982:2:1.018)
[291]. This was corrected as Schoenberg’s Mathematical Time Exposure #1
[272] (independently of Dudeney).

Figure 4.4: Triangle and Square Puzzle [87]

Recreation 4 (H. E. Dudeney’s Triangle and Square Puzzle [87]). It
is required to cut each of two equilateral triangles into three pieces so that the
six pieces fit together to form a perfect square [87].

Cut one triangle in half and place the pieces together as in Figure 4.4(1).
Now cut along the dotted lines, making ab and cd each equal to the side of the
required square. Then, fit together the six pieces as in Figure 4.4(2), sliding
the pieces F and C upwards and to the left and bringing down the little piece
D from one corner to the other.

Recreation 5 (H. E. Dudeney’s Square and Triangle Puzzle [87]). It
is required to fold a perfectly square piece of paper so as to form the largest
possible equilateral triangle [87]. (See Property 2.21.)
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Figure 4.5: Square and Triangle Puzzle [87]

With reference to Figure 4.5, fold the square in half and make the crease
FE. Fold the side AB so that the point B lies on FE, and you will get the
points F an H from which you can fold HGJ. While B is on G, fold AB back
on AH, and you will have the line AK. You can now fold the triangle AJK,
which is the largest possible equilateral triangle obtainable.

Figure 4.6: Triangle-to-Triangle Dissection [214]

Recreation 6 (Triangle-to-Triangle Dissection [214]). A given equilat-
eral triangle can be dissected into noncongruent pieces that can be rearranged
to produce the original triangle in two different ways.

Such a dissection of an equilateral triangle into eight pieces is shown in
Figure 4.6 [214]. This interesting dissection was found by superimposing two
different strips of triangular elements. Incidentally, this is not a minimal-piece
dissection.

Recreation 7 (Polygonal Dissections [109]). Mathematicians’ appetite for
polygonal dissections never seems to be sated [109].
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(a) (b) (c)

Figure 4.7: Polygon-to-Triangle Dissections; (a) Pentagon. (b) Hexagon. (c)
Nonagon (Enneagon). [109]

Witness Figure 4.7: (a) displays Goldberg’s six piece dissection of a regular
pentagon; (b) displays Lindgren’s five piece dissection of a regular hexagon; (c)
displays Theobald’s eight piece dissection of a regular nonagon (enneagon). All
three have been reassembled to form an equilateral triangle and all are believed
to be minimal dissections [109].

Figure 4.8: Dissections into Five Isosceles Triangles [135]

Recreation 8 (Dissection into Five Isosceles Triangles [135]). Figure
4.8 shows four ways to cut an equilateral triangle into five isosceles triangles
[135].

The four patterns, devised by R. S. Johnson, include one example of no
equilateral triangles among the five, two examples of one equilateral triangle
and one example of two equilateral triangles. H. L. Nelson has shown that
there cannot be more than two equilateral triangles.
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(a) (b) (c)

Figure 4.9: Three Similar Pieces: (a) All Congruent. (b) Two Congruent. (c)
None Congruent. [138]

Recreation 9 (Dissection into Three Parts [138]). It is easy to trisect
an equilateral triangle into three congruent pieces as in Figure 4.9(a).

It is much more difficult to dissect it into three similar parts, just two of
which are congruent as has been done in Figure 4.9(b). Yet, to dissect the
triangle into three similar pieces, none of which are congruent, is again easy
(see Figure 4.9(c)) [138].

Figure 4.10: Trihexaflexagon [121]

Recreation 10 (Trihexaflexagon [121]). Flexagons are paper polygons which
have a surprising number of faces when “flexed” [121].
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To form a trihexaflexagon, begin with a strip of paper with ten equilateral
triangles numbered as shown in Figure 4.10. Then, fold along ab, fold along cd,
fold back the protruding triangle and glue it to the back of the adjacent triangle
and Voila! The assembled trihexaflexagon is a continuous band of hinged trian-
gles with a hexagonal outline (“face”). If the trihexaflexagon is “pinch-flexed”
[244], as shown, then one face will become hidden and a new face appears.This
remarkable geometrical construction was discovered by Arthur H. Stone when
he was a Mathematics graduate student at Princeton University in 1939. A
Flexagon Committe consisting of Stone, Bryant Tuckerman, Richard P. Feyn-
man and John W. Tukey was formed to probe its mathematical properties
which are many and sundry [244].

Figure 4.11: Bertrand’s Paradox [122]

Recreation 11 (Bertrand’s Paradox [122]). The probability that a chord
drawn at random inside a circle will be longer than the side of the inscribed
equilateral triangle is equal to 1

3
, 1

2
and 1

4
[122]!

With reference to the top of Figure 4.11, if one endpoint of the chord is fixed
at A and the other endpoint is allowed to vary then the probability is equal
to 1

3
. Alternatively (Figure 4.11 bottom left), if the diameter perpendicular to

the chord is fixed and the chord allowed to slide along it then the probability
is equal to 1

2
. Finally (Figure 4.11 bottom right), if both endpoints of the

chord are free and we focus on its midpoint then the required probability is
computed to be 1

4
. Physical realizations of all three scenarios are provided in

[122] thus showing that caution must be used when the phrase “at random” is
bandied about, especially in a geometric context.
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Figure 4.12: Two-Color Map [123]

Recreation 12 (Two-Color Map [123]). How can a two-color planar map
be drawn so that no matter how an equilateral triangle with unit side is placed
on it, all three vertices never lie on points of the same color [123]?

A simple solution is shown in Figure 4.12 where the vertical stripes are
closed on the left and open on the right [123]. It is an open problem as to how
many colors are required so that no two points, a unit distance apart, lie on
the same color. However, it is known that four colors are necessary and seven
colors are sufficient.

(a) (b)

Figure 4.13: Sphere Coloring: (a) The Problem. (b) Five Colors Are Sufficient.
[131]
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Recreation 13 (Erdös’ Sphere Coloring Problem [131]). Paul Erdös
proposed the following unsolved problem in graph theory. What is the minimum
number of colors required to paint all of the points on the surface of a unit
sphere so that, no matter how we inscribe an equilateral triangle of side

√
3

(the largest such triangle that can be so inscribed), the triangle will have each
corner on a different color (Figure 4.13(a)) [131]?

E. G. Straus has shown that five colors suffice. In his five-coloring (shown in
Figure 4.13(b)), the north polar region is open with boundary circle of diameter√

3. The rest of the sphere is divided into four identical regions, each closed
along its northern and eastern borders, as indicated by the heavy black line on
the dark shaded region. One color is given to the cap and to the south pole.
The remaining four colors are assigned to four quadrant regions. G. J. Simmons
has shown that three colors are not sufficient so that at least four colors are
necessary. It is unknown whether four or five colors are both necessary and
sufficient. The analogous problem for the plane, i.e. the minimum number of
colors which ensures that every equilateral triangle of unit side will have its
corners on different colors, is also open. Indeed, it is equivalent to asking for a
minimal coloring of the plane so that every unit line segment has its endpoints
on different colors, a problem which was discussed at the end of the previous
Recreation. This problem may be recast in terms of the chromatic number of
planar graphs [131].

(a) (b) (c)

Figure 4.14: Optimal Spacing of Lunar Bases: (a) n=3. (b) n=4. (c) n=12.
[124]

Recreation 14 (Optimal Spacing of Lunar Bases [124]). Assume that
the moon is a perfect sphere and that we want to establish n lunar bases as far
apart from one another as possible.

I.e., how can n points be arranged on a sphere so that the smallest distance
between any pair of points is maximized? This problem is equivalent to that
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of placing n equal, nonoverlapping circles on a sphere so that the radius of
each circle is maximized [124]. The solution for the cases n = 3, 4, 12 appear
in Figure 4.14 and all involve equilateral triangles. The solution for cases
2 ≤ n ≤ 12 and n = 24 are known, otherwise the solution is unknown [124].

Figure 4.15: Rep-4 Pentagon: The Sphinx [146]

Recreation 15 (Replicating Figures: Rep-tiles [125]). In 1964, S. W.
Golomb gave the name “rep-tile” to a replicating figure that can be used to as-
semble a larger copy of itself or, alternatively, that can be dissected into smaller
replicas of itself [146]. If four copies are required then this is abbreviated rep-4.

Figure 4.15 contains a rep-4 pentagon, known as the Sphinx, which may be
regarded as composed of six equilateral triangles or two-thirds of an equilateral
triangle [146]. The Sphinx is the only known 5-sided rep-tile [296, p. 134].
Figure 4.16 contains three examples of rep-4 nonpolygonal figures composed
of equilateral triangles: the Snail, the Lamp and the Carpenter’s Plane [125].
Each of these figures, shown at the left, is formed by adding to an equilateral
triangle an endless sequence of smaller triangles, each one one-fourth the size
of its predecessor. In each case, four of these figures will fit together to make a
larger replica, as shown on the right. (There is a gap in each replica because the
original figure cannot be drawn with an infinitely long sequence of triangles.)

Recreation 16 (Hexiamonds [126]). Hexiamonds were invented by S. W.
Golomb in 1954 and officially named by T. H. O’Beirne in 1961. Each hexia-
mond is composed of six equilateral triangles joined along their edges. Treating
mirror images as identical, there are exactly 12 of them (Figure 4.17) [126].

Much is known about the mathematical properties of hexiamonds. For
example, the six-pointed star of Figure 4.18(a) is known to have the unique
eight-piece solution of Figure 4.18(b) [126]. Sets of plastic hexiamonds were
marketed in the late 1960’s, under various trade names, in England, Japan,
and West Germany.
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Figure 4.16: Rep-4 Non-Polygons: The Snail, The Lamp, and The Carpenter’s
Plane [125]

Recreation 17 (MacMahon’s 24 Color Triangles [128]). In 1921, Major
Percy A. MacMahon, a noted combinatorialist, introduced a set of 24 color
triangles [213], the edges of which are colored with one of four colors, that
are pictured in Figure 4.19 [128]. (Rotations of triangles are not considered
different but mirror-image pairs are considered distinct.) The pieces are to
be fitted together with adjacent edges matching in color to form symmetrical
polygons, the border of which must all be of the same color.

It is known that all polygons so assembled from the 24 color triangles
must have perimeters of 12, 14, or 16 unit edges. Also, only one polygon, the
regular hexagon, has the minimum perimeter of 12. Its one-color border can
be formed in six different ways, each with an unknown number of solutions.
For each type of border, the hexagon can be solved with the three triangles of
solid color (necessarily differing in color from the border) placed symmetrically
around the center of the hexagon. Since each solid-color triangle must be
surrounded by triangular segments of the same color, the result is three smaller
regular hexagons of solid color situated symmetrically at the center of the larger
hexagon. Figure 4.20 displays a hexagon solution for each of the six possible
border patterns [128]. As previously noted, it is not known how many solutions
there are of these six types although the total number of solutions has been
estimated to be in the thousands.
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Figure 4.17: The 12 Hexiamonds [126]
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(a) (b)

Figure 4.18: Hexiamond Star: (a) Problem. (b) Solution. [126]

Figure 4.19: MacMahon’s 24 Color Triangles [128]
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Figure 4.20: Six Solutions to the Hexagon Problem [128]
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(a) (b)

Figure 4.21: Icosahedron: (a) Icosahedron Net. (b) Five-Banded Icosahedron.
[130]

Recreation 18 (Plaited Polyhedra [130]). Traditionally [66], paper models
of the five Platonic solids are constructed from “nets” like that shown in Figure
4.21(a) for the icosahedron. The net is cut out along the solid line, folded
along the dotted lines, and the adjacent faces are then taped together. In 1973,
Jean J. Pedersen of Santa Clara University discovered a method of weaving or
braiding (“plaiting”) the Platonic solids from n congruent straight strips. Each
strip is of a different color and each model has the properties that every edge
is crossed at least once by a strip, i.e. no edge is an open slot, and every color
has an equal area exposed on the model’s surface. (An equal number of faces
will be the same color on all Platonic solids except the dodecahedron, which has
bicolored faces when braided by this technique.) She has proved that if these
two properties are satisfied then the number of necessary and sufficient bands
for the tetrahedron, cube, octahedron, icosahedron and dodecahedron are two,
three, four, five and six, respectively [130].

With reference to Figure 4.21(b), the icosahedron is woven with five valley-
creased strips. A visually appealing model can be constructed with each color
on two pairs of adjacent faces, the pairs diametrically opposite each other.
All five colors go in one direction around one corner and in the opposite di-
rection, in the same order, around the diametrically opposite corner. Each
band circles an “equator” of the icosahedron, its two end triangles closing the
band by overlapping. In making the model, when the five overlapping pairs of
ends surround a corner, all except the last pair can be held with paper clips,
which are later removed. The last overlapping end then slides into the proper
slot. Experts may dispense with the paper clips [130]. Previous techniques of
polyhedral plaiting involved nets of serpentine shape [322].

Recreation 19 (Pool-Ball Triangles [133]). Colonel George Sicherman of
Buffalo asked while watching a game of pool: Is it possible to form a “differ-
ence triangle” in arranging the fifteen balls in the usual equilateral triangular
configuration at the beginning of a game?
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Figure 4.22: Pool-Ball Triangle [133]

In a difference triangle, the consecutive numbers are arranged so that each
number below a pair of numbers is the positive difference between that pair.
He easily found two solutions for three balls and four solutions each for six and
ten balls. However, he was surprised to discover that, for all fifteen balls, there
is only the single solution shown in Figure 4.22, up to reflection. Incidentally,
it has been proved that no difference triangle can have six or more rows [295,
p. 7].

(a) (b)

Figure 4.23: Equilateral Triangular Billiards: (a) Triangular Pool Table. (b)
Unfolding Billiard Orbits. [198]

Recreation 20 (Equilateral Triangular Billiards [198]). In the “billiard
ball problem”, one seeks periodic motions of a billiard ball on a convex billiard
table, where the law of reflection at the boundary is that the angle of incidence
equals the angle of reflection [24, pp. 169-179]. Even for triangular pool tables,
the present state of our knowledge is very incomplete. For example, it is not
known if every obtuse triangle possesses a periodic orbit and, for a general
non-equilateral acute triangle, the only known periodic orbit is the Fagnano
orbit consisting of the pedal triangle (see Figure 2.35 right) [158]. However,
the equilateral triangular billiard table possesses infinitely many periodic orbits
[16].
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(a)
(b)

(c)

Figure 4.24: Triangular Billiards Redux: (a) Notation. (b) Some Orbits. (c)
Gardner’s Gaffe. [198]

In his September 1963 “Mathematical Games” column in Scientific Amer-
ican [118], Martin Gardner put forth a flawed analysis of periodic orbits on
an equilateral triangular billiards table. In 1964, this motivated D. E. Knuth
to provide a correct, simple and comprehensive analysis of periodic billiard
orbits on an equilateral triangular table (see Figure 4.23(a)) [198]. His analy-
sis involves “unfolding” periodic orbits using the Schwarz reflection procedure
previously alluded to in our prior treatment of Fagnano’s problem of the short-
est inscribed triangle in Chapter 2 (Property 53). This results in the tiling of
the plane by repeated reflections of the billiard table ABC shown in Figure
4.23(b). Straight lines superimposed on this figure, such as L,M,N,P, give
paths in the original triangle satisfying the reflection law if the diagram is
folded appropriately. Conversely, any infinite path satisfying the reflection law
corresponds to a straight line in this diagram.

Turning our attention to Figure 4.24(a) where AB has unit length, 0 <
x < 1 is the point from which the billiard ball is launched at an angle θ and we
wish to determine those launching angles which result in endlessly repeating
periodic trajectories. The particular trajectory shown there corresponds to the
important special case θ = 60◦ and is associated with path M of Figure 4.23(b).
If x = 1/3 then this would coincide with the closed light path of Figure 2.35.
If x = 1/2 then this becomes the Fagnano orbit and we (usually) exclude
this highly specialized orbit from further consideration in what follows. Two
other special cases deserve attention: θ = 90◦ (Figure 4.24(b)left and path L
in Figure 4.23(b)) and θ = 30◦ (Figure 4.24(b) right and path P in Figure
4.23(b)), which are unusual in that one half of the path retraces the other half
in the opposite direction. A generic periodic orbit is shown in Figure 4.24(b)
center which corresponds to path N in Figure 4.23(b).

Now that the Fagnano orbit has been effectively excluded, Knuth shows
that periodic orbits correspond to lines in Figure 4.23(b) connecting the orig-
inal x to one of its images on a horizontal line and these are labeled with
coordinates (i, j) of two types, either (m, n) or (m + 1/2, n + 1/2), where m
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and n are integers. He then states and proves his main results:

Theorem 4.1. A path is cyclic if and only if θ = 90◦, or if tan θ = r/
√

3,
where r is a nonzero rational number. Moreover,

• The length of the path traveled in each cycle may be determined as follows:
Let tan θ = p/(q

√
3) where p and q are integers with no common factor,

and where p > 0, q ≥ 0. Then the length is k
√

3p2 + 9q2 where k = 1/2
if p and q are both odd, k = 1 otherwise; except when θ = 60◦ and
x = 1/2 (Fagnano orbit), when the length is 3/2.

• If x 6= 1/2, the shortest path length is
√

3 and it occurs when θ = 30◦

and θ = 90◦.

• The number of bounces occurring in each cycle may be determined as fol-
lows (when the path leads into a corner, this is counted as three bounces,
as can be justified by a limiting argument): With p, q, k as above, the
number of bounces is k[2p + min (2p, 6q)]; except when θ = 60◦ and
x = 1/2 (Fagnano orbit), when the number of bounces is 3.

• If x 6= 1/2, the least number of bounces per cycle is 4 and it occurs when
θ = 30◦ and θ = 90◦. With the exception of the Fagnano orbit, the
number of bounces is always even.

Finally, Knuth takes up Gardner’s gaffe where he claimed that the path
obtained by folding Figure 4.24(c) yields a periodic orbit. However, unless
θ = 60◦ and x = 1/2, the angle of incidence is not equal to the angle of
reflection at x. Knuth then shows that the extended path is cyclical if and only
if x is rational. Baxter and Umble [16], evidently unaware of Knuth’s earlier
pathbreaking work on equilateral triangular billiards, provide an analysis of
this problem ab initio. However, they introduce an equivalence relation on
the set of all periodic orbits where equivalent periodic orbits share the same
number of bounces, path length and incidence angles (up to permutation).
They also count the number of equivalence classes of orbits with a specified
(even) number of bounces.

Recreation 21 (Tartaglian Measuring Puzzles [62]). The following liquid-
pouring puzzle is due to the Renaissance Mathematician Niccolò Fontana,
a.k.a. Tartaglia (“The Stammerer”) [118]. An eight-pint vessel is filled with
water. By means of two empty vessels that hold five and three pints respec-
tively, divide the eight pints evenly between the two larger vessels by pouring
water from one vessel into another. In any valid solution, you are not allowed
to estimate quantities, so that you can only stop pouring when one of the ves-
sels becomes either full or empty. In 1939, M. C. K. Tweedie [311] showed
how to solve this and more general pouring problems by utilizing the trajectory
of a bouncing ball upon an equilateral triangular lattice (Figure 4.25).
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Figure 4.25: Tartaglian Measuring Puzzle [62]

In the ternary diagrams of Figure 4.25, the horizontal lines correspond to
the contents of the the 8-pint vessel while the downward/upward slanting lines
correspond to that of the 5/3-pint vessel, respectively. The closed highlighted
parallelogram corresponds to the possible states of the vessels with those on
the boundary corresponding to the states with one or more of the vessels either
completely full or completely empty, i.e. the valid intermediate states in any
proposed solution. The number triplets indicate how much each vessel holds
at any stage of the solution process in the order (8-pint, 5-pint, 3-pint).

Starting at the apex marked by the initial state 800, the first move must
be to fill either the 5-pint vessel (Figure 4.25 left) or the 3-pint vessel (Figure
4.25 right). Thereafter, we follow the path of a billiard ball bouncing on the
indicated parallelogram until finally reaching the final state 440. The law of
reflection is justified by the fact that each piece of the broken lines, shown
hashed in Figure 4.25, are parallel to a side of the outer triangle of reference
and so represent the act of pouring liquid from one vessel into another while
the third remains untouched. Figure 4.25 left thereby yields the seven-step
solution:

800 → 350 → 323 → 620 → 602 → 152 → 143 → 440,

while Figure 4.25 right generates the eight-step solution:

800 → 503 → 530 → 233 → 251 → 701 → 710 → 413 → 440.

A more detailed study of this technique, especially as to its generalizations
and limitations, is available in the literature [118, 229, 296]

Recreation 22 (Barrel Sharing [284]). Barrel sharing problems have been
common recreational problems since at least the Middle Ages [284]. In their
simplest manifestation, N full, N half-full and N empty barrels are to be shared
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Figure 4.26: Barrel Sharing (N = 5) [284]

among three persons so that each receives the same amount of contents and the
same number of barrels. Using equilateral triangular coordinates, D. Singmas-
ter [284] has shown that the solutions of this problem correspond to triangles
with integer sides and perimeter N .

Suppose that there are N barrels of each type (full, half-full and empty)
and let fi, hi, ei be the nonnegative integer number of these that the ith
person receives (i = 1, 2, 3). Then, a fair sharing is defined as one satisfying
the following conditions:

fi + hi + ei = N, fi +
hi

2
+

N

2
(i = 1, 2, 3);

3
∑

i=1

fi =
3

∑

i=1

hi =
3

∑

i=1

ei = N.

In turn, these conditions lead to the equivalent conditions:

ei = fi, hi = N − 2fi, fi ≤ N

2
(i = 1, 2, 3);

3
∑

i=1

fi = N.

However, three nonnegative lengths x, y, z can form a triangle if and only
if the three triangle inequalities hold:

x + y ≥ z, y + z ≥ x, z + x ≥ y.

Setting x + y + z = p, this is equivalent to

x ≤ p

2
, y ≤ p

2
, z ≤ p

2
.
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Hence, the solutions for sharing N barrels of each type are just the integral
lengths that form a triangle of perimeter N . Consider a triangle of sides x, y,
z and perimeter p. Since x + y + z = p, we can establish the ternary diagram
of Figure 4.26 (N = 5) where the dashed central region corresponds to the
inequalities: x ≤ p/2, y ≤ p/2, z ≤ p/2. The three (equivalent) solutions
contained in this region correspond to two persons receiving 2 full, 1 half-full
and 2 empty barrels, and one person receiving 1 full, 3 half-full and 1 empty
barrel. Singmaster [284] includes in his analyis a counting procedure for the
number of non-equivalent solutions and considers more general barrel sharing
problems.

Figure 4.27: Fraenkel’s “Traffic Jam” Game [135]

Recreation 23 (“Traffic Jam” Game [135]). A. S. Fraenkel, a mathemati-
cian at the Weizmann Institute of Science in Israel, invented the game “Traffic
Jam” which is played on the directed graph shown in Figure 4.27 [135].

A coin is placed on each of the four shaded spots A, D, F and M . Players
take turns moving any one of the coins along one of the directed edges of the
graph to an adjacent spot whether or not that spot is occupied. (Each spot can
hold any number of coins.) Note that A is a source (all arrows point outwards)
and C is a sink (all arrows point inwards). When all four coins are on sink
C, the person whose turn it is to move has nowhere to move and so loses the
game. J. H. Conway has proved that the first player can always win if and
only if his first move is to from M to L. Otherwise, his opponent can force a
win or a draw, assuming that both players always make their best moves.



124 Mathematical Recreations

(a)
(b)

Figure 4.28: Eternity Puzzle: (a) Sample Piece. (b) Puzzle Board. [313]

(a) (b)

Figure 4.29: Eternity Puzzle Solutions: (a) Selby-Riordan. (b) Stertenbrink.
[238]
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Recreation 24 (Eternity Puzzle [242]). The Eternity Puzzle [242] is a
jigsaw puzzle comprised of 209 pieces constructed from 12 hemi-equilateral
(30◦ − 60◦ − 90◦) triangles (Figure 4.28(a)). These pieces must be assem-
bled into an almost-regular dodecagon on a game board with a triangular grid
(Figure 4.28(b)).

In June 1999, the inventor of the puzzle, Christopher Monckton, offered a
£1M prize for its solution. In May 2000, two mathematicians, Alex Selby and
Oliver Riordan, claimed the prize with their solution shown in Figure 4.29(a).
In July 2000, Günter Stertenbrink presented the independent solution shown
in Figure 4.29(b). As these two solutions do not conform to the six clues
provided by Monckton, his solution, which remains unknown, is presumably
different. This is not surprising since it is estimated that the Eternity Puzzle
has on the order of 1095 solutions (it is estimated that there are approximately
8× 1080 atoms in the observable universe), but these are the only two (three?)
that have been found!

Figure 4.30: Knight’s Tours on a Triangular Honeycomb [316]

Recreation 25 (Knight’s Tours on a Triangular Honeycomb [316]).
The traditional 8 × 8 square chessboard may be replaced by using hexagons
rather than squares and build chessboards, called triangular honeycombs by
their inventor Heiko Harborth of the Technical University of Braunschweig, in
the shape of equilateral triangles. Knight’s Tours for boards of orders 8 and 9
are on display in Figure 4.30 [316].

The subject of Knight’s Tours on the traditional chessboard have a rich
mathematical history [242]. The earliest recorded solution was provided by de
Moivre which was subsequently “improved” by Legendre. Euler was the first
to write a mathematical paper analyzing Knight’s Tours.
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Figure 4.31: Nonattacking Rooks on a Triangular Honeycomb [136]

Recreation 26 (Nonattacking Rooks on a Triangular Honeycomb
[136]). The maximum number of nonattacking rooks that can be placed on
a triangular honeycomb of order n in known for 1 ≤ n ≤ 13: 1, 1, 2, 3, 3, 4,
5, 5, 6, 7, 7, 8, 9. Figure 4.31 shows such a configuration of 5 rooks on an
order-8 board [136].

Figure 4.32: Sangaku Geometry [112]

Recreation 27 (Sangaku Geometry [112]). Figure 4.32 portrays a San-
gaku Geometry (“Japanese Temple Geometry”) problem: Express the radius,
c, of the small white circles in terms of the radius, r, of the dashed circle. The
solution is c = r/10 [112, p. 124].

During Japan’s period of isolation from the West (roughly mid-Seventeenth
to mid-Nineteenth Centuries A.D.) imposed by decree of the shogun [242],
Sangaku arose which were colored puzzles in Euclidean geometry on wooden
tablets that were hung under the roofs of Shinto temples and shrines.
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Figure 4.33: Paper Folding [258]

Recreation 28 (Paper Folding [258]). Paper folding may be used as a
pedagogical device to expose even preschoolers to elementary concepts of plane
Euclidean geometry [258, p. 13]. Figure 4.33 displays an equilateral triangle
so obtained, replete with altitudes, center and pedal triangle.

Origami, the ancient Japanese art of paper folding, has traditionally fo-
cused on forming the shape of natural objects such as animals, birds and fish
rather than polygons. Nonetheless, it has long held a particular fascination for
many mathematicians such as Lewis Carroll (C. L. Dodgson) [120].

(a) (b) (c)

Figure 4.34: Spidrons: (a) Seahorse. (b) Tiling. (c) Polyhedron. [95]
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Recreation 29 (Spidrons [242]). To create a spidron, subdivide an equi-
lateral triangle by connecting its center to its vertices and reflect one of the
three resulting 30◦ − 30◦ − 120◦ isosceles triangles (with area one-third of the
original equilateral triangle) about one of its shorter sides. Now, construct an
equilateral triangle on one of the shorter sides (also with area one-third of the
original equilateral triangle) and repeat the process of subdivision-reflection-
construction. This will produce a spiraling structure with increasingly small
components. By deleting the original triangle we arrive at a semi-spidron and
joining two of them together results in a spidron which is the seahorse shape
of Figure 4.34(a).

Note that, since 2
3

+ 2
9

+ 2
27

+ · · · = 2 · 1/3
1−1/3

= 1, the sum of the areas
of the sequence of triangles following an equilateral triangle in a spidron is
equal to the area of the equilateral triangle itself. In other words, an entire
semi-spidron was lurking within the original equilateral triangle, waiting to be
released! Systems of such spidrons are notable for their ability to generate
beautiful tiling patterns in two dimensions (Figure 4.34(b)) and, when folded,
splendidly complex polyhedral shapes in three dimensions (Figure 4.34(c)).
They were invented in 1979 by graphic artist Dániel Erdély as part of a home-
work assignment for Ernö Rubik’s (of Rubik’s Cube fame) Theory of Form class
at Budapest University of Art and Design. Possible practical applications of
spidrons include acoustic tiles and shock absorbers for machinery. [242].



Chapter 5

Mathematical Competitions

As should be abundantly clear from the previous chapters, the equilateral
triangle is a fertile source of mathematical material which requires neither elab-
orate mathematical technique nor heavy mathematical machinery. As such,
it has provided grist for the mill of mathematical competitions such as the
American Mathematics Competitions (AMC), USA Mathematical Olympiad
(USAMO) and the International Mathematical Olympiad (IMO).

Problem 1 (AMC 1951). An equilateral triangle is drawn with a side of
length of a. A new equilateral triangle is formed by joining the midpoints of
the sides of the first one, and so on forever. Show that the limit of the sum of
the perimeters of all the triangles thus drawn is 6a. [262, p. 12]

Problem 2 (AMC 1952). Show that the ratio of the perimeter of an equilat-
eral triangle, having an altitude equal to the radius of a circle, to the perimeter
of an equilateral triangle inscribed in the circle is 2 : 3. [262, p. 20]

Figure 5.1: AMC 1964
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Problem 3 (AMC 1964). In Figure 5.1, the radius of the circle is equal to
the altitude of the equilateral triangle ABC. The circle is made to roll along
the side AB, remaining tangent to it at a variable point T and intersecting
sides AC and BC in variable points M and N , respectively. Let n be the
number of degrees in arc MTN . Show that, for all permissible positions of the
circle, n remains constant at 60◦. [263, p. 36]

Problem 4 (AMC 1967). The side of an equilateral triangle is s. A circle
is inscribed in the triangle and a square is inscribed in the circle. Show that
the area of the square is s2/6. [264, p. 15]

Problem 5 (AMC 1970). An equilateral triangle and a regular hexagon have
equal perimeters. Show that if the area of the triangle is T then the area of the
hexagon is 3T/2. [264, p. 28]

Figure 5.2: AMC 1974

Problem 6 (AMC 1974). In Figure 5.2, ABCD is a unit square and CMN
is an equilateral triangle. Show that the area of CMN is equal to 2

√
3 − 3

square units. [11, p. 11]

Problem 7 (AMC 1976). Given an equilateral triangle with side of length
s, consider the locus of all points P in the plane of the triangle such that the
sum of the squares of the distances from P to the vertices of the triangle is a
fixed number a. Show that this locus is the empty set if a < s2, a single point
if a = s2 and a circle if a > s2. [11, p. 24]
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Figure 5.3: AMC 1977

Problem 8 (AMC 1977). In Figure 5.3, each of the three circles is externally
tangent to the other two, and each side of the triangle is tangent to two of the
circles. If each circle has radius ρ then show that the perimeter of the triangle
is ρ · (6 + 6

√
3). [11, p. 29]

Figure 5.4: AMC 1978

Problem 9 (AMC 1978). In Figure 5.4, if ∆A1A2A3 is equilateral and An+3

is the midpoint of line segment AnAn+1 for all positive integers n, then show
that the measure of ∠A44A45A43 equals 120◦. [11, p. 39]
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Figure 5.5: AMC 1981

Problem 10 (AMC 1981). In Figure 5.5, equilateral ∆ABC is inscribed
in a circle. A second circle is tangent internally to the circumcircle at T and
tangent to sides AB and AC at points P and Q, respectively. Show that the
ratio of the length of PQ to the length of BC is 2 : 3. [11, p. 56]

Problem 11 (AMC 1983). Segment AB is a diameter of a unit circle and
a side of an equilateral triangle ABC. The circle also intersects AC and BC
at points D and E, respectively. Show that the length of AE is equal to

√
3.

[22, p. 2]

Figure 5.6: AMC 1988

Problem 12 (AMC 1988). In Figure 5.6, ABC and A′B′C ′ are equilateral
triangles with parallel sides and the same center. The distance between side
BC and B′C ′ is 1

6
the altitude of ∆ABC. Show that the ratio of the area of

∆A′B′C ′ to the area of ∆ABC is 1 : 4. [22, p. 36]



Mathematical Competitions 133

Figure 5.7: AMC 1988D

Problem 13 (AMC 1988D). In Figure 5.7, a circle passes through vertex
C of equilateral triangle ABC and is tangent to side AB at point F between A
and B. The circle meets AC and BC at D and E, respectively. If AF/FB = p
then show that AD/BE = p2. [22, p. 48]

Figure 5.8: AMC 1991

Problem 14 (AMC 1991). In Figure 5.8, equilateral triangle ABC has been
creased and folded so that vertex A now rests at A′ on BC. If BA′ = 1 and
A′C = 2 then show that PQ = 7

√
21

20
. [270, p. 22]
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Figure 5.9: AMC 1992

Problem 15 (AMC 1992). In Figure 5.9, five equilateral triangles, each with
side 2

√
3, are arranged so they are all on the same side of a line containing

one side of each. Along this line, the midpoint of the base of one triangle is a
vertex of the next. Show that the area of the region of the plane that is covered
by the union of the five triangular regions is equal to 12

√
3. [270, p. 26]

Figure 5.10: AMC 1995

Problem 16 (AMC 1995). In Figure 5.10, equilateral triangle DEF is in-
scribed in equilateral triangle ABC with DE ⊥ BC. Show that the ratio of the
area of ∆DEF to the area of ∆ABC is 1 : 3. [251, p. 5]

Problem 17 (AMC 1998). A regular hexagon and an equilateral triangle
have equal areas. Show that the ratio of the length of a side of the triangle to
the length of a side of the hexagon is

√
6 : 1. [251, p. 27]

Problem 18 (AMC-10 2003). The number of inches in the perimeter of
an equilateral triangle equals the number of square inches in the area of its
circumscribed circle. Show that the radius of the circle is 3

√
3/π. [99, p. 23]
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Figure 5.11: AMC-10 2004

Problem 19 (AMC-10 2004). In Figure 5.11, points E and F are located
on square ABCD so that ∆BEF is equilateral. Show that the ratio of the area
of ∆DEF to that of ∆ABE is 2 : 1. [99, p. 34]

Figure 5.12: AMC-10 2005

Problem 20 (AMC-10 2005). The trefoil shown in Figure 5.12 is con-
structed by drawing circular sectors about sides of the congruent equilateral
triangles. Show that if the horizontal base has length 2 then the area of the
trefoil is 2π

3
. [99, p. 42]

Problem 21 (AMC-12 2003a). A square and an equilateral triangle have
the same perimeter. Let A be the area of the circle circumscribed about the
square and B be the area of the circle circumscribed about the triangle. Show
that A

B
= 27

32
. [323, p. 18]
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Problem 22 (AMC-12 2003b). A point P is chosen at random in the in-
terior of an equilateral triangle ABC. Show that the probability that ∆ABP
has a greater area than each of ∆ACP and ∆BCP is equal to 1

3
. [323, p. 20]

Problem 23 (AMC-12 2005). All the vertices of an equilateral triangle lie
on the parabola y = x2, and one of its sides has a slope of 2. The x-coordinates
of the three vertices has a sum of m/n, where m and n are relatively prime
positive integers. Show that m + n = 14. [323, p. 46]

Problem 24 (AMC-12 2007a). Point P is inside equilateral ∆ABC. Points
Q, R and S are the feet of the perpendiculars from P to AB, BC and CA,
respectively. Given that PQ = 1, PR = 2 and PS = 3, show that AB = 4

√
3.

[323, p. 63]

Problem 25 (AMC-12 2007b). Two particles move along the edges of equi-
lateral ∆ABC in the direction A → B → C → A, starting simultaneously and
moving at the same speed. One starts at A and the other starts at the midpoint
of BC. The midpoint of the line segment joining the two particles traces out a
path that encloses a region R. Show that the ratio of the area of R to the area
of ∆ABCis 1 : 16. [323, p. 64]

Figure 5.13: USAMO 1974

Problem 26 (USAMO 1974). Consider the two triangles ∆ABC and ∆PQR
shown in Figure 5.13. In ∆ABC, ∠ADB = ∠BDC = ∠CDA = 120◦. Prove
that x = u + v + w. [196, p. 3]
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Figure 5.14: USAMO 2007

Problem 27 (USAMO 2007). Let ABC be an acute triangle with ω, Ω,
and R being its incircle, circumcircle, and circumradius, respectively (Figure
5.14). Circle ωA is tangent internally to Ω at A and tangent externally to ω.
Circle ΩA is tangent internally to Ω at A and tangent internally to ω. Let PA

and QA denote the centers of ωA and ΩA, respectively. Define points PB, QB,
PC, QC analogously. Prove that

8PAQA · PBQB · PCQC ≤ R3,

with equality if an only if triangle ABC is equilateral. [104, p. 28].

Problem 28 (IMO 1961). Let a, b, c be the sides of a triangle, and T its
area. Prove: a2 + b2 + c2 ≥ 4

√
3T and that equality holds if and only if the

triangle is equilateral. [155, p. 3]

Problem 29 (IMO 1983). Let ABC be an equilateral triangle and E the set
of all points contained in the three segments AB, BC and CA (including A, B
and C). Show that, for every partition of E into two disjoint subsets, at least
one of the two subsets contains the vertices of a right-angled triangle. [195, p.
6]
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Problem 30 (IMO Supplemental). Two equilateral triangles are inscribed
in a circle with radius r. Let K be the area of the set consisting of all points
interior to both triangles. Prove that K ≥ r2

√
3/2. [195, p. 13]

Problem 31 (IMO 1986). Given a triangle A1A2A3 and a point P0 in
the plane, define As = As−3 for all s ≥ 4. Construct a sequence of points
P1, P2, P3, . . . such that Pk+1 is the image of Pk under rotation with center Ak+1

through angle 120◦ clockwise (for k = 0, 1, 2, . . . ). Prove that if P1986 = P0 then
the triangle A1A2A3 is equilateral. [200, p. 1]

Figure 5.15: IMO 2005

Problem 32 (IMO 2005). Six points are chosen on the sides of an equilateral
triangle ABC: A1 and A2 on BC, B1 and B2 on CA, and C1 and C2 on AB
(Figure 5.15). These points are the vertices of a convex equilateral hexagon
A1A2B1B2C1C2. Prove that lines A1B2, B1C2, and C1A2 are concurrent (at
the center of the triangle). [103, p. 5]

Problem 33 (Austrian-Polish Mathematics Competition 1989). If
each point of the plane is colored either red or blue, prove that some equilateral
triangle has all its vertices the same color. [182, p. 42]
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Figure 5.16: All-Union Russian Olympiad 1980

Problem 34 (All-Union Russian Olympiad 1980). A line parallel to
the side AC of equilateral triangle ABC intersects AB at M and BC at P ,
thus making ∆BMP equilateral as well (Figure 5.16). Let D be the center of
∆BMP and E be the midpoint of AP . Show that ∆CDE is a 30◦ − 60◦ − 90◦

triangle. [182, p. 125]

Problem 35 (Bulgarian Mathematical Olympiad 1998a). On the sides
of a non-obtuse triangle ABC are constructed externally a square, a regular n-
gon and a regular m-gon (m, n > 5) whose centers form an equilateral triangle.
Prove that m = n = 6, and find the angles of triangle ABC. (Answer: The
angles are 90◦, 45◦, 45◦.) [7, p. 9]

Problem 36 (Bulgarian Mathematical Olympiad 1998b). Let ABC be
an equilateral triangle and n > 1 be a positive integer. Denote by S the set
of n − 1 lines which are parallel to AB and divide triangle ABC into n parts
of equal area, and by S ′ the set of n − 1 lines which are parallel to AB and
divide triangle ABC into n parts of equal perimeter. Prove that S and S ′ do
not share a common element. [7, p. 18]

Problem 37 (Irish Mathematical Olympiad 1998). Show that the area
of an equilateral triangle containing in its interior a point P whose distances
from the vertices are 3, 4, and 5 is equal to 9 + 25

√
3

4
. [7, p. 74]

Problem 38 (Korean Mathematical Olympiad 1998). Let D, E, F be
points on the sides BC, CA, AB, respectively, of triangle ABC. Let P , Q, R
be the second intersections of AD, BE, CF , respectively, with the circumcircle
of ABC. Show that AD

PD
+ BE

QE
+ CF

RF
≥ 9, with equality if and only if ABC is

equilateral. [7, p. 84]



140 Mathematical Competitions

Problem 39 (Russian Mathematical Olympiad 1998). A family S of
equilateral triangles in the plane is given, all translates of each other, and any
two having nonempty intersection. Prove that there exist three points such that
every member of S contains one of the points. [7, p. 136]

Problem 40 (Bulgarian Mathematical Olympiad 1999). Each interior
point of an equilateral triangle of side 1 lies in one of six congruent circles of
radius r. Prove that r ≥

√
3

10
. [8, p. 33]

Problem 41 (French Mathematical Olympiad 1999). For which acute-
angled triangle is the ratio of the shortest side to the inradius maximal? (An-
swer: The maximum ratio of 2

√
3 is attained with an equilateral triangle.) [8,

p. 57]

Problem 42 (Romanian Mathematical Olympiad 1999). Let SABC be
a right pyramid with equilateral base ABC, let O be the center of ABC, and
let M be the midpoint of BC. If AM = 2SO and N is a point on edge SA
such that SA = 25SN , prove that planes ABP and SBC are perpendicular,
where P is the intersection of lines SO and MN . [8, p. 119]

Problem 43 (Romanian IMO Selection Test 1999). Let ABC be an
acute triangle with angle bisectors BL and CM . Prove that ∠A = 60◦ if and
only if there exists a point K on BC (K 6= B, C) such that triangle KLM is
equilateral. [8, p. 127]

Problem 44 (Russian Mathematical Olympiad 1999). An equilateral
triangle of side length n is drawn with sides along a triangular grid of side
length 1. What is the maximum number of grid segments on or inside the
triangle that can be marked so that no three marked segments form a triangle?
(Answer: n(n + 1).) [8, p. 156]

Problem 45 (Belarusan Mathematical Olympiad 2000). In an equilat-

eral triangle of n(n+1)
2

pennies, with n pennies along each side of the triangle,
all but one penny shows heads. A “move” consists of choosing two adjacent
pennies with centers A and B and flipping every penny on line AB. Determine
all initial arrangements - the value of n and the position of the coin initially
showing tails - from which one can make all the coins show tails after finitely
many moves. (Answer: For any value of n, the desired initial arrangements
are those in which the coin showing tails is in a corner.) [9, p. 1]

Problem 46 (Romanian Mathematical Olympiad 2000). Let P1P2 · · ·Pn

be a convex polygon in the plane. Assume that, for any pair of vertices Pi, Pj,
there exists a vertex V of the polygon such that ∠PiV Pj = π/3. Show that
n = 3, i.e. show that the polygon is an equilateral triangle. [9, p. 96]
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Problem 47 (Turkish Mathematical Olympiad 2000). Show that it is
possible to cut any triangular prism of infinite length with a plane such that
the resulting intersection is an equilateral triangle. [9, p. 147]

Figure 5.17: Hungarian National Olympiad 1987

Problem 48 (Hungarian National Olympiad 1987). Cut the equilateral
triangle AXY from rectangle ABCD in such a way that the vertex X is on
side BC and the vertex Y in on side CD (Figure 5.17). Prove that among the
three remaining right triangles there are two, the sum of whose areas equals
the area of the third. [306, p. 5]

Figure 5.18: Austrian-Polish Mathematics Competition 1993

Problem 49 (Austrian-Polish Mathematics Competition 1993). Let
∆ABC be equilateral. On side AB produced, we choose a point P such that
A lies between P and B. We now denote a as the length of sides of ∆ABC;
r1 as the radius of incircle of ∆PAC; and r2 as the exradius of ∆PBC with
respect to side BC (Figure 5.18). Show that r1 + r2 = a

√
3

2
. [306, p. 7]



142 Mathematical Competitions

Figure 5.19: Iberoamerican Mathematical Olympiad (Mexico) 1993

Problem 50 (Iberoamerican Mathematical Olympiad (Mexico) 1993).
Let ABC be an equilateral triangle and Γ its incircle (Figure 5.19). If D and
E are points of the sides AB and AC, respectively, such that DE is tangent
to Γ, show that AD

DB
+ AE

EC
= 1. [306, p. 9]

Figure 5.20: Mathematical Olympiad of the Republic of China 1994

Problem 51 (Mathematical Olympiad of the Republic of China 1994).
Let ABCD be a quadrilateral with AD = BC and let ∠A+∠B = 120◦. Three
equilateral triangles ∆ACP , ∆DCQ and ∆DBR are drawn on AC, DC and
DB, respectively, away from AB (Figure 5.20). Prove that the three new ver-
tices P , Q and R are collinear. [306, p. 11]
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Figure 5.21: International Mathematical Olympiad (Shortlist) 1996a

Problem 52 (International Mathematical Olympiad (Shortlist) 1996a).
Let ABC be equilateral and let P be a point in its interior. Let the lines AP ,
BP , CP meet the sides BC, CA, AB in the points A1, B1, C1, respectively
(Figure 5.21). Prove that

A1B1 · B1C1 · C1A1 ≥ A1B · B1C · C1A.

[306, p. 13]

Figure 5.22: International Mathematical Olympiad (Shortlist) 1996b

Problem 53 (International Mathematical Olympiad (Shortlist) 1996b).
Let ABC be an acute-angled triangle with circumcenter O and circumradius
R. Let AO meet the circle BOC again in A′, let BO meet the circle COA
again in B′, and let CO meet the circle AOB again in C ′ (Figure 5.22). Prove
that

OA′ · OB′ · OC ′ ≥ 8R3,

with equality if and only if ∆ABC is equilateral. [306, p. 13]
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Figure 5.23: Nordic Mathematics Competition 1994

Problem 54 (Nordic Mathematics Competition 1994). Let O be a point
in the interior of an equilateral triangle ABC with side length a. The lines
AO, BO and CO intersect the sides of the triangle at the points A1, B1 and
C1, respectively (Figure 5.23). Prove that

|OA1| + |OB1| + |OC1| < a.

[306, p. 15]

Problem 55 (Latvian Mathematical Olympiad 1997). An equilateral
triangle of side 1 is dissected into n triangles. Prove that the sum of squares
of all sides of all triangles is at least 3 and that there is equality if and only if
the triangle can be dissected into n equilateral triangles. [306, p. 29]

Figure 5.24: Irish Mathematical Olympiad 1997

Problem 56 (Irish Mathematical Olympiad 1997). Let ABC be an equi-
lateral triangle. For a point M inside ABC, let D, E, F be the feet of the
perpendiculars from M onto BC, CA, AB, respectively (Figure 5.24). Show
that the locus of all such points M for which ∠FDE is a right angle is the arc
of the circle interior to ∆ABC subtending 150◦ on the line segment BC. [306,
p. 31]
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Figure 5.25: Mathematical Olympiad of Moldova 1999a

Problem 57 (Mathematical Olympiad of Moldova 1999a). On the sides
BC and AB of the equilateral triangle ABC, the points D and E, respectively,
are taken such that CD : DB = BE : EA = (

√
5+1)/2. The straight lines AD

and CE intersect in the point O. The points M and N are interior points of the
segments OD and OC, respectively, such that MN ‖ BC and AN = 2OM .
The parallel to the straight line AC, drawn throught the point O, intersects
the segment MC in the point P (Figure 5.25). Prove that the half-line AP
is the bisectrix of the angle MAN . (Note: This problem is ill-posed in that
AN = 2OM cannot be true if the other conditions are true!) [306, p. 44]

Figure 5.26: Mathematical Olympiad of Moldova 1999b

Problem 58 (Mathematical Olympiad of Moldova 1999b). On the sides
BC, AC and AB of the equilateral triangle ABC, consider the points M , N
and P , respectively, such that AP : PB = BM : MC = CN : NA = λ (Figure
5.26). Show that the circle with diameter AC covers the triangle bounded by
the straight lines AM , BN and CP if and only if 1

2
≤ λ ≤ 2. (In the case of

concurrent straight lines, the triangle degenerates into a point.) [306, p. 44]
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Figure 5.27: Miscellaneous #1

Problem 59 (Miscellaneous #1). Altitude AD of equilateral ∆ABC is a
diameter which intersects AB and AC at E and F , respectively, as in Figure
5.27. Show that the ratio EF : BC = 3 : 4 and that the ratio EB : BD = 1 : 2.
[246, p. 17]

Figure 5.28: Miscellaneous #2

Problem 60 (Miscellaneous #2). Show that the ratio between the area of
a square inscribed in a circle and an equilateral triangle circumscribed about
the same circle is equal to 2

√
3

9
(Figure 5.28). Also, show that the ratio between

the area of a square cirmcumscribed about a circle and an equilateral triangle
inscribed in the same circle is equal to 16

√
3

9
. [246, p. 24]
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Figure 5.29: Miscellaneous #3

Problem 61 (Miscellaneous #3). Consider the sequence 1, 1
2
, 1

3
, · · · , 1

n
, · · ·

and construct the successive-difference triangle shown in Figure 5.29. Prove
that Pascal’s triangle results if we turn the displayed triangle 60◦ clockwise so
that 1 appears at the apex, disregard minus signs, and divide through every row
by its leading entry. [277, pp. 78-79]

Problem 62 (Curiosa #1). If four equilateral triangles be made the sides of
a square pyramid: find the ratio which its volume has to that of a tetrahedron
made of the same triangles. (Answer: Two.) [82, p. 11]

Problem 63 (Curiosa #2). Given two equal squares of side 2, in different
horizontal planes, having their centers in the same vertical line, and so placed
that the sides of each are parallel to the diagonals of the other, and at such a
distance apart that, by joining neighboring vertices, 8 equilateral triangles are

formed: find the volume of the solid thus enclosed. (Answer: 8 4
√

2(
√

2+1)
3

.) [82,
p. 15]



Chapter 6

Biographical Vignettes

In the last decades of the 17th Century, the notable British eccentric, John
Aubrey [248], assembled a collection of short biographies [12] which were edited
and published two centuries later by Andrew Clark (Figure 6.1). Included were
mathematical luminaries such as Briggs, Descartes, Harriot, Oughtred, Pell
and Wallis. In the spirit of Aubrey’s Brief Lives, we conclude our deliberations
on the equilateral triangle with a collection of biographical vignettes devoted
to some of the remarkable characters that we have encountered along our way.

Figure 6.1: Aubrey’s Brief Lives

148
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Vignette 1 (Pythagoras of Samos: Circa 569-475 B.C.).

Aristotle attributed the motto “All is number.” to Pythagoras more than
a century after the death of the latter. Since all of Pythagoras’ writings, if
indeed there ever were any, have been lost to us, we have to rely on second-
hand sources written much later for details of his life and teachings [148, 165,
233]. Thus, a grain of skepticism is in order when assessing the accuracy of
these accounts. Pythagoras was born on the island of Samos off the coast of
Ionia (Asia Minor). He had a vast golden birthmark on his thigh which the
Greeks believed to be a sign of divinity. He studied Mathematics with Thales
and Anaximander in the Ionian city of Miletus and traveled widely in his
youth, visiting both Egypt and Babylon and absorbing their knowledge into his
evolving philosophy. He eventually settled in Croton in southern Italy where
he established a commune with his followers. The Pythagorean brotherhood
believed that reality was mathematical in nature and practiced a numerical
mysticism which included the tetraktys discussed in Chapter 1 as well as a
numerical basis for both music and astronomy. Amongst their mathematical
discoveries were irrational numbers, the fact that a polygon with n sides has
sum of interior angles equal to 2n − 4 right angles and sum of exterior angles
equal to four right angles, and the five regular solids (although they knew
how to construct only the tetrahedron, cube and octahedron). They also were
the first to prove the so-called Pythagorean theorem which was known to the
Babylonians 1000 years earlier. Due to political turmoil, the Pythagoreans
were eventually driven from Croton but managed to set up colonies throughout
the rest of Italy and Sicily. Pythagoras died, aged 94, after having returned to
Croton.

Vignette 2 (Plato of Athens: 427-347 B.C.).

Plato was born in Athens and studied under Theodorus and Cratylus who
was a student of Heraclitus [107, 166, 202]. He served in the military during
the Peloponnesian War between Athens and Sparta. After his discharge, he
originally desired a political career but had a change of heart after the exe-
cution of his mentor, Socrates, in 399 B.C. He then traveled widely visiting
Eqypt, Sicily and Italy, where he learned of the teachings of Pythagoras. After
another stint in the military when he was decorated for bravery in battle, he
returned to Athens at age 40 and established his Academy which was devoted
to research and instruction in philosophy and science. Plato believed that
young men so trained would make wiser political leaders. Counted among the
Academy’s graduates were Theaetetus (solid geometry), Eudoxus (doctrine of
proportion and method of exhaustion) and Aristotle (philosophy). Above the
entrance to the Academy stood a sign “Let no one ignorant of Geometry enter
here.”. Plato’s principal writings were his Socratic dialogues wherein he elab-
orated upon, among other topics, mathematical ideas such as his Theory of
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Forms which gave rise to the mathematical philosophy we now call Platonism.
Through his emphasis on proof, Plato strongly influenced the subsequent de-
velopment of Hellenic Mathematics. It was in his Timaeus that he propounded
a mathematical theory of the composition of the universe on the basis of the
five Platonic solids (see Chapter 1). Plato’s Academy flourished until 529 A.D.
when it was closed by Christian Emperor Justinian as a pagan establishment.
At over 900 years, it is the longest known surviving university. Plato died in
Athens, aged 80. Source material for Plato is available in [42, 221].

Vignette 3 (Euclid of Alexandria: Circa 325-265 B.C.).

Little is known of the life of Euclid except that he taught at the Library of
Alexandria in Egypt circa 300 B.C. [165]. When King Ptolemy asked him if
there was an easy way to learn Mathematics, he reportedly replied “There is
no royal road to Geometry!”. It is likely that he studied in Plato’s Academy
in Athens since he was thoroughly familiar with the work of Eudoxus and
Theaetetus which he incorporated into his masterpiece on geometry and num-
ber theory, The Elements [164]. This treatise begins with definitions, pos-
tulates and axioms and then proceeds to thirteen Books. Books one to six
deal with plane geometry (beginning with the construction of the equilateral
triangle, see opening of Chapter 1); Books seven to nine deal with number
theory; Book ten deals with irrational numbers; and Books eleven through
thirteen deal with three-dimensional geometry (ending with the construction
of the regular polyhedra and the proof that there are precisely five of them).
More than one thousand editions of The Elements have been published since
it was first printed in 1482. The opening passages of Book I of the oldest ex-
tant manuscript of The Elements appear in the frontispiece. It was copied by
Stephen the Clerk working in Constantinople in 888 A.D. and it now resides
in the Bodleian Library of Oxford University. Euclid also wrote Conics, a lost
work on conic sections that was later extended by Apollonius of Perga. Source
material for Euclid is available in [164].

Vignette 4 (Archimedes of Syracuse: 287-212 B.C.).

Archimedes is considered by most, if not all, historians of Mathematics to
be one of the greatest (pure or applied) Mathematicians of all time [80, 166]. (I
am told that physicists also feel likewise about him.) He was born in Syracuse,
Sicily, now part of Italy but then an important Greek city-state. As a young
man, he studied with the successors of Euclid in Alexandria but returned to
Syracuse for the remainder of his life. Among his many mathematical accom-
plishments were his use of infinitesimals (method of exhaustion) to calculate
areas and volumes, a remarkably accurate approximation to π, and the dis-
covery and proof that a sphere inscribed in a cylinder has two thirds of the
volume and surface area of the cylinder. He regarded the latter as his greatest
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accomplishment and had a corresponding figure commemorating this discov-
ery placed upon his tomb. The Fields Medal in Mathematics bears both the
portrait of Archimedes and the image of a sphere inscribed in a cylinder. His
achievements in physics include the foundations of hydrostatics and statics,
the explanation of the principle of the lever and the development of the com-
pound pulley to move large weights. In his own lifetime, he was widely known,
not for his Mathematics, but rather for his mechanical contrivances, especially
his war-machines constructed for his relative, King Hieron of Syracuse. The
Archimedes screw is still in use today for pumping liquids and granulated
solids such as coal and grain. (There is one in downtown Flint, Michigan!)
Many of Archimedes’ greatest treatises are lost to us. For example, it is only
through the writings of Pappus that we know of his investigation of the thir-
teen semi-regular polyhedra which now bear his name (see Chapter 1). In
1906, J. L. Heiberg discovered a 10th Century palimpsest containing seven of
his treatises including the previously lost The Method of Mechanical Theorems
wherein this master of antiquity shares with us his secret methods of discovery.
The exciting story of the subsequent disappearance and reappearance of The
Archimedes Codex is told in [226]. He died during the Second Punic War at
the siege of Syracuse, aged 75. He reportedly was killed by a Roman soldier
after Archimedes told him “Do not disturb my circles!”. However, this and
other legends surrounding Archimedes, such as his running naked through the
streets of Syracuse shouting “Eureka!” after a flash of insight while bathing,
must be taken with the proverbial grain of salt. Source material for Archimedes
is available in [168].

Vignette 5 (Apollonius of Perga: Circa 262-190 B.C.).

Apollonius, known as ‘The Great Geometer’, was born in Perga which
was a Greek city of great wealth and beauty located on the southwestern
Mediterranean coast of modern-day Turkey [166, 167]. Very few details of
his life are available but we do know that while still a young man he went
to Alexandria to study under the followers of Euclid and later taught there.
His works were influential in the subsequent development of Mathematics.
For example, his Conics introduced the terminology of parabola, ellipse and
hyperbola. Conics consists of eight books but only the first four, based on a
lost work of Euclid, have survived in Greek while the first seven have survived
in Arabic. The contents of Books five to seven are highly original and believed
to be due primarily to Apollonius himself. Here, he came close to inventing
analytic geometry 1800 years before Descartes. However, he failed to account
for negative magnitudes and, while his equations were determined by curves,
his curves were not determined by equations. Through Pappus, we know of
six lost works by Apollonius. In one of these, Tangencies, he shows how
to construct the circle which is tangent to three given circles (Problem of
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Apollonius). Property 16 of Chapter 2 defines Apollonian circles and points.
Ptolemy informs us that he was also one of the founders of Greek mathematical
astronomy, where he used geometrical models to explain planetary motions.
Source material for Apollonius is available in [167].

Vignette 6 (Pappus of Alexandria: Circa 290-350).

Pappus was the last of the great Greek geometers and we know little of
his life except that he was born and taught in Alexandria [166]. The 4th
Century A.D. was a period of general stagnation in mathematical development
(“the Silver Age of Greek Mathematics”). This state of affairs makes Pappus’
accomplishments all the more remarkable. His great work in geometry was
called The Synagoge or The Collection and it is a handbook to be read with
the original works intended to revive the classical Greek geometry. It consists
of eight Books each of which is preceded by a systematic introduction. Book I,
which is lost, was concerned with arithmetic while Book II, which is partially
lost, deals with Apollonius’ method for handling large numbers. Book III
treats problems in plane and solid geometry including how to inscribe each
of the five regular polyhedra in a sphere. Book IV contains properties of
curves such as the spiral of Archimedes and the quadratix of Hippias. Book V
compares the areas of different plane figures all having the same perimeter and
the volumes of different solids all with the same surface area. This Book also
compares the five regular Platonic solids and reveals Archimedes’ lost work on
the thirteen semi-regular polyhedra. Book VI is a synopsis and correction of
some earlier astronomical works. The preface to Book VII contains Pappus’
Problem (a locus problem involving ratios of oblique distances of a point from
a given collection of lines) which later occupied both Descartes and Newton,
as well as Pappus’ Centroid Theorem (a pair of related results concerning the
surface area and volume of surfaces and solids of revolution). Book VII itself
contains Pappus’ Hexagon Theorem (basic to modern projective geometry)
which states that three points formed by intersecting six lines connecting two
sets of three collinear points are also collinear. It also discusses the lost works
of Apollonius previously noted. Book VIII deals primarily with mechanics
but intersperses some questions of pure geometry such as how to draw an
ellipse through five given points. Overall, The Collection is a work of very
great historical importance in the study of Greek geometry. Pappus also wrote
commentaries on the works of Euclid and Ptolemy. Source material for Pappus
is available in [221].

Vignette 7 (Leonardo of Pisa (Fibonacci): 1170-1250).

Leonardo of Pisa, a.k.a. Fibonacci, has been justifiably described as the
most talented Western Mathematician of the Middle Ages [143]. Fibonacci
was born in Pisa, Italy but was educated in North Africa where his father held
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a diplomatic post. He traveled widely with his father and became thoroughly
familiar with the Hindu-Arabic numerals and their arithmetic. He returned to
Pisa and published his Liber Abaci (Book of Calculation) in 1202. This most
famous of his works is based upon the arithmetic and algebra that he had
accumulated in his travels and served to introduce the Hindu-Arabic place-
valued decimal system, as well as their numerals, into Europe. An example
from Liber Abaci involving the breeding of rabbits gave rise to the so-called
Fibonacci numbers which he did not discover. (See Property 73 in Chapter 2.)
Simultaneous linear equations are also studied in this work. It also contains
problems involving perfect numbers, the Chinese Remainder Theorem, and the
summation of arithmetic and geometric series. In 1220, he published Practica
geometriae which contains a large collection of geometry problems arranged
into eight chapters together with theorems and proofs based upon the work of
Euclid. This book also includes practical information for surveyors. The final
chapter contains “geometrical subtleties” such as inscribing a rectangle and a
square in an equilateral triangle! In 1225 he published his mathematically most
sophisticated work, Liber quadratorum. This is a book on number theory and
includes a treatment of Pythagorean triples as well as such gems as: “There
are no x, y such that x2 +y2 and x2 −y2 are both squares” and “x4 −y4 cannot
be a square”. This book clearly establishes Fibonacci as the major contributor
to number theory between Diophantus and Fermat. He died in Pisa, aged 80.
Source material for Fibonacci is available in [42, 297].

Vignette 8 (Leonardo da Vinci: 1452-1519).

Leonardo da Vinci was born the illegitimate son of a wealthy Florentine
notary in the Tuscan town of Vinci [44]. He grew up to become one of the
greatest painters of all time and perhaps the most diversely talented person
ever to have lived. A bona fide polymath, he was painter, sculptor, architect,
musician, inventor, anatomist, geologist, cartographer, botanist, writer, engi-
neer, scientist and Mathematician. In what follows, attention is focused on the
strictly mathematical contributions dispersed amongst his legacy of more than
7,000 surviving manuscript pages. In Chapter 1, I have already described the
circumstances surrounding his illustrations of the Platonic solids for Pacioli’s
De Divina Proportione. The knowledge of the golden section which he gained
through this collaboration is reflected through his paintings. His masterpiece
on perspective, Trattato della Pittura, opens with the injunction “Let no one
who is not a Mathematician read my works.”. This admonition seems more
natural when considered together with the observations of Morris Kline: “It
is no exaggeration to state that the Renaissance artist was the best practicing
Mathematician and that in the fifteenth century he was also the most learned
and accomplished theoretical Mathematician.” [197, p. 127]. Leonardo was
engaged in rusty compass constructions [97, p. 174] and also gave an innova-
tive congruency-by-subtraction proof of the Pythagorean Theorem [98, p. 29].
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He discovered that if a triangle is moved so that one vertex moves along a line
while another vertex moves along a second line then the third vertex describes
an ellipse [322, p. 65] and this observation is the basis of a commercial instru-
ment for drawing an ellipse using trammels [322, p. 66]. He observed that the
angle between an emerging leaf and its predecessor, known as the divergence, is
a constant and thereby explained the resulting logarithmic spiral arrangement
[139, p. 4]. He was also the first to direct attention to “curves of pursuit” [41,
p. 273]. His architectural studies led him to Leonardo’s Symmetry Theorem
which states that all planar isometries are either rotations or reflections [327,
pp. 66, 99]. The remainder of his mathematical discoveries concerned the ar-
eas of lunes, solids of equal volume, reflection in a sphere, inscription of regular
polygons and centers of gravity [56, pp. 43-60]. His greatest contribution to
geometry came in the latter area where he discovered that the lines joining
the vertices of a tetrahedron with the center of gravity of the opposite faces
all pass through a point, the centroid, which divides each of these medians in
the ratio 3 : 1. These diverse and potent mathematical results have certainly
earned Leonardo the title of Mathematician par excellence! He died at the
castle of Cloux in Amboise, France, aged 67.

Vignette 9 (Niccolò Fontana (Tartaglia): 1499-1557).

Niccolò Fontana was a Mathematician, engineer, surveyor and bookkeeper
who was born in Brescia in the Republic of Venice (now Italy) [144]. Brought
up in dire poverty, he became known as Tartaglia (“The Stammerer”) as a
result of horrific facial injuries which impeded his speech that he suffered in
his youth at the hands of French soldiers. He was widely known during his
lifetime for his participation in many public mathematical contests. He became
a teacher of Mathematics at Verona in 1521 and moved to Venice in 1534 where
he stayed for the rest of his life, except for an 18 month hiatus as Professor
at Brescia beginning in 1548. He is best known for his solution to the cubic
equation sans quadratic term (which first appeared in Cardano’s Ars Magna)
but also is known for Tartaglia’s Formula for the volume of a tetrahedron.
His first book, Nuova scienzia (1551), dealt with the theory and practice of
gunnery. His largest work, Trattato generale di numeri e misure (1556), is
a comprehensive mathematical treatise on arithmetic, geometry, mensuration
and algebra as far as quadratic equations. It is here that he treated the “three
jugs problem” described in Recreation 21 of Chapter 4. He also published the
first Italian translation of Euclid (1543) and the earliest Latin version from the
Greek of some of the principal works of Archimedes (1543). He died at Venice,
aged 58.

Vignette 10 (Johannes Kepler: 1571-1630).

Johannes Kepler was born in the Free Imperial City of Weil der Stadt which
is now part of the Stuttgart Region in the German state of Baden-Württemberg
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[105]. As a devout Lutheran, he enrolled at the University of Tübingen in 1589
as a student of theology but also studied mathematics and astronomy under
Michael Mästlin, one of the leading astronomers of the time, who converted
him to the Copernican view of the cosmos. At the end of his university studies
in 1594, he abandoned his plans for ordination (in fact, he was excommuni-
cated in 1612) and accepted a post teaching Mathematics in Graz. In 1596,
he published Mysterium cosmographicum where he put forth a model of the
solar system based upon inscribing and circumscribing each of the five Platonic
solids by spherical orbs. On this basis, he moved to Prague in 1600 as Tycho
Brahe’s mathematical assistant and began work on compiling the Rudolphine
Tables. In 1601, upon Tycho’s death, he succeeded him as Imperial Mathe-
matician and the next eleven years proved to be the most productive of his life.
Kepler’s primary obligations were to provide astrological advice to Emperor
Rudolph II and to complete the Rudolphine Tables. In 1604, he published
Astronomiae pars optica where he presented the inverse-square law governing
the intensity of light, treated reflection by flat and curved mirrors and eluci-
dated the principles of pinhole cameras (camera obscura), as well as considered
the astronomical implications of optical phenomena such as parallax and the
apparent sizes of heavenly bodies. He also considered the optics of the human
eye, including the inverted images formed on the retina. That same year, he
wrote of a “new star” which is today called Kepler’s supernova. In 1609, he
published Astronomia nova where he set out his first two laws of planetary
motion based upon his observations of Mars. In 1611, he published Dioptrice
where he studied the properties of lenses and presented a new telescope design
using two convex lenses, now known as the Keplerian telescope. That same
year, he moved to Linz to avoid religious persecution and, as a New Year’s gift
for his friend and sometimes patron Baron von Wackhenfels, published a short
pamphlet, Strena Seu de Nive Sexangula, where he described the hexagonal
symmetry of snowflakes and posed the Kepler Conjecture about the most ef-
ficient arrangement for packing spheres. Kepler’s Conjecture was solved only
after almost 400 years by Thomas Hales [301]! In 1615, he published a study
of the volumes of solids of revolution to measure the contents of wine barrels,
Nova stereometria doliorum vinariorum, which is viewed today as an ancestor
of the infinitesimal calculus. In 1619, Kepler published his masterpiece, Har-
monice Mundi, which not only contains Kepler’s Third Law, but also includes
the first systematic treatment of tessellations, a proof that there are only thir-
teen Archimedean solids (he provided the first known illustration of them as
a set and gave them their modern names), and two new non-convex regular
polyhedra (Kepler’s solids). In 1624 and 1625, he published an explanation
of how logarithms worked and he included eight-figure logarithmic tables with
the Rudolphine Tables which were finally published in 1628. In that year, he
left the service of the Emperor and became an advisor to General Wallenstein.
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He fell ill while visiting Regensburg, Bavaria and died, aged 58. (His tomb was
destroyed in the course of the Thirty Years’ War.) Somnium (1634), which
was published posthumously, aimed to show the feasibility of a non-geocentric
system by describing what practicing astronomy would be like from the per-
spective of another planet. Kepler’s work on regular and semiregular tilings
of the plane was mentioned in Chapter 1 as was the likelihood that he was a
Rosicrucian. Source material for Kepler is available in [42].

Vignette 11 (René Descartes: 1596-1650).

René Descartes, the Father of Modern Philosophy, was born in La Haye
en Touraine (now renamed Descartes), Indre-et-Loire, France [3]. He was ed-
ucated at the Jesuit College of La Flèche in Anjou until 1612. He received a
law degree from the University of Poitiers in 1616 and then enlisted in the mil-
itary school at Breda in the Dutch Republic. Here he met the Dutch scientist
Isaac Beeckman with whom he began studying mechanics and Mathematics in
1618, then, in 1619, he joined the Bavarian army. From 1620 to 1628, he wan-
dered throughout Europe, spending time in Bohemia (1620), Hungary (1621),
Germany, Holland and France (1622-23). In 1623, he met Marin Mersenne in
Paris, an important contact which kept him in touch with the scientific world
for many years. From Paris, he travelled to Italy where he spent some time in
Venice, then he returned to France again (1625). In 1628, he chose to settle
down in Holland for the next twenty years. In 1637, he published a scientific
treatise, Discours de la méthode, which included a treatment of the tangent
line problem which was to provide the basis for the calculus of Newton and
Leibniz. It also contained among its appendices his masterpiece on analytic
geometry, La Géométrie, which includes Descartes’ Rule of Signs for determin-
ing the number of positive and negative real roots of a polynomial. In another
appendix, on optics, he independently discovered Snell’s law of reflection. In
1644, he published Principia Philosophiae where he presented a mathematical
foundation for mechanics that included a vortex theory as an alternative to
action at a distance. In 1649, Queen Christina of Sweden persuaded him to
move to Stockholm, where he died of pneumonia, aged 53. Descartes’ profi-
ciency at bare-knuckled brawling is revealed by his response to criticism of his
work by Fermat: he asserted euphemistically that he was “full of shit” [169, p.
38]. Descartes’ role in the discovery of the polyhedral formula was mentioned
in Chapter 1 as was the likelihood that he was a Rosicrucian. Source material
for Descartes is available in [42, 77, 221, 287, 297].

Vignette 12 (Pierre de Fermat: 1601-1665).

Pierre de Fermat, lawyer and Mathematician, was born in Beaumont-de-
Lomagne, France [216]. He began his studies at the University of Toulouse
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before moving to Bordeaux where he began his first serious mathematical re-
searches. He received his law degree from the University of Orleans in 1631
and received the title of councillor at the High Court of Judicature in Toulouse,
which he held for the rest of his life. For the remainder of his life, he lived
in Toulouse while also working in his home town of Beaumont-de-Lomagne
and the nearby town of Castres. Outside of his official duties, Fermat was
preoccupied with Mathematics and he communicated his results in letters to
his friends, especially Marin Mersenne, often with little or no proof of his the-
orems. He developed a method for determining maxima, minima and tangents
to various curves that was equivalent to differentiation. He also developed a
technique for finding centers of gravity of various plane and solid figures that
led him to further work in quadrature. In number theory, he studied Pell’s
equation, perfect numbers (where he discovered Fermat’s Little Theorem),
amicable numbers and what would later become known as Fermat numbers.
He invented Fermat’s Factorization Method and the technique of infinite de-
scent which he used to prove Fermat’s Last Theorem for n = 4. (Fermat’s
Last Theorem [19] was finally resolved, after more that 350 years, by Andrew
Wiles [283]!) He drew inspiration from Diophantus, but was interested only
in integer solutions to Diophantine equations, and he looked for all possible
solutions. Through his correspondence with Pascal, he helped lay the funda-
mental groundwork for the theory of probability. Fermat’s Principle of Least
Time (which he used to derive Snell’s Law) was the first variational principle
enunciated in more than 1,500 years. See Property 12 for a definition of the
Fermat point and Property 39 for a discussion of Fermat’s Polygonal Number
Conjecture. He died in Castres, France, aged 57. Source material for Fermat
is available in [42, 287, 297].

Vignette 13 (Evangelista Torricelli: 1608-1647).

Evangelista Torricelli was a physicist and Mathematician born in Faenza,
part of the Papal States [144]. He went to Rome in 1627 to study science
under the Benedictine Benedetto Castelli, Professor of Mathematics at the
Collegio della Sapienza. He then served for nine years as secretary to Giovanni
Ciampoli, a friend of Galileo. In 1641, Torricelli moved to Arcetri where
Galileo was under house arrest and worked with him and Viviani for a few
months prior to Galileo’s death. He was then appointed to succeed Galileo
as Court Mathematician to Grand Duke Ferdinando II de’ Medici of Tuscany.
He held this post until his death living in the ducal palace in Florence. In
1644, the Opera geometrica appeared, his only work to be published during
his lifetime. He examined the three dimensional figures obtained by rotating
a regular polygon about an axis of symmetry, computed the center of gravity
of the cycloid and extended Cavalieri’s (another pupil of Castelli) method of
indivisibles. Torricelli was the first person to create a sustained vacuum or to
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give the correct scientific explanation of the cause of the wind (differences of
air temperature and density) and he discovered the principle of the mercury
barometer. He was a skilled lens grinder and made excellent telescopes and
microscopes. The Fermat-Torricelli Problem/Point has already been discussed
at length in Property 12 of Chapter 2. (This problem was solved by Torricelli
and Cavalieri for triangles of less than 120◦ and the general case was solved by
Viviani.) Torricelli’s Trumpet (Gabriel’s Horn) is a figure with infinite surface
area yet finite volume. Torricelli’s Law/Theorem relates the speed of fluid
flowing out of an opening to the height of the fluid above the opening (v =√

2gh). Torricelli’s Equation provides the final velocity of an object moving
with constant acceleration without having a known time interval (v2

f = v2
i +

2a∆d). He died in Florence, aged 39, shortly after having contracted typhoid
fever. Viviani agreed to prepare his unpublished materials for posthumous
publication but he failed to accomplish this task, which was not completed until
1944 nearly 300 years after Torricelli’s death. Source material for Torricelli is
available in [297].

Vignette 14 (Vincenzo Viviani: 1622-1703).

Vincenzo Viviani, the last pupil of Galileo, was born in Florence, Italy
[144]. His exceptional mathematical abilities brought him to the attention
of Grand Duke Ferdinando II de’ Medici of Tuscany in 1638 who introduced
him to Galileo. In 1639, at the age of 17, he became Galileo’s assistant at
Arcetri until the latter’s death in 1642. During this period, he met Torricelli
and they later became collaborators on the development of the barometer.
(He was Torricelli’s junior colleague not his student although he collected and
arranged his works after the latter’s death.) The Grand Duke then appointed
him Mathematics teacher at the ducal court and engaged him as an engineer
with the Uffiziali dei Fiumi, a position he held for the rest of his life. From
1655 to 1656, he edited the first edition of Galileo’s collected works and he also
wrote the essay Life of Galileo which was not published in his lifetime. In 1660,
he and Giovanni Alfonso Borelli conducted an experiment involving timing the
difference between seeing the flash and hearing the sound of a cannon shot at
a distance which provided an accurate determination of the speed of sound. In
1661, he experimented with rotation of pendula, 190 years before the famous
demonstration by Foucault. In 1666, the Grand Duke appointed him Court
Mathematician. Throughout his life, one of his main interests was ancient
Greek Mathematics and he published reconstructions of lost works of Euclid
and Apollonius and also translated a work of Archimedes into Italian. He
calculated the tangent to the cycloid and also contributed to constructions
involving angle trisection and duplication of the cube. Viviani’s Theorem has
been previously described in Property 8 of Chapter 2. Viviani’s Curve is a
space curve obtained by intersecting a sphere with a circular cylinder tangent
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to the sphere and to one of its diameters, a sort of spherical figure eight [38].
Viviani proposed the architectural problem (“Florentine enigma”): Build on
a hemispherical cupola four equal windows of such a size that the remaining
surface can be exactly squared. The Viviani Window is a solution: The four
windows are the intersections of a hemisphere of radius a with two circular
cylinders of radius a

2
that have in common only a ruling containing a diameter

of the hemisphere [38]. He provided the complete solution to the Fermat-
Torricelli Problem (see Property 12 in Chapter 2). In 1687, he published a
book on engineering, Discorso and, upon his death in Florence, aged 81, he left
an almost completed work on the resistance of solids which was subsequently
completed and published by Luigi Guido Grandi.

Vignette 15 (Blaise Pascal: 1623-1662).

Blaise Pascal, philosopher, physicist and Mathematician, was born in Cler-
mont, Auvergne, France [25, 40]. At age 14, he began to accompany his father
to Mersenne’s meetings of intellectuals which included Roberval and Desar-
gues. Except for this influence, he was essentially self-taught. At one such
meeting, at the age of sixteen, he presented a number of theorems in projec-
tive geometry, including Pascal’s Mystic Hexagram Theorem. In 1639, he and
his family moved to Rouen and, in 1640, Pascal published his first work, Essay
on Conic Sections. Pascal invented the first digital calculator, the Pascaline,
to help his father with his work collecting taxes. In 1647, he published New
Experiments Concerning Vacuums where he argued for the existence of a pure
vacuum and observed that atmospheric pressure decreases with height thereby
deducing that a vacuum existed above the atmosphere. In 1653, he published
Treatise on the Equilibrium of Liquids in which he introduced what is now
known as Pascal’s Law of Pressure. (He also invented the hydraulic press and
the syringe.) In a lost work (we know of its contents because Leibniz and
Tschirnhaus had made notes from it), The Generation of Conic Sections, he
presented important theorems in projective geometry. His 1653 work, Treatise
on the Arithmetical Triangle, was to lead Newton to his discovery of the gener-
alized binomial theorem for fractional and negative powers. (Pascal’s triangle
is described in more detail in Property 61 of Chapter 2.) In the summer of
1654, he exchanged letters with Fermat where they laid the foundations of
the theory of probability. In the fall of the same year, he had a near-death
experience which led him to devote his remaining years to religious pursuits,
specifically Jansenism. (At which time, he devised Pascal’s Wager.) Thus,
with the exception of a 1658 study of the quadrature of the cycloid, his scien-
tific and mathematical investigations were concluded, at age 31. The SI unit of
pressure and a programming language are named after him. He died in intense
pain, aged 39, in Paris, France, after a malignant growth in his stomach spread
to his brain. Source material for Pascal is available in [42, 287, 297].
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Vignette 16 (Isaac Newton: 1643-1727).

Isaac Newton was born in the manor house of Woolsthorpe, near Grantham
in Lincolnshire, England [298, 324, 328]. Because England had not yet adopted
the Gregorian calender, his birth was recorded as Christmas Day, 25 December
1642. While he showed some mechanical ability as a young man, his math-
ematical precocity did not appear until he was a student at Trinity College,
Cambridge where he enrolled in 1661. He was elected a scholar in 1664 and
received his bachelor’s degree in 1665. When the University closed in the sum-
mer of 1665 due to the plague, Newton returned to Woolsthorpe for the next
two years, during which time he developed calculus, performed optical exper-
iments and discovered the universal law of gravitation. When the University
opened again in 1667, he was elected to a minor fellowship at Trinity College
but, after being awarded his master’s degree, he was elected to a major fellow-
ship in 1668. In 1669, Isaac Barrow, the Lucasian Professor of Mathematics,
began to circulate Newton’s tract on infinite series, De Analysi, so that, when
he stepped down that same year, Newton was chosen to fill the Lucasian Chair.
Newton then turned his attention to optics and constructed a reflecting tele-
scope which led to his election as a Fellow of the Royal Society. In 1672,
he published his first scientific paper on light and colour where he proposed
a corpuscular theory. This received heavy criticism by Hooke and Huyghens
who favored a wave theory. Because of the ensuing controversy, Newton be-
came very reluctant to publish his later discoveries. However, in 1687, Halley
convinced him to publish his greatest work Philosophiae naturalis principia
mathematica. Principia contained his three laws of motion and the inverse
square law of gravitation, as well as their application to orbiting bodies, pro-
jectiles, pendula, free-fall near the Earth, the eccentric orbits of comets, the
tides and their variations, the precession of the Earth’s axis, and the motion
of the Moon as perturbed by the gravity of the Sun. It has rightfully been
called the greatest scientific treatise ever written! His other mathematical
contributions include the generalized binomial theorem, Newton’s method for
approximating the roots of a function, Newton’s identities relating the roots
and coefficients of polynomials, the classification of cubic curves, the theory
of finite differences and the Newton form of the interpolating polynomial. His
other contributions to physics include the formulation of his law of cooling and
a study of the speed of sound. However, to maintain a proper perspective, one
must bear in mind that Newton wrote much more on Biblical and alchemical
topics than he ever did in physics and Mathematics! In 1693, he left Cambridge
to become first Warden and then Master of the Mint. In 1703 he was elected
President of the Royal Society and was re-elected each year until his death. In
1705, he was knighted by Queen Anne (the first scientist to be so honored). In
his later years, he was embroiled in a bitter feud with Leibniz over priority for
the invention of calculus [169]. He died in his sleep in London, aged 84, and
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was buried in Westminster Abbey. Chapter 1 noted how Newton patterned his
Principia after Euclid’s The Elements and alluded to his alchemical activities.
Source material for Newton is available in [42, 221, 227, 287, 297].

Vignette 17 (Leonhard Euler: 1707-1783).

Leonhard Euler was born in Basel, Switzerland and entered the University
of Basel at age 14 where he received private instruction in Mathematics from
the eminent Mathematician Johann Bernoulli [102]. He received his Mas-
ter of Philosophy in 1723 with a dissertation comparing the philosophies of
Descartes and Newton. In 1726, he completed his Ph.D. with a dissertation on
the propagation of sound and published his first paper on isochronous curves
in a resisting medium. In 1727, he published another paper on reciprocal
trajectories [265, pp. 6-7] and he also won second place in the Grand Prize
competition of the Paris Academy for his essay on the optimal placement of
masts on a ship. He subsequently won first prize twelve times in his career.
Also in 1727, he wrote a classic paper in acoustics and accepted a position in
the mathematical-physical section of the St. Petersburg Academy of Sciences
where he was a colleague of Daniel Bernoulli, son of Euler’s teacher in Basel.
During this first period in St. Petersburg, his research was focused on number
theory, differential equations, calculus of variations and rational mechanics. In
1736-37, he published his book Mechanica which presented Newtonian dynam-
ics in the form of mathematical analysis and, in 1739, he laid a mathematical
foundation for music. In 1741, he moved to the Berlin Academy. During the
twenty five years that he spent in Berlin, he wrote 380 articles and published
books on calculus of variations, the calculation of planetary orbits, artillery
and ballistics, analysis, shipbuilding and navigation, the motion of the moon,
lectures on differential calculus and a popular scientific publication, Letters
to a Princess of Germany. In 1766, he returned to St. Petersburg where he
spent the rest of his life. Although he lost his sight, more than half of his total
works date to this period, primarily in optics, algebra and lunar motion, and
also an important work on insurance. To Euler, we owe the notation f(x), e,
i, π, Σ for sums and ∆ny for finite differences. He solved the Basel Problem
Σ(1/n2) = π2/6, proved the connection between the zeta function and the se-
quence of prime numbers, proved Fermat’s Last Theorem for n = 3, and gave
the formula eıθ = cos θ + ı · sin θ together with its special case eıπ +1 = 0. The
list of his important discoveries that I have not included is even longer! As
Laplace advised, “Read Euler, read Euler, he is the master of us all.”. Euler
was the most prolific Mathematician of all time with his collected works filling
between 60-80 quarto volumes. See Chapter 1 for a description of Euler’s role
in the discovery of the Polyhedral Formula, Property 28 for the definition of
the Euler line, Property 47 for the statement of Euler’s inequality and Recre-
ation 25 for his investigation of the Knight’s Tour. He has been featured on the
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Swiss 10-franc banknote and on numerous Swiss, German and Russian stamps.
As part of their Tercentenary Euler Celebration, the Mathematical Associa-
tion of America published a five volume tribute [265, 89, 266, 27, 32]. He died
in St. Petersburg, Russia, aged 76. Source material for Euler is available in
[42, 287, 297].

Vignette 18 (Gian Francesco Malfatti: 1731-1807).

Gian Francesco Malfatti was born in Ala, Trento, Italy but studied at
the College of San Francesco Saverio in Bologna under Francesco Maria Zan-
otti, Gabriele Manfredi and Vincenzo Riccati (Father of Hyperbolic Functions)
[144]. He then went to Ferrara in 1754, where he founded a school of Mathe-
matics and physics. In 1771, when the University of Ferrara was reestablished,
he was appointed Professor of Mathematics, a position he held for approxi-
mately thirty years. In 1770, he worked on the solution of the quintic equation
where he introduced the Malfatti resolvent. In 1781, he demonstrated that
the lemniscate has the property that a point mass moving on it under gravity
goes along any arc of the curve in the same time as it traverses the subtending
chord. In 1802 he gave the first, brilliant solution of the problem which bears
his name: Describe in a triangle three circles that are mutually tangent, each
of which touches two sides of the triangle (see Property 70 in Chapter 2). He
also made fundamental contributions to probability, mechanics, combinatorial
analysis and to the theory of finite difference equations. He died in Ferrara,
aged 76.

Vignette 19 (Joseph-Louis Lagrange: 1736-1813).

Joseph-Louis Lagrange was born in Turin, Italy and educated at the Col-
lege of Turin where he showed little interest in Mathematics until reading,
at age seventeen, a paper by Edmond Halley on the use of algebra in optics
[151]. He then devoted himself to the study of Mathematics. Although he
was essentially self-taught and did not have the benefit of studying with lead-
ing Mathematicians, he was made a Professor of Mathematics at the Royal
Artillery School in Turin at age nineteen. His first major work was on the
tautochrone (the curve on which a particle will always arrive at a fixed point
in the same time independent of its initial position) where he discovered a
method for extremizing functionals which became one of the cornerstones of
calculus of variations. In 1757, Lagrange was one of the founding members
of what was to become the Royal Academy of Sciences in Turin. Over the
next few years, he published diverse papers in its transactions on calculus of
variations (including Lagrange multipliers), calculus of probabilities and foun-
dations of mechanics based upon the Principle of Least Action. He made a
major study of the propagation of sound where he investigated the vibrating
string using a discrete mass model with the number of masses approaching
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infinity. He also studied the integration of differential equations and fluid me-
chanics where he introduced the Lagrangian function. In 1764, he submitted
a prize essay to the French Academy of Sciences on the libration of the moon
containing an explanation as to why the same face is always turned towards
Earth which utilized the Principle of Virtual Work and the idea of generalized
equations of motion. In 1766, Lagrange succeeded Euler as the Director of
Mathematics at the Berlin Academy where he stayed until 1787. During the
intervening 20 years, he published a steady stream of top quality papers and
regularly won the prize from the Académie des Sciences in Paris. These papers
covered astronomy, stability of the solar system, mechanics, dynamics, fluid
mechanics, probability and the foundation of calculus. His work on number
theory in Berlin included the Four Squares Theorem and Wilson’s Theorem
(n is prime if and only if (n − 1)! + 1 is divisible by n). He also made a
fundamental investigation of why equations of degree up to 4 can be solved
by radicals and studied permutations of their roots which was a first step in
the development of group theory. However, his greatest achievement in Berlin
was the preparation of his monumental work Traité de mécanique analytique
(1788) which presented from a unified perspective the various principles of me-
chanics, demonstrating their connections and mutual dependence. This work
transformed mechanics into a branch of mathematical analysis. In 1787, he
left Berlin to accept a non-teaching post at the Académie des Sciences in Paris
where he stayed for the rest of his career. He was a member of the committee to
standardize weights and measures that recommended the adoption of the met-
ric system and served on the Bureau des Longitudes which was charged with
the improvement of navigation, the standardization of time-keeping, geodesy
and astronomical observation. His move to Paris signalled a marked decline
in his mathematical productivity with his single notable achievement being
his work on polynomial interpolation. See Property 39 for a description of
his contribution to the Polygonal Number Theorem and Applications 7&8 for
a summary of his research on the Three-Body Problem. He died and was
buried in the Panthéon in Paris, aged 77, before he could finish a thorough
revision of Mécanique analytique. Source material for Lagrange is available in
[23, 42, 297].

Vignette 20 (Johann Karl Friedrich Gauss: 1777-1855).

Karl Friedrich Gauss, Princeps mathematicorum, was born to poor working-
class parents in Braunschweig in the Electorate of Brunswick-Lüneburg of the
Holy Roman Empire now part of Lower Saxony, Germany [36, 90, 160]. He
was a child prodigy, correcting his father’s financial calculations at age 3 and
discovering the sum of an arithmetic series in primary school. His intellectual
abilities attracted the attention and financial support of the Duke of Braun-
schweig, who sent him to the Collegium Carolinum (now Technische Univer-
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sität Braunschweig), which he attended from 1792 to 1795, and to the Univer-
sity of Göttingen from 1795 to 1798. His first great breakthrough came in 1796
when he showed that any regular polygon with a number of sides which is a
Fermat prime can be constructed by compass and straightedge. This achieve-
ment led Gauss to choose Mathematics, which he termed the Queen of the
Sciences, as his life’s vocation. Gauss was so enthused by this discovery that
he requested that a regular heptadecagon (17 sided polygon) be inscribed on his
tombstone, a request that was not fulfilled because of the technical challenge
which it posed. He returned to Braunschweig in 1798 without a degree but re-
ceived his doctorate in abstentia from the University of Helmstedt in 1799 with
a dissertation on the Fundamental Theorem of Algebra under the nominal su-
pervision of J. F. Pfaff. With the Duke’s stipend to support him, he published,
in 1801, his magnum opus Disquisitiones Arithmeticae, a work which he had
completed in 1798 at age 21. Disquisitiones Arithmeticae summarized previ-
ous work in a systematic way, resolved some of the most difficult outstanding
questions, and formulated concepts and questions that set the pattern of re-
search for a century and that still have significance today. It is here that he
introduced modular arithmetic and proved the law of quadratic reciprocity as
well as appended his work on constructions with compass and straightedge.
In this same year, 1801, he predicted the orbit of Ceres with great accuracy
using the method of least squares, a feat which brought him wide recognition.
With the Duke’s death, he left Braunschweig in 1807 to take up the position of
director of the Göttingen observatory, a post which he held for the rest of his
life. In 1809, he published Theoria motus corporum coelestium, his two volume
treatise on the motion of celestial bodies. His involvement with the geodetic
survey of the state of Hanover (when he invented the heliotrope) led to his
interest in differential geometry. Here, he contributed the notion of Gaussian
curvature and the Theorema Egregium which informally states that the curva-
ture of a surface can be determined entirely by measuring angles and distances
on the surface, i.e. curvature of a two-dimensional surface does not depend
on how the surface is embedded in three-dimensional space. With Wilhelm
Weber, he investigated terrestrial magnetism, discovered the laws of electric
circuits, developed potential theory and invented the electromechanical tele-
graph. His work for the Göttingen University widows’ fund is considered part
of the foundation of actuarial science. Property 38 describes the equilateral
triangle in the Gauss plane and Property 39 states Gauss’ Theorem on Trian-
gular Numbers. Although not enamored with teaching, he counted amongst
his students such luminaries as Bessel, Dedekind and Riemann. The CGS unit
of magnetic induction is named for him and his image was featured on the
German Deutschmark as well as on three stamps. Gauss was not a prolific
writer, which is reflected in his motto Pauca sed matura (“Few, but ripe”).
What he did publish may best be described as terse, in keeping with his belief
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that a skilled artisan should always remove the scaffolding after a masterpiece
is finished. His personal diaries contain several important mathematical dis-
coveries, such as non-Euclidean geometry, that he had made years or decades
before his contemporaries published them. He died, aged 77, in Göttingen in
the Kingdom of Hanover. His brain was preserved and was studied by Rudolf
Wagner who found highly developed convolutions present, perhaps accounting
for his titanic intellect. His body is interred in the Albanifriedhof cemetery
[304, p. 59] and, in 1995, the present author made a pilgrimage there and
was only too glad to remove the soda pop cans littering this holy shrine of
Mathematics! Source material for Gauss is available in [23, 42, 221, 287, 297].

Vignette 21 (Jakob Steiner: 1796-1863).

Jacob Steiner, considered by many to have been the greatest pure geometer
since Apollonius of Perga, was born in the village of Utzenstorf just north of
Bern, Switzerland [144]. At age 18, he left home to attend J. H. Pestalozzi’s
school at Yverdon where the educational methods were child-centered and
based upon individual learner differences, sense perception and the student’s
self-activity. In 1818, he went to Heidelberg where he attended lectures on com-
binatorial analysis, differential and integral calculus and algebra, and earned
his living giving private Mathematics lessons. In 1821, he traveled to Berlin
where he first supported himself through private tutoring before obtaining a
license to teach Mathematics at a Gymnasium. In 1834, he was appointed
Extraordinary Professor of Mathematics at the University of Berlin, a post
he held until his death. In Berlin, he made the acquaintance of Niels Abel,
Carl Jacobi and August Crelle. Steiner became an early contributor to Crelle’s
Jounal, which was the first journal entirely devoted to Mathematics. In 1826,
the premier issue contained a long paper by Steiner (the first of 62 which were
to appear in Crelle’s Journal) that introduced the power of a point with re-
spect to a circle, the points of similitude of circles and his principle of inversion.
This paper also considers the problem: What is the maximum number of parts
into which a space can be divided by n planes? (Answer: n3+5n+6

6
.) In 1832,

Steiner published his first book, Systematische Entwicklung der Abhangigkeit
geometrischer Gestalten voneinander, where he gives explicit expression to his
approach to Mathematics: “The present work is an attempt to discover the
organism through which the most varied spatial phenomena are linked with
one another. There exist a limited number of very simple fundamental rela-
tionships that together constitute the schema by means of which the remaining
theorems can be developed logically and without difficulty. Through the proper
adoption of the few basic relations one becomes master of the entire field.”. He
was one of the greatest contributors to projective geometry (Steiner surface
and Steiner Theorem). Then, there is the beautiful Poncelet-Steiner Theo-
rem which shows that only one given circle and a straightedge are required
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for Euclidean constructions. He also considered the problem: Of all ellipses
that can be circumscribed about (inscribed in) a given triangle, which one
has the smallest (largest) area? (Today, these ellipses are called the Steiner
ellipses.) Steiner disliked algebra and analysis and advocated an exclusively
synthetic approach to geometry. See Property 70 of Chapter 2 for his role in
solving Malfatti’s Problem and Application 20 of Chapter 3 for the application
of Steiner triple-systems to error-correcting codes. He died in Bern, aged 67.
Source material for Steiner is available in [287].

Vignette 22 (Joseph Bertrand: 1822-1900).

Joseph Bertrand was a child prodigy who was born in Paris, France and
whose early career was guided by his uncle, the famed physicist and Mathe-
matician Duhamel [144]. (He also had familial connections to Hermite, Picard
and Appell.) He began attending lectures at l’École Polytechnique at age
eleven and was awarded his doctorate at age 17 for a thesis in thermodynam-
ics. At this same time, he published his first paper on the mathematical theory
of electricity. In 1842, he was badly injured in a train crash and suffered a
crushed nose and facial scars which he retained throughout his life. Early in
his career, he published widely in mathematical physics, mathematical analy-
sis and differential geometry. He taught at a number of institutions in France
until becoming Professor of Analysis at Collège de France in 1862. In 1845,
he conjectured that there is at least one prime between n and 2n − 2 for every
n > 3. This conjecture was proved by Chebyshev in 1850. In 1845, he made
a major contribution to group theory involving subgroups of low index in the
symmetric group. He was famed as the author of textbooks on arithmetic,
algebra, calculus, thermodynamics and electricity. His book Calcul des proba-
bilitiés (1888) contains Bertrand’s Paradox which was described in Recreation
11 of Chapter 4. This treatise greatly influenced Poincaré’s work on this same
topic. Bertrand was elected a member of the Paris Academy of Sciences in
1856 and served as its Permanent Secretary from 1874 to the end of his life.
He died in Paris, aged 78.

Vignette 23 (Georg Friedrich Bernhard Riemann: 1826-1866).

Bernhard Riemann was born in Breselenz, a village near Dannenberg in
the Kingdom of Hanover in what is today the Federal Republic of Germany
[203]. He exhibited exceptional mathematical skills, such as fantastic calcu-
lation abilities, from an early age. His teachers were amazed by his adept
ability to perform complicated mathematical operations, in which he often
outstripped his instructor’s knowledge. While still a student at the Gymna-
sium in Lüneberg, he read and absorbed Legendre’s 900 page book on number
theory in six days. In 1846, he enrolled at the University of Göttingen and
took courses from Gauss. In 1847 he moved to the University of Berlin to
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study under Steiner, Jacobi, Dirichlet and Eisenstein. In 1849, he returned
to Göttingen and submitted his thesis, supervised by Gauss, in 1851. This
thesis applied topological methods to complex function theory and introduced
Riemann surfaces to study the geometric properties of analytic functions, con-
formal mappings and the connectivity of surfaces. (A fundamental theorem on
Riemann surfaces appears in Property 41 of Chapter 2.) In order to become
a Lecturer, he had to work on his Habilitation. In addition to another thesis
(on trigonometric series including a study of Riemann integrability), this re-
quired a public lecture which Gauss chose to be on geometry. The resulting
On the hypotheses that lie at the foundations of geometry of 1854 is consid-
ered a classic of Mathematics. In it, he gave the definition of n-dimensional
Riemannian space and introduced the Riemannian curvature tensor. For the
case of a surface, this reduces to a scalar, the constant non-zero cases corre-
sponding to the known non-Euclidean geometries. He showed that, in four
dimensions, a collection of ten numbers at each point describe the properties
of a manifold, i.e. a Riemannian metric, no matter how distorted. This pro-
vided the mathematical framework for Einstein’s General Theory of Relativity
sixty years later. This allowed him to begin lecturing at Göttingen, but he
was not appointed Professor until 1857. In 1857, he published another of his
masterpieces, Theory of abelian functions which further developed the idea
of Riemann surfaces and their topological properties. In 1859, he succeeded
Dirichlet as Chair of Mathematics at Göttingen and was elected to the Berlin
Academy of Sciences. A newly elected member was expected to report on
their most recent research and Riemann sent them On the number of primes
less than a given magnitude. This great masterpiece, his only paper on num-
ber theory, introduced the Riemann zeta function and presented a number of
conjectures concerning it, most notably the Riemann Hypothesis, the greatest
unsolved problem in Mathematics [76] (Hilbert’s Eighth Problem [332] and one
of the $1M Millenium Prize Problems [78]) ! It conjectures that, except for
a few trivial exceptions, the roots of the zeta function all have a real part of
1/2 in the complex plane. The Riemann Hypothesis implies results about the
distribution of prime numbers that are in some ways as good as possible. His
work on monodromy and the hypergeometric function in the complex domain
established a basic way of working with functions by consideration of only
their singularities. He died from tuberculosis, aged 39, in Salasca, Italy, where
he was seeking the health benefits of the warmer climate. Source material for
Riemann is available in [23, 42, 287].

Vignette 24 (James Clerk Maxwell: 1831-1879).

James Clerk Maxwell, physicist and Mathematician, was born in Edin-
burgh, Scotland [43, 215, 307]. He attended the prestigious Edinburgh Academy
and, at age 14, wrote a paper on ovals where he generalized the definition of an
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ellipse by defining the locus of a point where the sum of m times the distance
from one fixed point plus n times the distance from a second fixed point is
constant. (m = n = 1 corresponds to an ellipse.) He also defined curves where
there were more than two foci. This first paper, On the description of oval
curves, and those having a plurality of foci, was read to the Royal Society of
Edinburgh in 1846. At age 16, he entered the University of Edinburgh and,
although he could have attended Cambridge after his first term, he instead
completed the full course of undergraduate studies at Edinburgh. At age 18,
he contributed two papers to the Transactions of the Royal Society of Edin-
burgh. In 1850, he moved to Cambridge University, first to Peterhouse and
then to Trinity where he felt his chances for a fellowship were greater. He
was elected to the secret Society of Apostles, was Second Wrangler and tied
for Smith’s Prizeman. He obtained his fellowship and graduated with a de-
gree in Mathematics in 1854. Immediately after taking his degree, he read
to the Cambridge Philosophical Society the purely mathematical memoir On
the transformation of surfaces by bending. In 1855, he presented Experiments
on colour to the Royal Society of Edinburgh where he laid out the principles
of colour combination based upon his observations of colored spinning tops
(Maxwell discs). (Application 14 concerns the related Maxwell Color Trian-
gle.) In 1855 and 1856, he read his two part paper On Faraday’s lines of force
to the Cambridge Philosophical Society where he showed that a few simple
mathematical equations could express the behavior of electric and magnetic
fields and their interaction. In 1856, Maxwell took up an appointment at Mar-
ishcal College in Aberdeen. He spent the next two years working on the nature
of Saturn’s rings and, in 1859, he was awarded the Adams Prize of St. John’s
College, Cambridge for his paper On the stability of Saturn’s rings where he
showed that stability could only be achieved if the rings consisted of numerous
small solid particles, an explanation finally confirmed by the Voyager space-
crafts in the 1980’s! In 1860, he was appointed to the vacant chair of Natural
Philosophy at King’s College in London. He performed his most important ex-
perimental work during the six years that he spent there. He was awarded the
Royal Society’s Rumford medal in 1860 for his work on color which included
the world’s first color photograph, and was elected to the Society in 1861. He
also developed his ideas on the viscosity of gases (Maxwell-Boltzmann kinetic
theory of gases), and proposed the basics of dimensional analysis. This time
is especially known for the advances he made in electromagnetism: electro-
magnetic induction, displacement current and the identification of light as an
electromagnetic phenomenon. In 1865, he left King’s College and returned to
his Scottish estate of Glenlair until 1871 when he became the first Cavendish
Professor of Physics at Cambridge. He designed the Cavendish laboratory
and helped set it up. The four partial differential equations now known as
Maxwell’s equations first appeared in fully developed form in A Treatise on
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Electricity and Magnetism (1873) although most of this work was done at
Glenlair. It took until 1886 for Heinrich Hertz to produce the electromagnetic
waves mathematically predicted by Maxwell’s equations. Maxwell’s legacy
to us also includes the Maxwell distribution, Maxwell materials, Maxwell’s
theorem, the generalized Maxwell model and Maxwell’s demon. He died of
abdominal cancer at Cambridge, aged 48.

Vignette 25 (Charles Lutwidge Dodgson/Lewis Carroll:1832-1898).

C. L. Dodgson, a.k.a. Lewis Carroll, was born in Daresbury, Cheshire, Eng-
land [52]. He matriculated at Christ Church, Oxford, graduating in 1854 and
becoming Master of Arts there three years later. In 1852, while still an under-
graduate, he won a Fellowship (allowing him to live in Christ Church College
provided that the took Holy Orders and remained unmarried, both of which
he did) and, in 1855, he was appointed Lecturer in Mathematics at his alma
mater, where he stayed in various capacities until his death. His mathematical
contributions included Elementary Treatise on Determinants (1867), A Dis-
cussion of the Various Procedures in Conducting Elections (1873), Euclid and
His Modern Rivals (1879), The Game of Logic (1887), Curiosa Mathematica
(1888/1893) and Symbolic Logic (1896). Despite these many and varied pub-
lications, he is best remembered for his children’s stories Alice’s Adventures
in Wonderland (1865) and Through the Looking Glass (1872). Incidentally,
Martin Gardner’s most commercially successful books were his annotations of
these children’s classics. Even more interesting is that he was asked to un-
dertake this publication venture only after the publishers could not get their
first choice - Bertrand Russell! Dodgson/Carroll’s predilection for paper fold-
ing was alluded to in Recreation 28. He died suddenly from what began as a
minor cold in Guildford, Surrey, England, aged 65.

Vignette 26 (Hermann Amandus Schwarz: 1843-1921).

Hermann Schwarz was born in Hermsdorf, Silesia (now part of Poland)
[144]. Initially, he studied chemistry at the Technical University of Berlin
but switched to Mathematics, receiving his doctorate in 1864 for a thesis in
algebraic geometry written under Weierstrass and examined by Kummer (his
eventual father-in-law). He then taught at University of Halle and ETH-Zurich
until accepting the Chair of Mathematics at Göttingen in 1875. In 1892, he
returned to University of Berlin as Professor of Mathematics. His greatest
strength lay in his geometric intuition as is evidenced by his first publication,
an elementary proof of the chief theorem of axonometry (a method for mapping
three-dimensional images onto the plane). He made important contributions to
conformal mappings and minimal surfaces. His legacy to Mathematics is vast:
Schwarz alternating method, Schwarzian derivative, Schwarz’ lemma, Schwarz
minimal surface, Schwarz-Christoffel formula, Cauchy-Schwarz inequality and
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Schwarz reflection priniciple. The latter has previously been described in the
context of Fagnano’s Problem (Property 53) and Triangular Billiards (Recre-
ation 20). He died in Berlin, aged 78. Source material for Schwarz is available
in [23].

Vignette 27 (Jules Henri Poincaré: 1854-1912).

Henri Poincaré, described by many as The Last Universalist in Mathemat-
ics, was born into an upper middle class family in Nancy, France [67]. He
was not the only distinguished member of his family. His cousin, Raymond
Poincaré, was several times Prime Minister of France and President of the
French Republic during World War I. In 1862, Henri entered the Lycée in
Nancy (now renamed after him) and spent eleven years there as one of the top
students in every subject. He won first prizes in the concours général, a com-
petition between the top students from all across France. In 1873, he entered
l’École Polytechnique, graduating in 1875. After graduation, he continued his
studies at l’École des Mines after which he spent a short time working as a
mining engineer while completing his doctoral work. In 1879, he received his
doctorate under Charles Hermite at the University of Paris with a thesis on dif-
ferential equations where he introduced the qualitative geometric theory which
was to become so influential. He then was appointed to teach mathematical
analysis at the University of Caen. In 1881, he became a Professor at the
University of Paris and also at l’École Polytechnique, holding both posts for
the rest of his life. The breadth and depth of his mathematical contributions
is truly staggering. He won a mathematical competition based on his work on
the three-body problem which used invariant integrals, introduced homoclinic
points and gave the first mathematical description of chaotic motion. He also
made fundamental contributions to number theory, automorphic functions and
the theory of analytic functions of several complex variables. His work in alge-
braic topology was especially noteworthy where he created homotopy theory
and introduced the notion of the fundamental group as well as formulated the
celebrated Poincaré Conjecture which has only recently been settled in the
affirmative by Grigory Perelman [141]. In Applied Mathematics, he made ad-
vances in fluid mechanics, optics, electricity, telegraphy, capillarity, elasticity,
thermodynamics, potential theory, quantum theory, theory of relativity and
celestial mechanics, the latter culminating in his masterpiece Les Méthodes
nouvelles de la mécanique céleste in three volumes published between 1892
and 1899. See Property 84 of Chapter 2 for a description of the Poincaré disk
model of the hyperbolic plane. His name has been enshrined in the Poincaré-
Bendixson Theorem, the Poincaré Group, the Poincaré-Linstedt Method, the
Poincaré Inequality, the Poincaré Metric and the Poincaré Map, to mention
but a few. Poincaré’s popular works included Science and Hypothesis (1901),
The Value of Science (1905) and Science and Method (1908). He was the only
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member of the French Academy of Sciences to be elected to every one of its
five sections and he served as its President. In addition, he received many
medals and honors. He died from complications following prostate surgery in
Paris, France, aged 58. Source material for Poincaré is available in [23, 42].

Vignette 28 (Percy Alexander MacMahon: 1854-1929).

Percy MacMahon was born into a military family in Sliema, Malta [144]. In
1871, he entered the Royal Military Academy at Woolwich and studied under
the renowned teacher of physics and Mathematics, Alfred George Greenhill.
He was posted to India in 1873 until he was sent home to England in 1878 to
recover his health. He was appointed Instructor of Mathematics at the Royal
Military Academy in 1882 and held that post until he became Assistant In-
spector at the Arsenal in 1888. In 1891, he took up a new post as Military
Instructor in Electricity at the Royal Artillery College, Woolwich where he
stayed until his retirement from the Army in 1898. He worked on invariants
of binary quadratic forms and his interest in symmetric functions led him to
study partitions of integers and Latin squares. In 1915/1916, he published his
two volume Combinatory Analysis which was the first major book in enumera-
tive combinatorics and is now considered a classic. The shorter Introduction to
Combinatory Analysis was published in 1920. He also did pioneering work in
Recreational Mathematics and patented several puzzles. His New Mathemat-
ical Pastimes (1921) contains the 24 color triangles introduced in Recreation
17. He was a Fellow of the Royal Society and served as President of the London
Mathematical Society, Section A of the British Association and the Royal As-
tronomical Society. He was also the recipient of the Royal Medal, the Sylvester
Medal and the Morgan Medal. He died in Bognor Regis, England, aged 75.

Vignette 29 (Frank Morley: 1860-1937).

Frank Morley was born into a Quaker family in Woodbridge, Suffolk, Eng-
land [230, 330]. He studied with Sir George Airy at King’s College, Cambridge,
earning his B.A. in 1884. He then took a job as a school master, teaching
Mathematics at Bath College until 1887. At that time he moved to Haver-
ford College in Pennsylvania where he taught until 1900, when he became
Chairman of the Mathematics Department at the Johns Hopkins University in
Baltimore, Maryland. He spent the remainder of his career there, supervising
48 doctoral students. He published the book A Treatise on the Theory of Func-
tions (1893) which was later revised as Introduction to the Theory of Analytic
Functions (1898). He is best known for Morley’s Theorem (see Property 11),
which though discovered in 1899 was not published by him until 1929, but also
loved posing mathematical problems. Over a period of 50 years, he published
more than 60 such problems in Educational Times. Most were of a geometric
nature: “Show that on a chessboard the number of visible squares is 204 while
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the number of visible rectangles (including squares) is 1,296; and that, on a
similar board with n squares on a side, the number of squares is the sum of
the first n square numbers while the number of rectangles (including squares)
is the sum of the first n cube numbers.” He was President of the Ameri-
can Mathematical Society and Editor of American Journal of Mathematics
(where he finally published Morley’s Theorem). He was also an exceptional
chess player, having defeated fellow Mathematician Emmanuel Lasker while
the latter was still reigning World Champion! His three sons became Rhodes
Scholars: Christopher became a famous novelist, Felix became Editor of The
Washington Post and also President of Haverford College, and Frank became
director of the publishing firm Faber and Faber but was also a Mathemati-
cian who published Inversive Geometry with his father in 1933. He died in
Baltimore, aged 77.

Vignette 30 (Hermann Minkowski: 1864-1909).

Hermann Minkowski was born of German parents in Alexotas, a suburb
of Kaunas, Lithuania which was then part of the Russian Empire [144]. The
family returned to Germany and settled in Königsberg when he was eight years
old. He received his higher education at the University of Königsberg where he
became a lifelong friend of David Hilbert, his fellow student, and Adolf Hur-
witz, his slightly older teacher. In 1883, while still a student at Königsberg,
he was awarded the Mathematics Prize from the French Academy of Sciences
for his manuscript on the theory of quadratic forms. His 1885 doctoral the-
sis at Königsberg was a continuation of this prize winning work. In 1887 he
moved to the University of Bonn where he taught until 1894, then he returned
to Königsberg for two years before becoming a colleague of Hurwitz at ETH,
Zurich in 1896 where Einstein was his student. In 1896, he presented his Ge-
ometry of Numbers, a geometrical method for solving problems in number
theory. In 1902, he joined the Mathematics Department of the University of
Göttingen where he was reunited with Hilbert (who had arranged to have the
chair created specifically for Minkowski) and he stayed there for the rest of
his life. It is of great historical interest that it was in fact Minkowski who
suggested to Hilbert the subject of his famous 1900 lecture in Paris on “the
Hilbert Problems” [332]. In 1907, he realized that Einstein’s Special Theory of
Relativity could best be understood in a non-Euclidean four-dimensional space
now called Minkowski spacetime in which time and space are not separate en-
tities but instead are intermingled. This space-time continuum provided the
framework for all later mathematical work in this area, including Einstein’s
General Theory of Relativity. In 1907, he published his Diophantische Ap-
proximationen which gave an elementary account of his work on the geometry
of numbers and of its application to Diophantine approximation and algebraic
numbers. His subsequent work on the geometry of numbers led him to inves-
tigate convex bodies and packing problems. His Geometrie der Zahlen was
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published posthumously in 1910. M-matrices were named for him by Alexan-
der Ostrowski. See Property 85 of Chapter 2 for a result on the Minkowski
plane with a regular dodecagon as unit circle. He died suddenly of appendicitis
in Göttingen, aged 44.

Vignette 31 (Helge von Koch: 1870-1924).

Helge von Koch was born into a family of Swedish nobility in Stockholm
[144]. In 1892, he earned his doctorate under Gösta Mittag-Leffler at Stock-
holm University. Between the years 1893 and 1905, von Koch had several
appointments as Assistant Professor of Mathematics until he was appointed to
the Chair of Pure Mathematics at the Royal Institute of Technology in 1905,
succeeding Ivar Bendixson. In 1911, he succeeded Mittag-Leffler as Professor
of Mathematics at Stockholm University. Von Koch is known principally for
his work in the theory of infinitely many linear equations and the study of the
matrices derived from such infinite systems. He also did work in differential
equations and the theory of numbers. One of his results was a 1901 theorem
proving that the Riemann Hypothesis is equivalent to a stronger form of the
Prime Number Theorem. He invented the Koch Snowflake (see Propery 60) in
his 1904 paper titled “On a continuous curve without tangents constructible
from elementary geometry”. He died in Stockholm, aged 54.

Vignette 32 (Bertrand Russell: 1872-1970).

Bertrand Russell, 3rd Earl Russell, was born into a liberal family of the
British aristocracy in Trelleck, Monmouthshire, Wales [51]. Due to the death
of his parents, he was raised by his paternal grandparents. He was educated
at home by a series of tutors before entering Trinity College, Cambridge as a
scholar in 1890. There, he was elected to the Apostles where he met Alfred
North Whitehead, then a mathematical lecturer at Cambridge. He earned
his B.A. in 1893 and added a fellowship in 1895 for his thesis, An Essay on
the Foundations of Geometry, which was published in 1897. Despite his pre-
viously noted criticism of The Elements (see opening paragraph of Chapter
1), it was his exposure to Euclid through his older brother Frank that set his
life’s path of work in Mathematical Logic! Over a long and varied career, he
made ground-breaking contributions to the foundations of Mathematics, the
development of formal logic, as well as to analytic philosophy. His mathemat-
ical contributions include the discovery of Russell’s Paradox, the development
of logicism (i.e. that Mathematics is reducible to formal logic), introduction
of the theory of types and the refinement of the first-order predicate calculus.
His other mathematical publications include Principles of Mathematics (1903),
Principia Mathematica with Whitehead (1910, 1912, 1913) and Introduction
to Mathematical Philosophy (1919). Although elected to the Royal Society in
1908, he was convicted and fined in 1916 for his anti-war activities and, as
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a consequence, dismissed from Trinity. Two years later, he was convicted a
second time and served six months in prison (where he wrote Introduction to
Mathematical Philosophy). He did not return to Trinity until 1944. He was
married four times and was notorious for his many affairs. Together with his
second wife, he opened and ran an experimental school during the late 1920’s
and early 1930’s. He became the third Earl Russell upon the death of his
brother in 1931. While teaching in the United States in the late 1930’s, he was
offered a teaching appointment at City College of New York but the appoint-
ment was revoked following a large number of public protests and a judicial
decision in 1940 which stated that he was morally unfit to teach youth. He
was awarded the Order of Merit in 1949 and the Nobel Prize for Literature in
1950. In 1961, he was once again imprisoned in connection with anti-nuclear
protests. He died in Penrhyndeudraeth, Merioneth, Wales, aged 97.

Vignette 33 (Henri Lebesgue: 1875-1941).

Henri Lebesgue was born in Beauvais, France and studied at l’École Nor-
male Supérieure from 1894 to 1897, at which time he was awarded his teaching
diploma in Mathematics [144]. He spent the next two years working in its li-
brary studying the works of René Baire on discontinuous functions. In 1898,
he published his first paper on polynomial approximation where he introduced
the Lebesgue constant. From 1899 to 1902, while teaching at the Lycée Cen-
trale in Nancy, he developed the ideas that he presented in 1902 as his doctoral
thesis, “Intégrale, longueur, aire”, written under the supervision of Émile Borel
at the Sorbonne. This thesis, considered to be one of the finest ever written by
a Mathematician, introduced the pivotal concepts of Lebesgue measure and
the Lebesgue integral. He then taught at Rennes (1902-1906) and Poitiers
(1906-1910) before returning to the Sorbonne in 1910. In 1921, he was named
Professor of Mathematics at the Collège de France, a position he held until his
death. He is also remembered for the Riemann-Lebesgue lemma, Lebesgue’s
dominated convergence theorem, the Lebesgue-Stieltjes integral, the Lebesgue
number and Lebesgue covering dimension in topology and the Lebesgue spine
in potential theory. Property 56 of Chapter 2 contains a statement of the
Blaschke-Lebesgue Theorem on curves of constant breadth. He was a member
of the French Academy of Sciences, the Royal Society, the Royal Academy of
Science and Letters of Belgium, the Academy of Bologna, the Accademia dei
Lincei, the Royal Danish Academy of Sciences, the Romanian Academy and
the Kraków Academy of Science and Letters. He was a recipient of the Prix
Houllevigue, the Prix Poncelet, the Prix Saintour and the Prix Petit d’Ormoy.
He died in Paris, France, aged 66.

Vignette 34 (Waclaw Sierpinski: 1882-1969).

Waclaw Sierpinski was born in Warsaw which at that time was part of the
Russian Empire [144]. He enrolled in the Department of Mathematics and
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Physics of the University of Warsaw. After his graduation in 1904, he worked
as a school teacher teacher in Warsaw before enrolling for graduate study at
the Jagiellonian University in Kraków. He received his doctorate in 1906 under
S. Zaremba and G. F. Voronoi and was appointed to the University of Lvov
in 1908. He spent the years of World War I in Moscow working with Nikolai
Luzin and returned to Lvov afterwards. Shortly thereafter, he accepted a post
at the University of Warsaw where he spent the rest of his life. He made many
outstanding contributions to set theory, number theory, theory of functions
and topology. He published over 700 papers and 50 books. Three well-known
fractals are named after him: the Sierpinski gasket (see Properties 60-62 and
Application 24), the Sierpinski carpet and the Sierpinski curve. In number
theory, a Sierpinski number is an odd natural number k such that all integers
of the form k · 2n + 1 are composite for all natural numbers n. In 1960, he
proved that there are infinitely many such numbers and the Sierpinski Problem,
which is still open to this day, is to find the smallest one. He was intimately
involved in the development of Mathematics in Poland, serving as Dean of the
Faculty at the University of Warsaw and Chairman of the Polish Mathematical
Society. He was a founder of the influential mathematical journal Fundamenta
Mathematica and Editor-in-Chief of Acta Arithmetica. He was a member of
the Bulgarian Academy of Sciences, the Accademia dei Lincei of Rome, the
German Academy of Sciences, the U.S. National Academy of Sciences, the
Paris Academy, the Royal Dutch Academy, the Romanian Academy and the
Papal Academy of Sciences. In 1949 he was awarded Poland’s Scientific Prize,
First Class. He died in Warsaw, Poland, aged 87.

Vignette 35 (Wilhelm Blaschke: 1885-1962).

Wilhelm Blaschke was born in Graz, Austria, son of Professor of Descriptive
Geometry Josef Blaschke [144]. Through his father’s influence, he became a
devotee of Steiner’s concrete geometric approach to Mathematics. He studied
architectural engineering for two years at the Technische Hochschule in Graz
before going to the Universtiy of Vienna where he earned his doctorate under
W. Wirtinger in 1908. He then visited different universities (Pisa, Göttingen,
Bonn, Breifswald) to study with the leading geometers of the day. He next
spent two years at Prague and two more years at Leipzig where he published
Kreis und Kugel (1916) in which he investigated isoperimetric properties of
convex figures in the style of Steiner. He then went to Königsberg for two
years, briefly went to Tübingen, until finally being appointed to a chair at the
University of Hamburg where he stayed (with frequent visits to universities
around the world) for the remainder of his career. At Hamburg, he built an
impressive department by hiring Hecke, Artin and Hasse. During World War
II, he joined the Nazi Party, a decision that was to haunt him afterwards.
He wrote an important book, Vorlesungen über Differentialgeometrie (1921-
1929), which was a major three volume work. He also initiated the study of
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topological differential geometry. See Property 27 for Blaschke’s Theorem and
Property 56 for the Blaschke-Lebesgue Theorem. He died in Hamburg, aged
76.

Vignette 36 (Richard Buckminster Fuller, Jr.: 1895-1983).

R. Buckminster Fuller was a famed architect, engineer and Mathematician
born in Milton, Massachusetts [279]. Bucky, as he was known, holds the dubi-
ous distinction of having been expelled from Harvard - twice! Business disasters
and the death of his four year old daughter brought him to the brink of suicide,
but instead he shifted the course of his life to showing that technology could
be beneficial to mankind if properly used. He developed a vectorial system of
geometry, Synergetics [113], based upon the tetrahedron which provides max-
imum strength with minimum structure. He coined the term Spaceship Earth
to emphasize his belief that we must work together globally as a crew if we are
to survive. He is best known for his Dymaxion House, Dymaxion Car, Dymax-
ion Map (see Application 29) and geodesic dome (see Application 30). More
than 200, 000 of the latter have been built, the most famous being the United
States Pavillion at the 1967 International Exhibition in Montreal. He has been
immortalized in fullerenes which are molecules composed entirely of carbon in
the form of a hollow sphere (buckyball), ellipsoid or tube. Specifically, C60 was
the first to be discovered and is named buckminsterfullerene. He eventually
became a Professor at Southern Illinois University until his retirement in 1975.
He died in Los Angeles, California, aged 87.

Vignette 37 (Harold Scott MacDonald Coxeter: 1907-2003).

Donald Coxeter was born in London and educated at University of Cam-
bridge [254]. He received his B.A. in 1929 and his doctorate in 1931 with the
thesis Some Contributions to the Theory of Regular Polytopes written under
the supervision of H. F. Baker. He then became a Fellow at Cambridge and
spent two years as a research visitor at Princeton University. He then joined
the faculty at University of Toronto in 1936 where he stayed for the remaining
67 years of his life. His research was focused on geometry where he made major
contributions to the theory of polytopes (Coxeter polytopes), non-Euclidean
geometry, group theory (Coxeter groups) and combinatorics. In 1938, he re-
vised and updated Rouse Ball’s Mathematical Recreations and Essays, first
published in 1892 and still widely read today. He wrote a number of widely
cited geometry books including The Real Projective Plane (1955), Introduc-
tion to Geometry (1961), Regular Polytopes (1963), Non-Euclidean Geometry
(1965) and Geometry Revisited (1967). He also published 167 research articles.
He was deeply interested in music and art: at one point he pondered becoming
a composer and was a close friend of M. C. Escher. Another of his friends,
R. Buckminster Fuller utilized his geometric ideas in his architecture. His role
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in popularizing the mathematical work of the institutionalized artist George
Odom has already been described in Chapter 1 and Property 74. He was a
Fellow of the Royal Societies of London and Canada as well as a Companion
of the Order of Canada, their highest honor. He died in Toronto, aged 96, and
attributed his longevity to strict vegetarianism as well as an exercise regimen
which included 50 daily push-ups.

Vignette 38 (Paul Erdös: 1913-1996).

Paul Erdös was born in Budapest, Hungary to Jewish parents both of
whom were Mathematics teachers [175, 269]. His fascination with Mathemat-
ics developed early as is evidenced by his ability, at age three, to calculate
how many seconds a person had lived. In 1934, at age 21, he was awarded a
doctorate in Mathematics from Eötvös Loránd University for the thesis Über
die Primzahlen gewisser arithmetischer Reihen written under the supervision
of L. Fejér. Due to a rising tide of anti-Semitism, he immediately accepted
the position of Guest Lecturer in Mathematics at Manchester University in
England and, in 1938, he accepted a Fellowship at Princeton University. He
then held a number of part-time and temporary positions which eventually led
to an itinerant existence. To describe Erdös as peripatetic would be to risk
the mother of all understatements. He spent most of his adult life living out
of a single suitcase (sometimes traveling with his mother), had no checking
account and rarely stayed consecutively in one place for more than a month.
Friends and collaborators such as Ron Graham (see below) helped him with
the mundane details of modern life. He was so eccentric that even his close
friend, Stan Ulam, described him thusly: “His peculiarities are so numerous
that it is impossible to describe them all.” He had his own idiosyncratic vo-
cabulary including The Book which referred to an imaginary book in which
God (whom he called the “Supreme Fascist”) had written down the most ele-
gant proofs of mathematical theorems. He foreswore any sexual relations and
regularly abused amphetamines. Mathematically, he was a problem solver and
not a theory builder, frequently offering cash prizes for solutions to his favorite
problems. He worked primarily on problems in combinatorics, graph theory,
number theory, classical analysis, approximation theory, set theory and proba-
bility theory. His most famous result is the discovery, along with Atle Selberg,
of an elementary proof of the Prime Number Theorem. See Properties 48 and
55 and Recreation 13 for a further discussion of his contributions. He published
more papers (approximately 1475) than any other Mathematician in history
with 511 coauthors. (Euler published more pages.) This prolific output led to
the concept of the Erdös number which measures the collaborative distance
between him and other Mathematicians. He was the recipient of the Cole
and Wolf Prizes and was an Honorary Member of the London Mathematical
Society. He died, aged 86, while attending, naturally enough, a Mathematics
conference in Warsaw, Poland.
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Vignette 39 (Solomon Wolf Golomb: 1932-).

Solomon W. Golomb, Mathematician and engineer, was born in Baltimore,
Maryland [330]. He received his B.A. from Johns Hopkins in 1951 and his
M.A. (1953) and Ph.D. (1957) in Mathematics from Harvard, where he wrote
the thesis Problems in the Distribution of Prime Numbers under the supervi-
sion of D. V. Widder. He has worked at the Glenn L. Martin Company, where
he became interested in communications theory and began working on shift
register sequences, and the Jet Propulsion Laboratory at Caltech. In 1963,
he joined the faculty of University of Southern California, where he remains
today, with a joint appointment in the Departments of Electrical Engineering
and Mathematics. His research has been specialized in combinatorial analysis,
number theory, coding theory and communications. Today, millions of cordless
and cellular phones rely upon his fundamental work on shift register sequences.
However, he is best known as the inventor of Polyominoes (1953), the inspi-
ration for the computer game Tetris. His other contributions to Recreational
Mathematics include the theory of Rep-tiles (Recreation 15) and Hexiamonds
(Recreation 16). He has been a regular columnist in Scientific American, IEEE
Information Society Newsletter and Johns Hopkins Magazine. He has been the
recipient of the NSA Research Medal, the Lomonosov and Kapitsa Medals of
the Russian Academy of Sciences and the Richard W. Hamming Medal of the
IEEE. He is also a Fellow of both IEEE and AAAS as well as a member of the
National Academy of Engineering.

Vignette 40 (Ronald Lewis Graham: 1935-).

Ron Graham was born in Taft, California and spent his childhood mov-
ing back and forth between there and Georgia, eventually settling in Florida
[230]. He then entered University of Chicago on a three year Ford Foundation
scholarship at age 15 without graduating from high school. It is here that he
learnt gymnastics and became proficient at juggling and the trampoline. With-
out graduating, he spent the next year at University of California at Berkeley
studying electrical engineering before enlisting for four years in the Air Force.
During these years of service, he earned a B.S. in Physics from University of
Alaska. After his discharge, he returned to UC-Berkeley where he completed
his Ph.D. under D.H. Lehmer in 1962 with the thesis On Finite Sums of Ratio-
nal Numbers. He then joined the technical staff of Bell Telephone Laboratories
where he worked on problems in Discrete Mathematics, specifically schedul-
ing theory, computational geometry, Ramsey theory and quasi-randomness.
(Here, he became Bell Labs and New Jersey ping-pong champion.) In 1963,
he began his long collaboration with Paul Erdös which eventually led to 30
joint publications and his invention of the “Erdös number”. His contributions
to partitioning an equilateral triangle have been described in Property 80 of
Chapter 2. In 1977, he entered the Guinness Book of Records for what is now
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known as Graham’s number, the largest number ever used in a mathematical
proof. He has also appeared in Ripley’s Believe It or Not for not only being one
of the world’s foremost Mathematicians but also a highly skilled trampolinist
and juggler. In fact, he has served as President of the American Mathematical
Society, Mathematical Association of America and the International Jugglers’
Association!. In 1999, he left his position as Director of Information Sciences at
Bell Labs to accept a Chaired Professorship at University of California at San
Diego which he still holds. He has been the recipient of the Pólya Prize, the
Allendoerfer Award, the Lester R. Ford Award, the Euler Medal and the Steele
Award. He is a member of the National Academy of Sciences, the American
Academy of Arts and Sciences, the Hungarian Academy of Sciences, Fellow of
the Association of Computing Machinery and the recipient of numerous hon-
orary degrees. He has published approximately 320 papers (77 of which are
coauthored with his wife, Fan Chung) and five books.

Vignette 41 (John Horton Conway: 1937-).

John Conway, perhaps the world’s most untidy Mathematician, was born in
Liverpool and educated at Gonville and Caius College, Cambridge [230]. After
completing his B.A. in 1959, he commenced research in number theory under
the guidance of Harold Davenport. During his studies at Cambridge, he devel-
oped his interest in games and spent hours playing backgammon in the common
room. He earned his doctorate in 1964, was appointed Lecturer in Pure Math-
ematics at Cambridge and began working in mathematical logic. However, his
first major result came in finite group theory when, in 1968, he unearthed a pre-
viously undiscovered finite simple group, of order 8, 315, 553, 613, 086, 720, 000
with many interesting subgroups, in his study of the Leech lattice of sphere
packing in 24 dimensions! He became widely known outside of Mathemat-
ics proper with the appearance of Martin Gardner’s October 1970 Scientific
American article describing his Game of Life. It has been claimed that, since
that time, more computer time has been devoted to it than to any other sin-
gle activity. More importantly, it opened up the new mathematical field of
cellular automata. Also in 1970, he was elected to a fellowship at Gonville
and Caius and, three years later, he was promoted from Lecturer to Reader in
Pure Mathematics and Mathematical Statistics at Cambridge. In his analysis
of the game of Go, he discovered a new system of numbers, the surreal num-
bers. He has also analyzed many other puzzles and games such as the Soma
cube and peg solitaire and invented many others such as Conway’s Soldiers
and the Angels and Devils Game. He is the inventor of the Doomsday algo-
rithm for calculating the day of the week and, with S. B. Kochen, proved the
Free Will Theorem of Quantum Mechanics whereby “If experimenters have free
will then so do elementary particles.” A better appreciation of the wide swath
cut by his mathematical contributions can be gained by perusing Property 22
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and Recreation 23. In 1983, he was appointed Professor of Mathematics at
Cambridge and, in 1986, he left Cambridge to accept the John von Neumann
Chair of Mathematics at Princeton which he currently holds. He has been
the recipient of the Berwick Prize, the Pólya Prize, the Nemmers Prize, the
Steele Prize and is a Fellow of the Royal Society. His many remarkable books
include Winning Ways for Your Mathematical Plays, The Book of Numbers
and The Symmetries of Things. The mathematical world anxiously awaits his
forthcoming The Triangle Book which reportedly will be shaped like a triangle
and will provide the definitive treatment of all things triangular!

Vignette 42 (Donald Ervin Knuth: 1938-).

Donald Knuth was born in Milwaukee, Wisconsin and was originally at-
tracted more to Music than to Mathematics [230]. (He plays the organ, saxo-
phone and tuba.) His first brush with notoriety came in high school when he
entered a contest with the aim of finding how many words could be formed
from “Ziegler’s Giant Bar”. He won top prize by forming 4500 words (without
using the apostrophe)! He earned a scholarship to Case Institute of Technol-
ogy to study physics but switched to Mathematics after one year. While at
Case, he was hired to write compilers for various computers and wrote a com-
puter program to evaluate the performance of the basketball team which he
managed. This latter activity garnered him press coverage by both Newsweek
and Walter Cronkite’s CBS Evening News. He earned his B.S. in 1960 and,
in a unique gesture, Case awarded him an M.S. at the same time. That same
year, he published his first two papers. He then moved on to graduate study
at California Institute of Technology where he was awarded his Ph.D. in 1963
for his thesis Finite Semifields and Projective Planes written under the super-
vision of Marshall Hall, Jr. While still a doctoral candidate, Addison-Wesley
approached him about writing a text on compilers which eventually grew to
become the multi-volume mammoth The Art of Computer Programming. In
1963, he became an Assistant Professor of Mathematics at Caltech and was
promoted to Associate Professor in 1966. It is during this period that he pub-
lished his insightful analysis of triangular billiards that was described in detail
in Recreation 20 of Chapter 4. In 1968, he was appointed Professor of Com-
puter Science at Stanford University, where he is today Professor Emeritus.
In 1974, he published the mathematical novelette Surreal Numbers describ-
ing Conway’s set theory construction of an alternative system of numbers.
Starting in 1976, he took a ten year hiatus and invented TeX, a language for
typesetting mathematics, and METAFONT, a computer system for alphabet
design. These two contributions have literally revolutionized the field of sci-
entific publication. He is also widely recognized as the Father of Analysis of
Algorithms. He has been the recipient of the Grace Murray Hopper Award,
the Alan M. Turing Award, the Lester R. Ford Award, the IEEE Computer
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Pioneer Award, the National Medal of Science, the Steele Prize, the Franklin
Medal, the Adelskold Medal, the John von Neumann Medal, the Kyoto Prize,
the Harvey Prize and the Katayanagi Prize. He is a Fellow of the Ameri-
can Academy of Arts and Science and a member of the National Academy of
Sciences, the National Academy of Engineering, Académie des Sciences, the
Royal Society of London and the Russian Academy of Sciences, as well as an
Honorary Member of the IEEE. In 1990, he gave up his e-mail address so that
he might concentrate more fully on his work and, since 2006, he has waged a
(thus far) successful battle against prostate cancer.

Vignette 43 (Samuel Loyd, Sr.: 1841-1911).

Sam Loyd has been described by Martin Gardner as “America’s greatest
puzzlist and an authentic American genius” [119]. His most famous work is
Cyclopedia of Puzzles (1914) [210] which was published posthumously by his
son. The more mathematical puzzles from this magnum opus were selected
and edited by Martin Gardner [211, 212]. He was born in Philadelphia and
raised in Brooklyn, New York. Rather than attending college, he supported
himself by composing and publishing chess problems. At age 16, he became
problem editor of Chess Monthly and later wrote a weekly chess page for Sci-
entific American Supplement. (Many of his contributions appeared under such
monikers as W. King, A. Knight and W. K. Bishop.) Most of these columns
were collected in his book Chess Strategy (1878). In 1987, he was inducted
into the U.S. Chess Hall of Fame for his chess compositions. After 1870, the
focus of his work shifted toward mathematical puzzles, some of which were
published in newspapers and magazines while others were manufactured and
marketed. His Greek Symbol Puzzle is considered in Recreation 1 of Chapter
4. He died at his home on Halsey Street in Brooklyn, aged 70.

Vignette 44 (Henry Ernest Dudeney: 1857-1930).

Henry Ernest Dudeney has been described by Martin Gardner as “Eng-
land’s greatest inventor of puzzles; indeed, he may well have been the greatest
puzzlist who ever lived” [120]. His most famous works are The Canterbury
Puzzles (1907) [85], Amusements in Mathematics (1917) [86], Modern Puzzles
(1926) and Puzzles and Curious Problems (1931). The last two were com-
bined and edited by Martin Gardner [87]. He was born in the English village
of Mayfield, East Sussex and, like Loyd, entered a life of puzzling through a
fascination with chess problems. His lifelong involvement with puzzles (often
published in newspapers and magazines under the pseudonym of “Sphinx”)
was done against the backdrop of a career in the Civil Service. For twenty
years, he wrote the successful column “Perplexities” in The Strand magazine
(of Sherlock Holmes fame!). For a time, he engaged in an active correspon-
dence with Loyd (they even collaborated on a series of articles without ever
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meeting) but broke it off, accusing Loyd of plagiarism. His hobbies, other
than puzzling, included billiards, bowling and, especially, croquet, and he was
a skilled pianist and organist. A selection of his puzzles are considered in
Recreations 2-5 of Chapter 4. He died at his home in Lewes, Sussex, aged 73.

Vignette 45 (Martin Gardner: 1914-2010).

For 25 years Martin Gardner wrote “Mathematical Games and Recre-
ations”, a monthly column for Scientific American magazine. (An anthology
of these columns is available in [137].) He was the author of more than 70
books, the vast majority of which deal with mathematical topics. He was born
and grew up in Tulsa, Oklahoma. He earned a degree in philosophy from Uni-
versity of Chicago and also began graduate studies there. He served in the
U.S. Navy during World War II as ship’s secretary aboard the destroyer escort
USS Pope. For many years, he lived in Hastings-on-Hudson, New York (on
Euclid Avenue!) and earned his living as a freelance writer, although in the
early 1950’s he was editor of Humpty Dumpty Magazine. In 1979, he semi-
retired and moved to Henderson, North Carolina. In 2002, he returned home
to Norman, Oklahoma. Some of his more notable contributions to Recreational
Mathematics are discussed in Property 22 of Chapter 2 and Recreation 20 of
Chapter 4. Despite not being a “professional” mathematician, the American
Mathematical Society awarded him the Steele Prize in 1987, in recognition of
the generations of mathematicians inspired by his writings. The Mathemati-
cal Association of America has honored him for his contributions by holding
a special session on Mathematics related to his work at its annual meeting in
1982 and by making him an Honorary Member of the Association. He was
also an amateur magician thereby making him a bona fide Mathemagician!
He died at a retirement home in Norman, aged 95.
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Figure 6.2: Pythagoras Figure 6.3: Plato Figure 6.4: Euclid

Figure 6.5: Archimedes Figure 6.6: Apollonius Figure 6.7: Pappus

Figure 6.8: Fibonacci Figure 6.9: Da Vinci Figure 6.10: Tartaglia
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Figure 6.11: Kepler Figure 6.12: Descartes Figure 6.13: Fermat

Figure 6.14: Torricelli Figure 6.15: Viviani Figure 6.16: Pascal

Figure 6.17: Newton Figure 6.18: Euler Figure 6.19: Malfatti
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Figure 6.20: Lagrange Figure 6.21: Gauss Figure 6.22: Steiner

Figure 6.23: Bertrand Figure 6.24: Riemann Figure 6.25: Maxwell

Figure 6.26: Dodgson Figure 6.27: Schwarz Figure 6.28: Poincaré
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Figure 6.29: MacMahon Figure 6.30: Morley Figure 6.31: Minkowski

Figure 6.32: Von Koch Figure 6.33: Russell Figure 6.34: Lebesgue

Figure 6.35: Sierpinski Figure 6.36: Blaschke Figure 6.37: Fuller
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Figure 6.38: Coxeter Figure 6.39: Erdös Figure 6.40: Golomb

Figure 6.41: Graham Figure 6.42: Conway Figure 6.43: Knuth

Figure 6.44: Loyd Figure 6.45: Dudeney Figure 6.46: Gardner



Appendix A

Gallery of Equilateral Triangles

Equilateral triangles appear throughout the Natural and Man-made worlds.
This appendix includes a pictorial panorama of such equilateral delicacies.

Figure A.1: Equilateral Triangular (ET) Humor
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Figure A.2: ET Cat Figure A.3: ET Ducks

Figure A.4: ET Geese Figure A.5: ET Fighters

Figure A.6: ET Tulip Figure A.7: ET Bombers



190 Gallery

Figure A.8: ET Wing

Figure A.9: ET Moth Figure A.10: ET UFO

Figure A.11: Winter ET Figure A.12: Tahiti ET
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Figure A.13: ET Lunar Crater

Figure A.14: ET Rock Formation Figure A.15: ET Stone

Figure A.16: ET Gem [21] Figure A.17: ET Crystals [163]
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Figure A.18: ET Bowling Figure A.19: ET Pool Balls

Figure A.20: ET Die Figure A.21: ET Game

Figure A.22: Musical ET Figure A.23: ET Philately
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Figure A.24: Sweet ETs Figure A.25: ET Hat

Figure A.26: ET Flag (Philippines) Figure A.27: Scary ETs
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Figure A.28: ET Escher [268] Figure A.29: ET Möbius Band [240]

Figure A.30: ET Shawl [18] Figure A.31: ET Quilt [225]
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Figure A.32: ET Playscape Figure A.33: ET Dome

Figure A.34: ET Chair Figure A.35: ET Danger
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Figure A.36: ET Street Signs Figure A.37: ET Fallout Shelter

Figure A.38: Impossible ET Figure A.39: ET Window
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Figure A.40: Sacred ETs Figure A.41: Secular ETs

Figure A.42: ET House Figure A.43: ET Lodge [68]
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Figure A.44: ET Tragedy (Triangle Waist Co., New York: March 25, 1911)
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[204] R. Lawlor, Sacred Geometry: Philosophy and Practice, Thames and
Hudson, London, 1982.

[205] P. D. Lax, “The Ergodic Character of Sequences of Pedal Triangles”,
American Mathematical Monthly, Vol. 97, No. 5 (May 1990), pp. 377-381.

[206] A. H. Layard, Discoveries in the Ruins of Ninevah and Babylon, John
Murray, London, 1853.

[207] J. R. Lewis, Scientology, Oxford University Press, New York, NY, 2009.

[208] S. Linkwitz, “Mapping from Recording to Playback” from Recording for
Stereo, Linkwitz Lab, http://www.linkwitzlab.com/Recording/
record-play-map.htm, Accessed 05 June 2010.

[209] A. L. Loeb, Space Structures: Their Harmony and Counterpoint,
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Borel, Émile 174
Borelli, Giovanni Alfonso 158
Borromean rings 26
bowling pins (triangular) 192
Brahe, Tycho 155
Brahma 5
Brahms, Johannes 25
Brief Lives 148
Briggs, Henry 148
Brotherhood of the Rosy Cross 21
Brown, T. T. 84
Brunnian link 5
Buchman, E. 70
buckminsterfullerene 176
buckyball 176
Budapest University of Art and De-

sign 128
Buddha 6
Buddhism v
building (triangular) 197
Bulgarian Mathematical Olympiad

139-140
Burgiel, H. 26
butterfly (triangular) 23, 98
Butterfly Map 97-98

Caesariano, Caesare 18-19
Cahill, B. J. S. 97-98
California Institute of Technology 178,

180
Calypso 83
Cambridge University 168, 176, 180
camera obscura 155
Canterbury Puzzles 181
Cantrell, David 45
Cardano, Girolamo 154
cardiac vector 81-82
Carpenter’s Plane 112
cartography vi, 97-98
Case Institute of Technology 180
Castelli, Benedetto 157



Index 223

cat iii, 189
Catholic Church 20
Cauchy, Augustin-Louis 50
Cauchy-Schwarz inequality 169
Cavalieri, Bonaventura 157-158
Cavendish Laboratory 168
CBS Evening News 180
cellular automata 179
Center for New Music and Audio

Technologies (CNMAT) 94
centroid 30, 46
Ceres 164
cevian triangle 38
chainmail (triangular) 7-8
chair (triangular) 195
Chaos Game 59-60
Chartres Cathedral 22
Chebyshev, Pafnuty 165
Chekov, Ensign 27
Chennai Temple 5
Cheops (Khufu) 2
Chess Strategy 181
Chinese Checkers 16
Chinese Remainder Theorem 153
Chinese window lattices 6
Chongsheng Monastery 6
chord progressions 25
Chou Dynasty 6
Christian art 18
Christianity v, 22
Christian mysticism 22
Christ of Saint John of the Cross

17-18
chromaticity 88
Chung, Fan 179
church (triangular) 197
church window (triangular) 196
Chu shih-chieh 59
Ciampoli, Giovanni 157
Cipra, B. 43
circle-of-fifths 25
circumcenter 30, 46

circumcevian triangle 39
circumcircle 30, 52, 69, 76
circumscribing rectangle 47
City College of New York 174
Clark, Andrew 148
classification of cubic curves 160
Cloak of Invisibility 28
closed light paths 54-55
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Elder Wand 28
electrical axis (heart) 81-82
electrocardiography vi
electrohydrodynamic (EHD) device

84
electromagnetics 102
electron microscopy 99
Elements iv, 1, 150, 161, 173
ellipsoidal shape 34-35
Emperor Justinian 150
Emperor Rudolph II 155
Eötvös Lorand University (Hungary)

177
equation (equilateral triangle) 31
equiangularity 69
equilateral

shadows 51
spirals 69
triangle i-vii, 1-198
triangles and triangles 43

Equilateral Triangle Method (sur-
veying) 78

Equilateral Triangle Rule (speaker
placement) 92-93

equilateral triangular
anemometer 96
billiards 118-120, 180
fractals 58
lattice 60-61, 120
membrane 100-101
microphone placement 92-93
mosaic 61
prism 100-101
rotor 57

equilic quadrilateral 48
equitriangular unit of area (etu) 33
Erdély, Dániel 128
Erdös-Mordell inequality 53

Erdös-Moser configuration 55
Erdös number 177-178
Erdös, Paul 177-178, 187
Erdös Sphere Coloring Problem 110-

111
error-correcting code 91-92
ESA 84
Escher, Maurits 176, 194
Essay on Conic Sections 159
Essay on the Foundations of Geom-

etry 173
Eternity Puzzle 124-125
ETH-Zurich 169, 172
Euclidean geometry 126-127
Euclid of Alexandria iv, 1, 30, 150-

152, 154, 158, 183
Eudoxus 149-150
Euler, Leonhard 11, 125, 161, 184
Euler line 46, 161
Euler’s inequality 52, 161
Eves, Howard 66
excenter 46
excentral triangle 46
excentral triangle iteration 46
Eye of God 18

Fagnano, Giovanni 54
Fagnano, Giulio 54
Fagnano orbit 118-120
Fagnano Problem 54, 119, 170
fallout shelter (triangular) 196
Father 18
Fejér, L. 177
Fermat, Pierre de 35, 50, 153, 156,

159, 184
Fermat point 35-36, 39, 158
Fermat prime 164
Fermat’s Factorization Method 157
Fermat’s Last Theorem 157, 161
Fermat’s Little Theorem 157
Fermat’s Method of Descent 157
Fermat’s Polygonal Number Conjec-
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ture 157
Fermat’s Principle of Least Time 157
Fermat-Torricelli Problem 35, 158-

159
Feynman, Richard P. 109
Fibonacci numbers 67, 69, 153
Fibonacci sequence 67, 70
Fibonacci Triangle 67-68
Fields Medal 151
fighters (triangular) 189
figurate numbers 32
Finite Semifields and Projective Planes

180
Fisher, Irving 97-99
Flag of Israel 16
flag (triangular) 193
flammability diagram 86-87
flammability region 86
flexagon 108-109
Flexagon Committee 109
Flint, J. A. 81
Flint, Michigan 151
Florentine enigma 159
flower (triangular) 23
Fludd, Robert 9
fly (triangular) 23
Fontana, Niccolò (Tartaglia) 154, 120,

183
Foucault, Léon 158
four elements 9-11, 24
Four Squares Theorem 163
Fourth Dynasty 2
Four Triangle Sculpture 25
fractal dimension 58
Fraenkel, A. S. 123
Freemasonry 20-21
Free Will Theorem 169
French Mathematical Olympiad 140
Freudenthal, H. 15
Friedman, Erich 44-45
Frost, E. 15
fullerenes 176

Fuller, R. Buckminster 97-99, 176,
186

fundamental domain 67
fundamental mode 101
Fundamental Theorem of Algebra 164
fundamental triangle 90
Fundamenta Mathematica 175
Fürst, Paul 100

Galileo 157-158
Gallery of Equilateral Triangles vi,

26, 188-198
Game of Life 169
Gamesters of Triskelion 27
game theory vi, 90
game (triangular) 192
Gardner, Martin vi, 43, 119, 169,

179, 181-182, 187
Gardner’s Gaffe 119-120
Garfunkel-Bankoff inequality 53
Gateway Arch 26-27
Gaussian curvature 164
Gauss, Karl Friedrich 50, 163, 167,

185
Gauss Plane 50, 164
Gauss’ Theorem on Triangular Num-

bers 50, 164
Gazalé, M. J. 69
geese (triangular) 189
gem (triangular) 191
General Theory of Relativity 84, 167,

172
generating parallelogram 61
genetics vi, 90
genotype 90
geodesic dome 99, 176, 195
geometric spiral 69
Géométrie 156
Geometrie der Zahlen 172
Geometry v
Gerbert of Aurillac v
Gergonne point 39
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Global Positioning System 80
global warming 100
gnana 5
gnomon 70
Goethe color triangle 86-87
Goldberg, Michael 66, 107
golden

mean 2
ratio 68-69
section 13, 58, 153

Golden Triangle Fractal 58
Golomb, Solomon Wolf 112, 178, 187
Gonville and Caius College, Cam-

bridge 179
Gordon, J. M. 94
Gothic cathedral 18-19, 22
Gothic masons 20
GPS antenna 79-80
Graham, Ronald Lewis 73, 177-178,

187
Grand Architect of the Universe 21
Grand Duke Ferdinando II de’ Medici

157-158
Grandi, Luigi Guido 159
gravitational waves vi, 84
Great Pyramid (Giza) 2, 3
Greek Symbol Puzzle 103, 181
Greenhill, Alfred George 171
green pepper (triangular) 23
Green, Trevor 45
group of isometries 67
Grunsky, H. 77
Guinness Book of Records 178

Haberdasher’s Puzzle 104
Hales, Thomas 155
Halley, Edmond 162
Hall, Jr., Marshall 180
Halma 16
Hamada, N. 92
Hamlyn, P. 72
Hamming

code 92
distance 92

hana gusari 7-9
handshake problem 32
Harboth, Heiko 125
Hardy-Weinberg frequency 90
Harmonice Mundi 15, 155
Harriot, Thomas 148
Harvard University 176, 178
Hasse, Helmut 175
hat (triangular) 193
Haverford College 171
Haydn, Franz Joseph 25
heat transfer 102
heccaidecadeltahedron 15
Hecke, Erich 175
Heiberg, J. L. 151
Helene 83
heliotrope 164
Hellenic Mathematics 150
Heraclitus 149
Heraldic Cross 20
Hermite, Charles 166, 170
Hertz, Heinrich 169
hexagon 10, 16, 107
hexagram 10, 16
hexiamonds 112, 112-114, 178
Hilbert, David 172
Hilbert’s Eighth Problem 167
Hilbert’s Problems 172
Hinduism v, 4, 5, 16
hinged dissection 104-105
Hioka, Y. 92
history (equilateral triangle) v, 1-28
hollow triangle 26
Holy Lands 20
Holy Spirit 18
homogeneous coordinates 33-34
honeydew melon (triangular) 23
Hooke, Robert 160
Hop Ching Checkers 16
Hopkins, A. A. 30
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house (triangular) 197
Hubbard, L. Ron 24
Hudson River Psychiatric Center 69
hue 88
human elbow 82
humor (triangular) 188
Humpty Dumpty Magazine 182
Hungarian National Olympiad 141
Hurwitz, Adolf 172
Huyghens, Christiaan 160
hyperbolic equilateral triangles 74
hyperbolic plane

(models) 75
(standard) 74

Iberoamerican Mathematical Olympiad
(Mexico) 142

iccha 5
Ice Age 2
icosahedral speaker 94
icosahedral symmetry 99
icosahedron 11, 15, 97-99, 117
icosidodecahedron 13
ida 5
Ignis 9
impossible triangle 196
imputation vector 90
incenter 30, 39
incircle 30, 46, 56
incircle-triangle iteration 46
infinitely many linear equations 173
inorganic chemistry 24
Intégrale, longeur, aire 174
International Juggler’s Association

179
International Mathematical Olympiad

129, 137-138, 143
Introduction to Geometry 176
Intuition 25-26
ionic wind 85
ionocraft 84-85
Irish Mathematical Olympiad 139,

144
Iron Cross 20
isodynamic points 38-39
isogonic center 35-36
isometry 75
Isoperimetric Theorem 52

Jacobi, C. G. 50, 165, 167
Jagiellonian University (Kraków) 175
Jansenism 159
Japanese Temple Geometry 126
Jefferson National Expansion Memo-

rial 26
Jerrard, R. P. 43
Jesuit College of La Flèche 156
Jesus Christ 18, 22
Jet Propulsion Laboratory 178
Johns Hopkins University 171, 178
Johnson, R. S. 107
Judaism v, 16
Jung’s Theorem 52
Jupiter 83

Kabbalah 10, 16
Kabun 8
Kakeya Needle Problem 57-58
Kali (Kalika) 5
Kelly, L. M. 75
Kepler Conjecture 155
Keplerian telescope 155
Kepler, Johannes 15, 21, 154, 184
Kepler’s Laws 155
Kepler’s solids 155
Kepler’s supernova 155
Khufu (Cheops) 2, 3
King David 16
King Hieron 151
King Ptolemy 150
King’s College (Cambridge) 171
King’s College (London) 168
Kirk, Captain 27
Kline, Morris 153
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Knight’s Templar 20
Knight’s Tours 125, 161
Knuth, Donald Ervin 119-120, 180,

187
Kochen, S. B. 169
Koch, Helge von 173, 186
Koch Snowflake / Anti-Snowflake 58,

173
Korean Mathematical Olympiad 139
KRC triangle 24
kriya 5
Kummer, Ernst 169
kusari 8

Lagrange, Joseph-Louis 50, 162, 185
Lagrange multipliers 162
Lagrange’s Equilateral Triangle So-

lution 83
Lagrangian function 163
Lagrangian (L-, libration) points 83
Lamé, Gabriel 102
Lamp 112
Laplace operator 101
Laplace, Pierre-Simon 161
Laplacian eigenstructure 101
Large Hadron Collider 84
largest

circumscribed equilateral tri-
angle 36
inscribed rectangle 41
inscribed square 41
inscribed triangle 52

Lasker, Emmanuel 172
Last Supper 13, 17, 18
lateral epicondoyle 82
lattice duality 62
Latvian Mathematical Olympiad 144
least-area rotor 56-57
least-diameter decomposition (open

disk) 52
Lebesgue constant 174
Lebesgue covering dimension 174

Lebesgue, Henri 174, 186
Lebesgue integral 174
Lebesgue measure 174
Lebesgue’s Dominated Convergence

Theorem 174
Lebesgue spine 174
Lebesgue-Stieltjes integral 174
Leech lattice 169
Legendre, Adrien-Marie 125-126
Lehmer, D. H. 178
Leibniz, Gottfried 156, 159-160
Leonardo of Pisa (Fibonacci) 152,

183
Leonardo’s Symmetry Theorem 154
Lepenski Vir 1-2
Letters to a Princess of Germany

161
Leunberger inequality (improved) 53
Liber Abaci (Book of Calculation)

153
Library of Alexandria 150
Lifter 84-85
Likeaglobe Map 97-99
limiting oxygen concentration (LOC)

86
Lindgren, Harry 107
LISA 84
Liszt, Franz 25
Lob, H. 66
lodge (triangular) 197
logarithmic spiral 70
London Bridge Station 86
Los, G. A. 66
lower explosive limit (LEL) 86
Loyd, Sam 103, 181, 187
Lucasian Chair 160
lunar crater (triangular) 191
Lux 9
Luzin, Nikolai 175

Machine for Questions and Answers
38
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MacMahon, Percy Alexander 113,
171, 186

MacMahon’s Color Triangles 113, 115-
116

MacTutor History of Mathematics
vi

magic v, 16
constant 16
hexagram 16
number 16
star 16

major third 25
major triad 25
Makhuwa 8
Malfatti circles 66
Malfatti, Gian Francesco 65, 162,

184
Malfatti resolvent 162
Malfatti’s Problem 65-66, 162, 166
Maltese cross 20
Manchester University 177
mandorla 22
Manfredi, Gabriele 162
mantra 5
mappings preserving equilateral tri-

angles 75
marble problem 65
Marischal College (Aberdeen) 168
Mars 155
Marshall, W. 72
Martin Co., Glenn L. 178
Marundheeswarar Temple 5
Masonic Lodges 21
Masonic Royal Arch Jewel 21
Mästlin, Michael 155
Mathemagician 182
mathematical

biography v
competitions v-vi, 129-147
history v
properties v, 29-77
recreations v, 103-128

Mathematical Association of Amer-
ica 11, 162, 169, 182

Mathematical Games 119, 182
Mathematical Olympiad of

Moldova 145
Republic of China 142

Mathematical Recreations and Es-
says 176

Mathematical Snapshots 105
Mathematical Time Exposures 105
matrix representation 91-92
maximum area rectangle 41
Maxwell-Boltzmann kinetic theory

of gases 168
Maxwell color triangle 88, 168
Maxwell discs 168
Maxwell distribution 169
Maxwell, James Clerk 167, 185
Maxwell materials 169
Maxwell model (generalized) 169
Maxwell’s demon 169
Maxwell’s equations 168-169
Maxwell’s Theorem 169
McCartin, Brian J. 102
McGovern, W. 15
Mécanique analytique 163
Mechanica 161
medial epicondoyle 82
medial triangle 54
Melissen, J. B. M. 44-45
Mersenne, Marin 156-157, 159
Mesolithic 1-2
METAFONT 180
method of

exhaustion 150
indivisibles 157

Méthodes nouvelles de la mécanique
céleste 170

Method of Mechanical Theorems 151
Meyer Sound 94
Middle Ages 22, 121, 152
midpoint ellipse 51
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Milan Cathedral 18-19
Millenium Prize Problems 167
minimum order perfect triangulation

72
Minkowski, Hermann 172, 186
Minkowski plane 75, 173
Minkowski spacetime 172
minor triad 25
Miscellaneous Olympiad Problems 146-

147
Mittag-Leffler, Gösta 173
M-matrices 173
Möbius band 194
Modern Puzzles 181
Monad 9
Monckton, Christopher 125
Morandi, Maurizio 44
Morgenstern, Oskar 90
Morley, Frank 171, 186
Morley’s Theorem v, 35, 171-172
Morley triangle 35
Moslems 20
Most Beautiful Theorems in Math-

ematics 61
MOTET v-vi
moth (triangular) 190
Motzkin, T. 77
Mozartkugel 100
Mozart, Wolfgang Amadeus 21, 100
music v, 25
musical

chord 25
harmony 10
triangle 192

Musselman, J. R. 39
Musselman’s Theorem 39

nadis 5
Nambokucho period 8
Napoleon’s Theorem v, 36-37
Napoleon triangle 36, 39
NASA 84

NASA Echo I 80
natural equilateral triangles 97-98
Nazi Party 175
nearly-equilateral dissections 73
Nelson, H. L. 107
neopythagoreans 10
Neumann boundary condition 102
neutron star 84
Neville truss 86
New Mathematical Pastimes 171
Newton form 160
Newton’s identities 160
Newton, Sir Isaac 1, 24, 152, 156,

159-161, 184
Newton’s law of cooling 160
Newton’s Laws 160
Newton’s method 160
nine-point center 19, 46
no equilateral triangles on a chess

board 61
nonagon (enneagon) 107
nonattacking rooks 126
non-Euclidean equilateral triangles

74
Nordic Mathematics Competition 144
North American Network 79-80

O’Beirne, T. H. 112
octahedral group 26
octahedron 11, 15, 97-98, 117
Odom, George 25-26, 69, 177
olecranon 82
olympiad problems vi
On Finite Sums of Rational Num-

bers 178
On the hypotheses that lie at the foun-

dations of geometry 167
On the number of primes less than

a given magnitude 167
optimal spacing (lunar bases) 111
optimal wrapping 100
Order of the Temple 20
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oriented triangles 70
origami 127
orthic triangle 54
orthocenter 39, 46
Ostrowski, Alexander 173
Oughtred, William 148
Our Lord 18
Oxford University 150

Pach, J. 55
Pacioli, Luca 11, 153
packings v, 44
Padovan sequence 70
Padovan spirals 70
Padovan whorl 70
pagoda 6-7
paper folding 127
palimpsest 151
Pappus’ Centroid Theorem 152
Pappus’ Hexagon Theorem 152
Pappus of Alexandria 13, 151-152,

183
Pappus’ Problem 152
parallelogram properties 37
Parthenon 9
partition 72-73
partridge

number 72
tiling v, 72

Pascal, Blaise 58, 157, 159, 184
Pascal’s Law of Pressure 159
Pascal’s Mystic Hexagram Theorem

159
Pascal’s Triangle 58-59, 74, 159
Pascal’s Wager 159
Pauca sed matura 164
pedal mapping 54
pedal triangle 38-39, 54, 118, 127
Pedersen, Jean J. 117
Pedoe, Dan 31
peg solitaire 169
Pell, John 148

Pell’s equation 157
Peloponnesian War 149
pengala 5
pentagon 107
pentagonal dipyramid 15
Perelman, Grigory 170
perfect

coloring 67
tiling 70
triangulation 70

periodic orbit 118-120
Perplexities 181
Pestalozzi, J. H. 165
Peterhouse, Cambridge 168
Pfaff, J. F. 164
Philosophia Sacra 9
Picard, Émile 166
Pinchasi, R. 55
ping-pong 178
plaited polyhedra 117
planar soap bubble clusters 52
plastic

number 70
pentagon 70

Platonic solid 11-13, 117, 150
Platonic triangles 11
Platonism 150
Plato of Athens 11, 149, 183
Plato’s Academy 149-150
playscape (triangular) 195
Poincaré-Bendixson Theorem 170
Poincaré Conjecture 170
Poincaré disk 75
Poincaré group 170
Poincaré, Henri 166, 170, 185
Poincaré inequality 170
Poincaré-Linstedt method 170
Poincaré map 170
Poincaré metric 170
Poincaré, Raymond 170
Polydeuces 83
polygonal dissections 106-107
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Polygonal Number Theorem 50, 163
polyhedral formula 11, 156, 161
polyhedron 11, 13, 15
Polyominoes 178
Pompeiu’s Theorem 49-50
Poncelet-Steiner Theorem 165
Pontormo, Jacopo 17-18
pool balls (triangular) 192
pool-ball triangle 117-118
positively / negatively equilateral tri-

angle 39-40
Post, K. 43
Post’s Theorem 43
Potter, Harry 28
Precious Mirror of the Four Elements

59
Pressman & Co., J. 16
primary color 86
Prime Number Theorem 173, 177
Princeps mathematicorum 163
Princeton University 109, 176-177,

180
principal frequency 100
Principia Mathematica (Newton) 1,

160-161
Principia Mathematica (Whitehead

& Russell) 173
Principle of Least Action 162
Principle of the Equilateral Triangle

(electrocardiography) 81
Principle of Virtual Work 163
Problem of Apollonius 151-152
Problems in the Distribution of Prime

Numbers 178
projective plane 91-92
Propeller Theorem 64
Ptolemy 152
pumpkin (triangular) 193
Puzzles and Curious Problems 181
pyramid 2-3
Pythagoras of Samos 149, 183
Pythagoreans 9, 22, 149

Pythagorean Theorem 149, 153

QFL diagram 88-89
Qianxun Pagoda 6
Qing Dynasty 6
quadratix of Hippias 152
Quan Fengyou, King 6
quantum mechanics 102
Queen Anne 160
Queen Christina 156
Queen of the Sciences 164
quilt (triangular) 194

Rabbinic Judaism 16
random point 50
ranking region 91
rational triangle 48
Ravensburger Spieleverlag GmbH 16
Recreational Mathematics vi, 103,

178, 182
regular

heptadecagon 164
polytope 73-74
rhombus 61
simplex 73
tessellations (planar) 61
tilings 15, 156

Renaissance 18, 22
representation triangle 91
rep-tiles vi, 112-113, 178
restricted three-body problem 83
Resurrection 18
Resurrection Stone 28
Reuleaux Triangle 55-56, 96
Ricatti, Vincenzo 162
Richmond, H. W. 66
Riemann, Bernhard 164, 166, 185
Riemann Hypothesis 167, 173
Riemannian metric 167
Riemannian space 167
Riemann integrability 167
Riemann-Lebesgue Lemma 174
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Riemann Surfaces 51, 167
Riemann zeta function 167
Riordan, Oliver 124-125
Ripley’s Believe It or Not 179
Roberval, G. P. de 159
Robin boundary condition 102
Robinson, John 25-26
Robinson, J. T. R. 96
rock formation (triangular) 191
Romanian IMO Selection Test 140
Romanian Mathematical Olympiad

140
root movement 25
Rosicrucian cross 21
Rosicrucians 21, 156
Royal Artillery School (Turin) 162
Royal Institute of Technology (Stock-

holm) 173
Royal Military Academy (Woolwich)

171
Royal Society 105
Rubik, Ernö 128
Rubik’s Cube 128
Rudolphine Tables 155
Russell, Bertrand 1, 169, 173, 186
Russell’s Paradox 173
Russian Mathematical Olympiad 140
rusty compass construction 30-31,

153

Saari, D. G. 91
Sacred Geometry 22, 69
sacred paintings 18
Saint John of the Cross 18
sakthis 5
Sakuma, Tumugu 8
salt 9
Sangaku Geometry 8, 126
Santa Clara University 117
Santa Maria delle Grazie 18
satellite geodesy 79-80
saturation 88

Saturn 83
Saturn’s rings 168
Saviour 18
Schellbach, K. H. 66
Schoenberg, I. J. 77, 105
Schubert, Franz 25
Schwarz alternating method 169
Schwarz-Christoffel formula 169
Schwarz, Hermann Amandus 54, 169,

185
Schwarzian derivative 169
Schwarz minimal surface 169
Schwarz reflection principle / pro-

cedure 54, 119, 169
Schwarz’s Lemma 169
Scientific American 119, 178, 181-

182
Scientology v, 24
Scott, C. 80
secondary color 86
Second Punic War 151
Selberg, Atle 177
Selby, Alex 124-125
semiregular tilings 15, 156
Seversky, A. P. de 84
Sforza, Ludovico (Duke of Milan) 11
shawl (triangular) 194
Sheridan, Captain 27
Sherlock Holmes 181
Shield of David 16
shift register sequences 178
Shinto 126
Shiva 5
shogun 126
shortest bisecting path 53
Sicherman, George 117
siege of Syracuse 151
Sierpinski carpet 175
Sierpinski curve 175
Sierpinski Gasket 58-59, 175
Sierpinski number 175
Sierpinski Problem 175
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Sierpinski, Waclaw 174, 186
Sikorska, J. 75
Silver Age of Greek Mathematics 152
similarity transformation 75
Simmons, G. J. 111
simplex plot 34
Sinclair, Commander 27-28
Singmaster, David 122-123
six triangles 48-49
smallest

enclosing circle 52
inscribed triangle 54

small rhombicosidodecahedron 13
small rhombicuboctahedron 13
Smith’s Prize 168
Snail 112
Snefru 2
Snell’s Law 156-157
snow crystal (triangular) 98
snub cube 13
snub dodecahedron 13
Society of Apostles 168, 173
Socrates 149
Socratic dialogues 149
so gusari 8
Soma cube 179
Son 18
Sorbonne 174
Southern Illinois University 176
Spaceship Earth 176
space-time continuum 172
Special Theory of Relativity 172
spherical equilateral triangles 74
Sphinx 112
spidrons vi, 127-128
Square and Triangle Puzzle 105-106
square hole drill vi, 95-96
stamp (triangular) 192
Stanford University 180
Star of David 16
Star Trek 27
Steiner ellipses 166

Steiner, Jakob 66, 165, 167, 175, 185
Steiner surface 165
Steiner Theorem 165
Steiner triple-system 91, 166
Steinhaus, Hugo 43, 105
Stephen the Clerk 150
Stern-Halma 16
Stertenbrink, Günter 124-125
St. John’s College, Cambridge 168
Stockholm University 173
Stone Age 2
Stone, Arthur H. 109
stone (triangular) 191
St. Petersburg Academy of Sciences

161
Strand Magazine 181
Straus, E. G. 111
street signs (triangular) 196
strictly convex position 55
Sun 83-84
superconducting (Sierpinski) gasket

vi, 94-95
Supper at Emmaus 17, 18
Supreme Fascist 177
surreal numbers 179-180
sushumna 5
Suzuki, Fukuzo 8
sweets (triangular) 193
Symbolic Logic 169
symmetry

group 25, 66
tiling 67

Synagoge (Collection) 152
Synergetics 176
syzygies 42-43
Szostok, T. 75

Tahiti Triangle 190
Tang Dynasty 6
Tangencies 151
tantra 5
Tarot 10
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Tartaglian Measuring Puzzles 120-
121

tattvas 5
Tatzenkreuz 20
Technical University of Berlin 169
Technical University of Braunschweig

125
Technische Hochschule (Graz) 175
telegraph 164
Telesto 83
Tenebrae 9
Tercentenary Euler Celebration 162
ternary diagram 33-34, 88, 90, 121
Terra 9
tertiary color 86
tessellations to fractals 62-63
Tethys 83
tetracaidecadeltahedron 15
Tetragrammaton 10
tetrahedral geodesics 64-65
tetrahedron 9, 11, 15, 117
tetraktys 9-10
Tetris 178
TeX 180
Thales 149
Theaetetus 149-150
Theobald, Gavin 107
Theodorus 149
Theorema Egregium 164
Theoria motus corporum coelestium

164
Theory of Forms 149-150
Thirty Years’ War 156
three-body problem 83, 163
three jug problem 120-121, 154
Three Pagodas 6-7
Thurston model 75
Timaeus 11, 150
Torricelli, Evangelista 35, 157-158,

184
Torricelli’s Equation 158
Torricelli’s Law / Theorem 158

Torricelli’s Trumpet (Gabriel’s Horn)
158

torsional rigidity 100
Traffic Jam Game 123
Traité du triangle arithmétique 58,

159
Trattato della Pittura 153
Trattato generale di numeri e mis-

ure 154
Travolta, John 24
Treatise on Electricity and Magnetism

168-169
triangle 9
Triangle and Square Puzzle 105
Triangle Book 180
triangle geometry v
Triangle Inequality 52
triangle in rectangle 41
triangle in square 41-42
triangles with integer sides 122-123
Triangle-to-Triangle Dissection 106
Triangle Waist Co. 198
triangular

bounds 100-101
dipyramid 15
honeycomb 125-126
numbers 10, 32-33, 59

triangulation triangles 38-39
trihexaflexagon 108-109
trilinear coordinates 33
Triluminary 27-28
Trinity 4, 18
Trinity College, Cambridge 160, 173
Tripurasundari 5
trisection thru bisection 32
Trojan asteroid 83
truncated

cube 13
dodecahedron 13
octahedron 13
tetrahedron 13

Tschirnhaus, E. W. von 159
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Tuckerman, Bryant 109
Tukey, John W. 109
tulip (triangular) 189
Turkish Mathematical Olympiad 141
Tutte, W. T. 70
Tweedie, M. C. K. 120
two-color map 110

UFO (triangular) 190
Uhura, Lieutenant 27
Ulam, Stanislaw 177
Umble, R. 120
University of Alaska 178
University of Basel 161
University of Berlin 165-166, 169
University of Bonn 172, 175
University of Breifswald 175
University of Caen 170
University of California-Berkeley 94,

178
University of California-San Diego

179
University of Chicago 178, 182
University of Ferrara 162
University of Göttingen 164, 166,

169, 172, 175
University of Halle 169
University of Hamburg 175
University of Helmstedt 164
University of Königsberg 172, 175
University of Lvov 175
University of Orleans 157
University of Paris 170
University of Pisa 175
University of Poitiers 156
University of Prague 175
University of Southern California 178
University of Toronto 176
University of Tübingen 155, 175
University of Vienna 175
University of Warsaw 175
upper explosive limit (UEL) 86

USA Mathematical Olympiad 129,
136-137

U. S. Chess Hall of Fame 181
U. S. Coast and Geodetic Survey 80
USDA Soil Texture Triangle 88-89

Valen 27-28
Van der Waerden, B. L. 15
ventricular hypertrophy 81
vesica piscis 22
vibration theory 102
Victoria cross 20
da Vinci, Leonardo 11, 13, 17-18,

153, 183
Virgin Mary 22
viruses 99
Vishnavite 16
Vishnu 5, 16
Vitruvius 18
Viviani’s Theorem 33-34
Viviani, Vincenzo 157-158, 184
Viviani Window 159
Von Neumann, John 90
Voronoi diagram 62
Voronoi, G. F. 175
voting

paradox 91
theory vi, 91

Voyager spacecrafts 168

Wackhenfels, Baron von 155
Wagner, Richard 25
Wagner, Rudolf 165
Wainwright, R. T. 71
Wallenstein, General 155
Wallis, John 76, 148
Wanderer Fantasy 25
Wankel engine 96
Warren truss 85-86
Wasan 7
Washington, George 21
Watts drill 96
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Weber, Wilhelm 164
Weierstrass, Karl 169
Weisstein, E. W. 30
Weizmann Institute of Science 123
Wetzel, J. E. 41, 43
whorled equilateral triangle 69
Widder, D. V. 178
Wikipedia, The Free Encyclopedia vi
Wiles, Andrew 157
Wilson’s Theorem 163
wing (triangular) 190
Winter, Edgar 24
Winter Triangle 190
Wirtinger, Wilhelm 175
World Chess Champion 172
World War I 175
World War II 175, 182
Wrangler (Tripos) 168
wrapping chocolates vi

yantra 5, 16

Zalgaller, V. A. 66
Zanotti, Francesco Maria 162
Zaremba, S. 175
Zathras 27
zeta function 161
Ziegler’s Giant Bar 180
Zionism 16


