Классическая Электродинамика

О.В. Жиров

4 апреля 2021 г.

Содержание

1	Микроскопические уравнения Максвелла.			10
	1.1	Введе	ние	10
		1.1.1	Электромагнитные заряды и токи	12
		1.1.2	Закон сохранения заряда (уравнение непре-	
			рывности)	15

	1.1.3	Взаимодействие зарядов и токов	16
1.2	Элект	ростатика: электрическое поле	23
1.3	Элект	ростатика: скалярный потенциал	33
1.4	Магни	итостатика: магнитное поле	40
1.5	Поля,	зависящие от времени, закон Фарадея, ток	
	смеще	ения	51
1.6	Потен	циалы в случае полей, зависящих от времени.	54
Ροπ			
тро	ынном	стская ковариантность классической эле	К- 69
тро	динам	ики.	к- 62
тро 2.1	динам Осное	ики. вы специальной теории относительности	62 62
тро 2.1	динам Основ 2.1.1	ики. вы специальной теории относительности Основные постулаты	62 62 62
тро 2.1	динам Основ 2.1.1 2.1.2	ики. вы специальной теории относительности Основные постулаты	62 62 62 62 66
тро 2.1	динам Основ 2.1.1 2.1.2 2.1.3	ики. вы специальной теории относительности Основные постулаты Геометрическая интерпретация Собственное время, парадокс близнецов	62 62 62 62 66 70
тро 2.1	одинам Основ 2.1.1 2.1.2 2.1.3 2.1.4	ики. зы специальной теории относительности Основные постулаты Геометрическая интерпретация Собственное время, парадокс близнецов Релятивистское сокращение длины	62 62 62 66 70 73
тро 2.1	одинам Основ 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	ики. вы специальной теории относительности Основные постулаты	62 62 62 66 70 73

 $\mathbf{2}$

2.2	Ковар	оиантная фомулировка СТО: скаляры и век-	
	тора 1	в 4-мерном пространстве-времени Минков-	
	СКОГО.		79
	2.2.1	Законы преобразования при поворотах	79
	2.2.2	Скалярное произведение 4-векторов, мет-	
		рический тензор	82
	2.2.3	4-градиент и 4-вектор энергии-импульса	86
2.3	Релят	ивистская ковариантность классической элек-	-
	троди	намики	88
	2.3.1	4-вектор тока, уравнение непрерывности	89
	2.3.2	4-мерный вектор-потенциал A^{μ}	91
	2.3.3	4-мерное представление для напряженно-	
		стей полей	93
	2.3.4	Преобразования Лоренца для потенциалов	
		И ПОЛЕЙ	97
	2.3.5	Инварианты поля	100
	2.2	 2.2 Ковар тора т ского. 2.2.1 2.2.2 2.2.3 2.3 Релят троди 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 	 2.2 Ковариантная фомулировка СТО: скаляры и вектора в 4-мерном пространстве-времени Минковского

		2.3.6	Релятивистская частица в электромагнит-	
			НОМ ПОЛЕ	101
e e	З Ста	атичес	кие поля.	110
	3.1	Услов	зия применимости статического приближения	H.110
	3.2	Элект	грические поля на больших расстояниях, муль	,-
		ТИПОЛ	вное разложение	112
	3.3	Магні	итные поля на больших расстояниях, маг-	
		НИТНЬ	ый дипольный момент, гиромагнитный фак-	
		тор.	· · · · · · · · · · · · · · · · · · ·	116
Z	4 Эне	ергия :	поля.	122
	4.1	Плоти	ность энергии поля и вектор Пойнтинга	122
	4.2	Элект	гростатическая энергия заряженной системы	
				126
	4.3	Элект	гростатическая собственная энергия точеч-	
		ного З	заряда. Классический радиус электрона	128

	4.4	Взаимодействие двух заряженных подсистем	130
	4.5	Энергия системы зарядов во внешнем поле	132
	4.6	Магнитная энергия в статическом случае	134
5	Тена	зор энергии-импульса электромагнитного по	_
	ля.		138
6	Эле	ктромагнитные волны.	146
	6.1	Волновые уравнения	147
	6.2	Решение волновых уравнений. Избыточность ре-	
		Шений	149
	6.3	Сферические волны	153
	6.4	Монохроматические плоские и сферические волны	.154
	6.5	Волновые пакеты. Фазовая и групповая скорость.	157
	6.6	Эффект Доплера	160
7	Запа	аздывающие потенциалы и поля.	165
	7.1	Поле равномерно движущегося заряда	165

	7.2	Решение уравнений Максвелла с заданными ис-	
		точниками, учет запаздывания	0
	7.3	Поля произвольно движущегося точечного заряда. 17	6
		7.3.1 Потенциалы Лиенара-Вихерта	6
		7.3.2 Поля точечного заряда	0
		7.3.3 Поля в квазистатической зоне, связь с по-	
		лем равномерно движущегося заряда 18	3
		7.3.4 Поле в волновой зоне, излучение 18	6
8	Изп	учение электромагнитных волн 18	Q
8	Изл	учение электромагнитных волн. 189	9
8	Изл 8.1	учение электромагнитных волн. 189 Характер излучения в нерелятивистском и уль-	9
8	Изл 8.1	учение электромагнитных волн. 189 Характер излучения в нерелятивистском и уль- трарелятивистском случаях, угловое распределе-	9
8	Изл 8.1	учение электромагнитных волн. 189 Характер излучения в нерелятивистском и уль- трарелятивистском случаях, угловое распределе- ние	9 9
8	Изл 8.1 8.2	учение электромагнитных волн. 189 Характер излучения в нерелятивистском и уль- трарелятивистском случаях, угловое распределе- ние	9 9
8	Изл 8.1 8.2	учение электромагнитных волн. 189 Характер излучения в нерелятивистском и уль- трарелятивистском случаях, угловое распределе- ние	9 9 3
8	Изл 8.1 8.2	учение электромагнитных волн. 189 Характер излучения в нерелятивистском и уль- трарелятивистском случаях, угловое распределе- ние. 189 Излучение при движении в ускорителях и нако- 189 8.2.1 Потери в линейных ускорителях. 199	9 9 3 5

		8.2.2 Потери в циклических ускорителях, син-	
		хротронное излучение	197
	8.3	Тормозное излучение при рассеянии	200
	8.4	Реакция излучения	206
	8.5	Излучение гармонического осциллятора	209
9	Pace	сеяние электромагнитных волн.	213
	9.1	Рассеяние свободным зарядом	214
	9.2	Рассеяние осциллятором	216
10	Эле	ктромагнитное поле в веществе.	219
	10.1	Строение вещества, микроскопические поля в ве-	
		ществе и уравнения Максвелла-Лоренца	219
	10.2	Усредненные уравнения Максвелла-Лоренца, мак-	
		роскопические поля	221
	10.3	Условия на границе раздела двух сред	230

Список литературы

- [1] *Л.Д. Ландау, Е.М. Лифшиц*, Теоретическая физика, т.2, Теория поля.
- [2] В.Г. Левич, Курс теоретической физики, т.1.
- [3] В. Пановский, М. Филипс, Классическая электродинамика.
- [4] *Р. Фейнман, Р. Лейтон, М. Сэндс.* Фейнмановские лекции по физике, тт.5 и 6.
- [5] И.Е. Тамм. Основы теории электричества.
- [6] М.М. Бредов, В.В. Румянцев, И.Н. Топтыгин. Классическая электродинамика.
- [7] И.Н. Мешков, Б.В. Чириков. Электромагнитное поле.
- [8] Л.Д. Ландау, Е.М. Лифшиц, Электродинамика сплошных сред.

http://www.inp.nsk.su/~zhirov/em-lect.pdf

1 Микроскопические уравнения Максвелла.

1.1 Введение

Электромагнитные взаимодействия лежат в основе большинства наблюдаемых явлений. Они связывают электроны и атомные ядра, образуя атомы, из которых состоим мы и окружающий нас мир. Они же дают электромагнитные волны и, в частности, свет — с помощью которого мы наблюдаем этот мир.

Электромагнитные взаимодействия очень сильны: кулоновское отталкивание двух электронов в 10⁴⁰ (!) раз сильнее их гравитационного притяжения! Теория классического электромагнитного поля была заложена Дж. К. Максвеллом в 1873 году. Удивительным образом в ней *ужсе* содержалась специальная теория относительности (СТО), сформулированная А. Эйнштейном много позднее, лишь в 1905 году. Связи этих двух теорий в значительной степени и посвящен предлагаемый курс лекций. В конце курса мы затронем также и электродинамику сплошных сред — поведение электромагнитного поля в веществе.

Мы начнем с электростатики и магнитостатики, рассмотрим поля, зависящие от времени и завершим этот раздел уравнениями Максвелла и определением электромагнитных потенциалов, описывающих как электрическое, так и магнитное поле.

1.1.1 Электромагнитные заряды и токи.

Встречающиеся в природе заряды кратны т.н. элементарному заряду, совпадающему зарядом электрона

Элементарный заряд $e = 4.8 \cdot 10^{-10} \text{CGSE} = 1.6 \cdot 10^{-19}$ кулон

По этой причине говорят о дискретности заряда. ¹

Дискретность заряда проявляется в аналоговых электронных приборах в качестве т.н. "дробового эффекта".

Задача 1 В современном процессоре число элементов достигает 10^{10} , рабочая частота $3 \cdot 10^9$ гц. *В предположении*, что потребляемый ток 100 А делится поровну между элементами, оценить количество электронов, приходящихся на один такт процессора.

¹Заряды всех элементарных частиц кратны e. Заряды кварков кратны e/3, но в свободном виде кварки не существуют, а заряд образующихся из них частицы всегда кратен целому значению e.

Макроскопические заряженные тела состоят из большого числа точечных зарядов. На практике более удобна идеализация *непрерывного* распределения зарядов — в тех случаях, когда расстояния между зарядами очень мало по сравнению с масштабами задачи. В этом случае в рассматриваемом объеме количество носителей заряда велико, и дискретную функцию величины заряда можно аппроксимировать плавной, введя *макроскопическую* плотность заряда.

Макроскопическая плотность заряда определяется как предел отношения заряда Δq к занимаемому им малому объему ΔV :

$$\rho = \lim_{\Delta V \to 0} \frac{\Delta q}{\Delta V} = \frac{\mathrm{d}q}{\mathrm{d}V};\tag{1}$$

При этом предполагается, что заряд Δq все же *достаточно ве*лик по сравнению с элементарным зарядом e. Электрический ток возникает при движении зарядов, и

макроскопическая плотность тока определяется как

$$\vec{j} = \rho \vec{v}.$$
(2)

Для точечного заряда плотность заряда

$$\rho(\vec{r}) = e\delta(\vec{r} - \vec{r}_0),$$

и *микроскопическая* плотность заряда для макроскопического тела

$$\rho(\vec{r}) = \sum_{i} e_i \delta(\vec{r} - \vec{r}_i), \qquad (3)$$

есть сумма вкладов от отдельных зарядов.

1.1.2 Закон сохранения заряда (уравнение непрерывности)

Полный заряд сохраняется: изменение заряда внутри некоторого объема V, ограниченного замкнутой поверхностью S, равно потоку заряда \vec{j} через эту поверхность:

$$\frac{\mathrm{d}}{\mathrm{d}t}q = \frac{\mathrm{d}}{\mathrm{d}t}\int_{V}\mathrm{d}V\rho(\vec{r},t) = \int_{V}\mathrm{d}V\frac{\partial}{\partial t}\rho(\vec{r},t) = -\oint_{S}\vec{j}\mathrm{d}\vec{S} = -\int_{V}\mathrm{d}V\operatorname{div}\vec{j},$$

что дает интегральную

$$\frac{\mathrm{d}}{\mathrm{d}t}q + \oint_{S} \vec{j} \mathrm{d}\vec{S} = 0 \tag{4}$$

и **дифференциальную** форму закона сохранения заряда

$$\frac{\partial}{\partial t}\rho(\vec{r},t) + \operatorname{div}\vec{j} = 0.$$
(5)

1.1.3 Взаимодействие зарядов и токов.

Взаимодействие двух точечных зарядов q_1 и q_2 расположенных на расстоянии $R = |\vec{r_1} - \vec{r_2}|$ друг от друга описывается **зако**ном Кулона (Шарль Кулон, 1785г.):

$$\vec{F}_{12} = k_1 q_1 q_2 \frac{\vec{r}_2 - \vec{r}_1}{\left|\vec{r}_1 - \vec{r}_2\right|^3}.$$
(6)

здесь $\vec{F}_{12} \equiv \vec{F}_{1 \rightarrow 2}$ — сила, действующая со стороны первого заряда на второй.

Зависимость кулоновской силы от расстояния $|F_{12}| = \text{const}/r^s$ неоднократно проверялась экспериментально. В 1971 году было показано (Э. Р. Уильямс, Д. Е. Фоллер и Г. А. Хилл) что s = 2с точностью $(3.1 \pm 2.7) \cdot 10^{-16}$ Магнитостатическое взаимодействие двух электрических токов дается **законом Ампера** (Андре Мари Ампер,1820г.). В формулировке Максвелла (для двух замкнутых рамок 1 и 2 с токами I_1 и I_2) он принимает вид:

$$\vec{F}_{12} = k_2 I_1 I_2 \oint_2 \oint_1 \frac{\left[\mathrm{d}l_2 \times \left[\mathrm{d}l_1 \times (\vec{r}_2 - \vec{r}_1) \right] \right]}{\left| \vec{r}_1 - \vec{r}_2 \right|^3} \tag{7}$$

здесь $\vec{F}_{12} \equiv \vec{F}_{1 \rightarrow 2}$ — сила, действующая со стороны первой рамки на вторую.

Коэффициенты пропорциональности k_1 и k_2 определяются выбором системы единиц (см. ФЛФ, т.5, стр.70). Напомним две наиболее употребительные системы единиц, систему СИ, используемую преимущественно в технике, и систему CGSE, встречающуюся в научных исследованиях:

СИ		CGSE			
Основные единицы					
длина	м (метр)	длина	см (сантиметр)		
масса	кг (килограмм)	масса	г (грамм)		
время	СЕК	время	СЕК		
TOK	а (ампер)	заряд:	1 ед. CGSE (1 Φp)		
Производные единицы					
сила	$\mathcal{H} = \frac{\kappa \epsilon \cdot M}{c \epsilon \kappa^2} $ (hbotoh)	сила	∂u н $a = 1 rac{s \cdot c_{\mathcal{M}}}{ce\kappa^2}$		
заряд	κy л $=a \cdot ce \kappa$ (кулон)	TOK	$cmamA{=}1$ $\Phi p/ce\kappa$		

Таблица 1: Основные и производные единицы

В системе СИ основной единицей является не единица заряда, а *единица тока*, что отражает прикладной характер системы СИ: точное измерение тока осуществить намного легче, чем заряда.

Отсюда возникает определение единицы тока:

Два линейных параллельных проводника, по которым текут токи силой 1*a* и которые расположены на расстоянии 1*м* друг от друга, взаимодействуют с силой 2 · 10⁻⁷ ньютона на каждый метр длины.

Единица заряда — *кулон* является в СИ производной единицей: 1 Кл = $a \cdot ce\kappa$ В системе CGSE закон Кулона приобретает простой вид:

Два одинаковых единичных заряда, разделяемых расстоянием 1 *см* отталкиваются с силой 1 *дин*.

В CGSE единица заряда, называемая также *статкулоном* (в зарубежной литературе *фра́нклином*) имеет размерность

 $\partial u \mu a^{1/2} \cdot c M$

Из нее выводятся определения для напряженности поля, сопротивления, индуктивности, емкости и других единиц.

Соответственно, запись многих формул в системе CGSE приобретает особую простоту, ценимую в научной среде...

в СИ	B CGSE
$k_1 = \frac{1}{4\pi\varepsilon_0},$	$k_1 = 1,$ или $arepsilon_0 = 1/4\pi$
$k_2 = \frac{\mu_0}{4\pi}$	$k_2 = 1/c^2, \ \mu_0 = 4\pi/c^2$
где $arepsilon_0, \mu_0 - \partial$ иэлектрическая и	
магнитная проницаемость вакуума:	
$\varepsilon_0 = 10^7 / 4\pi c^2 \frac{a^2 \cdot ce\kappa^4}{\kappa e \cdot M_0^3} = 10^7 / 4\pi c^2 \frac{\phi}{M}$	
$\mu_0 = 4\pi \cdot 10^{-7} \frac{\kappa \epsilon M^2}{a^2 \cdot cek} = 4\pi \cdot 10^{-7} \frac{\epsilon H}{M}$	
Единица индуктивности – генри	
1 <i>PH</i> = $\frac{\kappa_{PM}^2}{a^2 \cdot ce\kappa^2}$	
Единица емкости – фарада	
$1 \oint = \frac{a^2 \cdot ce\kappa^4}{\kappa z \cdot M^2}$	
Единица напряженности электриче-	
ского поля 1 ${\it H}/{\kappa y}{\it A}=1$ ${\it B}/{\it M}$	
Единица индукции магнитного поля	
1 т (тесла) ($\approx 10^4 raycc$)	
$ig $ В частности, $arepsilon_0 \mu_0 = rac{1}{c^2} rac{{\scriptscriptstyle\mathcal{M}}^2}{ce\kappa^2}$	

Значения коэффициентов k_1 и k_2 :

Задача 2 Оценить силу магнитного притяжения двух проводов в шнуре электроутюга, полагая ток $I \sim 3 a$, расстояние между жилами $r \sim 2 \ \text{мм}$. <u>Ответ</u>: $F \sim 0.45 \ \text{н/м}$.

Задача 3 Оценить то же самое за счет электростатического взаимодействия.

 $\underline{\text{Otbet}}: F \sim 4 \cdot 10^{-5} \ \text{H/M}.$

Задача 4 Выразить в вольтах единицу напряжения CGSE.

1.2 Электростатика: электрическое поле.

Понятие электрического поля. Рассмотрим пробный заряд $e \to 0$ (настолько малый, что не влияет на движение других частиц) и, измеряя в каждой точке пространства действующую на него со стороны электрического поля силу $\vec{F}(\vec{r})$, определим векторную функцию

$$\vec{E}(\vec{r}) = \lim_{e \to 0} \frac{1}{e} \vec{F}(\vec{r}), \qquad (8)$$

называемою *напряженностью* электрического поля.

Эта функция не зависит от величины пробного заряда; зная ее, можно найти силу, действующую на любой заряд, помещенный в данную точку — при условии, что такой заряд достаточно мал, чтобы не повлиять на положение других зарядов. $\varPi pumep$: для точечного заряда q,исходя из закона Кулона, имеем

$$\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{eq\vec{R}}{R^3} \tag{9}$$

Соответственно, для напряженности электрического поля одиночного заряда получим

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q\vec{R}}{R^3} \tag{10}$$

Принцип суперпозиции. Электрическое поле для системы зарядов равно *векторной* сумме полей от каждого заряда:

$$\vec{E}_{(\sum q_i)}(\vec{r}) = \sum_i E_{q_i}(\vec{r}).$$
(11)

Это очень нетривиальное свойство называется принципом суперпозиции. Фактически оно означает, что

любое электростатическое поле может быть "набрано" как сумма полей точечных зарядов,

причем вклад от каждого точечного заряда в "общее" поле <u>не зависит</u> от наличия других зарядов и дается выражением (10). **Силовые линии**. Для описания векторного электрического поля удобно ввести т.н. *силовые линии*, таким образом, чтобы их плотность $\frac{dw}{dS}$ в любой точке равнялась нормальной к площадке $d\vec{S}$ компоненте напряженности электрического поля:

$$\frac{\mathrm{d}w}{\mathrm{d}S} = E_n,$$
 или $\mathrm{d}w = \vec{E}\mathrm{d}\vec{S}$ (12)

Потоком dw электрического поля называется количество силовых линий, пересекающих элемент поверхности dS.

Для точечного заряда поток

$$\mathrm{d}w = \frac{1}{4\pi\varepsilon_0} \frac{q\vec{R}\mathrm{d}\vec{S}}{R^3} = \frac{1}{4\pi\varepsilon_0} \frac{q\mathrm{d}S_R}{R^2} = \frac{q}{4\pi\varepsilon_0} \mathrm{d}\Omega \tag{13}$$

как и полный поток w,

 $w = q/\varepsilon_0$ (в системе СИ), $w = 4\pi q$ (в системе CGSE) (14)

<u>не зависит</u> от R.

Это обстоятельство порождает для системы зарядов весьма важную и крайне полезную *теорему Гаусса*, связывающую *поток электрического поля* через замкнутую поверхность *S* с *полным зарядом* внутри объема *V*, ограниченного поверхностьностью *S* (в системе СИ):

$$\oint_{S} \vec{E} \mathrm{d}\vec{S} = \frac{1}{\varepsilon_0} \int_{V} \rho \mathrm{d}V \tag{15}$$

(интегральная форма).

В *дифференциальной* форме это уравнение принимает вид (в системе СИ):

$$\operatorname{div} \vec{E} = \frac{1}{\varepsilon_0} \rho. \tag{16}$$

Соответствующие формулы в системе CGSE получаются заменой $\varepsilon_0 \to 1/4\pi$.

Замечание 1 Функция \vec{r}/r^3 по сути совпадает с умноженным на $4\pi\varepsilon_0$ электрическим полем (10) точечного единичного (q = 1)заряда. Прямое вычисление div \vec{r}/r^3 дает 0 при $r \neq 0$, что ожидаемо, т.к. плотность точечного заряда $\rho(r) = \delta(\vec{r})$ и отлична от нуля лишь в точке r = 0, где дивергенция не определена. Использование теоремы Гаусса 16 позволяет доопределить дивергенцию и в точке r = 0, как

$$\operatorname{div} \vec{r}/r^3 = \delta(\vec{r}) \tag{17}$$

В заключение подчеркнем важнейшие Свойства силовых линий электрического поля:

- 1. Начинаются и кончаются только на зарядах.
- 2. Не пересекаются.
- 3. Не замкнуты в случае статических полей.

На последнем свойстве мы подробнее остановимся ниже.

Задача 5 Используя принцип суперпозиции и результат (13), доказать теорему Гаусса (15).

Задача 6 Найти поле над бесконечной однородно заряженной плоскостью, σ -плотность заряда на единицу поверхности. <u>Ответ</u>: $\vec{E} = \sigma/2\varepsilon_0$.

Задача 7 Найти поле однородно заряженной нити с линейной плотностью заряда σ . <u>Ответ:</u> $\vec{E} = \sigma \vec{R} / 2\pi \varepsilon_0 R^2$.

Задача 8 Сфера радиуса *R* равномерно заряжена по поверхности, полный заряд равен *q*. Найти зависимость поля от радиуса внутри и снаружи сферы.

Задача 9 Шар радиуса *R* равномерно заряжен по объему, полный заряд равен *q*. Найти зависимость поля от радиуса внутри и снаружи шара.

Задача 10 Внутри шара радиуса R, равномерно заряженного по объему (плотность заряда ρ) имеется сферическая полость радиуса a. Центр полости смещен по отношению к центру шара на вектор \vec{b} так, что $|\vec{b}| + a < R$. Найти поле внутри полости.

Работа в электростатическом поле. Работа, совершаемая электрическим полем над зарядом *е* вдоль пути *l* равна

$$\mathcal{A} = \int_{l} \vec{F} d\vec{l} = e \int_{l} \vec{E} d\vec{l}.$$
 (18)

Поле называется *потенциальным*, если работа \mathcal{A} не зависит от пути l и определяется лишь начальным и конечным положением заряда e. Это эквивалентно утверждению, что работа в потенциальном поле по *любому замкнутому* пути равна нулю:

$$\mathcal{A} = \oint \vec{E} \mathrm{d}\vec{l} = 0. \tag{19}$$

Теорема Стокса позволяет получить дифференциальную форму этого уравнения:

$$\oint_{l} \vec{E} d\vec{l} = \int_{S} \operatorname{rot} \vec{E} d\vec{S} = 0 \Longrightarrow \operatorname{rot} \vec{E} = 0.$$
(20)

Потенциальность электрического поля точечного заряда легко проверить прямым вычислением величины rot \vec{E} :

Задача 11 Доказать, что электрическое поле точечного заряда (10) потенциально: $\operatorname{rot}(\vec{R}/R^3) = 0.$

Используя принцип суперпозиции, легко показать, что электростатическое поле, которое может быть "набрано" из полей **покоящихся** точечных зарядов, потенциально *всегда*.

Таким образом, уравнения электростатики в дифференциальной и интегральной форме принимают вид:

$$\begin{vmatrix} \operatorname{div} \vec{E} = \frac{1}{\varepsilon_0} \rho & \oint_S \vec{E} \mathrm{d}\vec{S} = \frac{1}{\varepsilon_0} \int_V \rho \mathrm{d}V \\ \operatorname{rot} \vec{E} = 0 & \oint_l \vec{E} \mathrm{d}\vec{l} = 0 \end{aligned}$$
(21)

1.3 Электростатика: скалярный потенциал.

В случае потенциального электрического поля можно ввести скалярную функцию — *скалярный потенциал* φ таким образом, что

$$\vec{E} \equiv -\nabla \varphi \equiv -\operatorname{grad} \varphi.$$
 (22)

В механике аналогичным образом вводится потенциальная энергия $U(\vec{r})$ — скалярная функция координат, градиент которой описывает силовое потенциальное поле $\vec{F} = -\vec{\nabla}U$. Разумеется, далеко не каждое силовое поле $\vec{F}(\vec{r})$ является потенциальным — необходимо, чтобы оно удовлетворяло условию потенциальности:

$$\oint \vec{F}(\vec{r}) \mathrm{d}\vec{r} = 0.$$
⁽²³⁾

Выше мы уже показали, что электростатическое поле этим свойством обладает. **Основные свойства электростатического потенциала** *φ*: 1. Принцип суперпозиции:

$$\varphi_{\sum q}(\vec{r}) = \sum_{q} \varphi_q(\vec{r}) \tag{24}$$

Потенциал системы зарядов равен сумме потенциалов, создаваемых каждым из зарядов.

- 2. Условие потенциальности электро<u>статического</u> поля выполнено автоматически: rot $\vec{E} = \nabla \times (-\nabla \varphi) \equiv 0$.
- 3. Теорема Гаусса приводит к уравнению Пуассона:

div
$$\vec{E} = \nabla(-\nabla\varphi) \equiv -\Delta\varphi = \frac{1}{\varepsilon_0}\rho \Longrightarrow \Delta\varphi = -\frac{1}{\varepsilon_0}\rho$$
 (25)

Таким образом, вместо двух уравнений Максвелла — причем, одного скалярного и одного <u>векторного</u>(!), мы получаем одно скалярное уравнение (25). Используя принцип суперпозиции и граничное условие на бесконечности: $\varphi(\infty) = 0$, легко получить общее решение

$$\varphi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} \mathrm{d}V' \tag{26}$$

Откуда для электрического поля имеем

$$\vec{E}(\vec{r}) = -\operatorname{grad}\varphi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r}\,')(\vec{r}-\vec{r}\,')}{|\vec{r}-\vec{r}\,'|^3} \mathrm{d}V' \qquad (27)$$

Таким образом, зная распределения зарядов, мы всегда можем вычислить по нему и потенциал $\varphi(\vec{r})$, и напряженность электрического поля $\vec{E}(\vec{r})$.
Полученный результат (26) может быть представлен в более элегантном виде, с использованием метода *функций Грина*. Вводя **функцию Грина** как

$$G(\vec{r}, \vec{r}') \equiv \frac{1}{4\pi\varepsilon_0} \frac{1}{|\vec{r} - \vec{r}'|}$$
(28)

можно выразить потенциал как результат линейного интегрального преобразования распределения плотности заряда, с ядром $G(\vec{r}, \vec{r'})$:

$$\varphi(\vec{r}) = \int G(\vec{r}, \vec{r}') \rho(\vec{r}') \mathrm{d}V'$$
(29)

С *математической точки зрения* это отражает свойство линейности уравнений электродинамики по отношению к источникам полей, в данном случае — распределению плотности зарядов. С физической точки зрения — это проявление уже упомянутого принципа суперпозиции для электрического поля. Введенная функция Грина (28) по сути является потенциалом $\varphi(\vec{r})$ единичного заряда, помещенного в точку \vec{r}' , а $\rho(\vec{r}')$ — плотность (единичных) зарядов в этой точке.

Замечание 2 Для точечного заряда $\rho(r) = e\delta(r)$, а потенциал $\varphi(r) = \frac{1}{4\pi\varepsilon_0}\frac{1}{r}$, откуда следует полезное математическое тождество: $\Delta(\frac{1}{r}) = -4\pi\delta(r)$.

Задача 12 Найти распределение потенциала и напряженности электрического поля, создаваемого равномерно заряженным толстым слоем толщиной *d*.

Задача 13 а) Найти распределение потенциала и напряженности электрического поля внутри и снаружи сферы радиуса R, равномерно заряженной по поверхности с плотностью заряда σ .

б) То же — для шара радиуса R, равномерно заряженного по объему с плотностью заряда ρ_0 .

Задача 14 Два заряда, равных по величине и противоположных по знаку находятся на расстоянии *a* друг от друга. Изобразить качественно картину силовых линий и линий постоянного потенциала.

1.4 Магнитостатика: магнитное поле.

Изучение силового поля, действующего на пробный электрический заряд, позволило ввести весьма полезное понятие напряженности электрического поля \vec{E} . К сожалению, буквально повторить подобное для магнитного поля нельзя — магнитных зарядов в природе не существует!

Тем не менее, проведенное Жаном Батистом Био и Феликсом Саваром в 1820 году экспериментальное изучение взаимодействия <u>двух токов</u> различной формы, позволило Пьеру Лапласу ввести понятие силового магнитного поля — **магнитной индукции** \vec{B} ; роль пробного заряда в данном случае по сути сыграл пробный контур с током. Детальный анализ эмпирических данных привел установлению эмпирической формулы, известной как закон *Био-Савара-Лапласа* (в системе СИ):

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} I \int_l \frac{\left[\mathrm{d}\vec{l'} \times \vec{R} \right]}{R^3}, \quad \vec{R} \equiv |\vec{r} - \vec{r'}| \tag{30}$$

Тогда, в соответствии с законом Ампера(7) сила, действующая на элемент пробного тока $I_{\rm II} d\vec{l} (cuna Amnepa)$ равна

$$\mathrm{d}\vec{F}_{\mathrm{II}} = I_{\mathrm{II}} \left[\mathrm{d}\vec{l} \times \vec{B} \right] \tag{31}$$

В системе CGSE:

$$\vec{B}(\vec{r}) = \frac{1}{c} I \int_{l} \frac{\left[\mathrm{d}\vec{l'} \times \vec{R} \right]}{R^{3}}, \quad \text{причем} \quad \mathrm{d}\vec{F}_{\mathrm{\Pi}} = \frac{1}{c} I_{\mathrm{\Pi}} \left[\mathrm{d}\vec{l} \times \vec{B} \right] \quad (32)$$

Обратим внимание на то, что определение \vec{B} в CGSE отличается от определения в СИ: в частности, в CGSE поля \vec{B} и \vec{E} имеют одинаковую размерность.

Принцип суперпозиции справедлив и для магнитных полей:

результирующее поле \vec{B} , создаваемое контуром l, равно векторной сумме полей от различных элементов $I_{\Pi} d\vec{l}$.

В свою очередь, рассматривая объемный ток как сумму линейных токов, можно (30) обобщить и на случай объемных токов:

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} I \int \frac{\left[\vec{j}(r') \times (\vec{r} - \vec{r}\,')\right]}{\left|\vec{r} - \vec{r}\,'\right|^3} \mathrm{d}V'.$$
(33)

Здесь $\vec{j}(r)$ – плотность объемного тока.

Аналогично тому, как это было сделано для электрического поля, для магнитного поля можно ввести понятие *магнитных силовых линий*, направленных в каждой точке вдоль вектора \vec{B} , с плотностью равной $\left| \vec{B} \right|$.

Так же, как и в случае электрического поля, они

а) непрерывны;

б) замкнуты.

Последнее есть следствие отсутствия в природе магнитных зарядов. Математически это выражается как

$$\oint_{S} \vec{B} \mathrm{d}\vec{S} = 0 \tag{34}$$

т.е. число силовых линий *входящих* внутрь объема, ограниченного поверхностью S равно числу линий *выходящих*.

или, в дифференциальной форме:

$$\operatorname{div} \vec{B} = 0. \tag{35}$$

Циркуляция статического магнитного поля, в отличии от случая статического электрического поля, при наличии тока отлична от нуля (*теорема Ампера* А.М. Ампер, 1826 г.):

$$\oint \vec{B} d\vec{l} \equiv \int_{S} d\vec{S} \operatorname{rot} \vec{B} = \mu_0 \int_{S} \vec{j} d\vec{S} = \mu_0 I \qquad (36)$$

(в системе СИ). В *дифференциальной* форме это уравнение приобретает вид:

$$\operatorname{rot} \vec{B} = \mu_0 \vec{j} \tag{37}$$

В системе CGSE имеем, соответственно

$$\operatorname{rot} \vec{B} = \frac{4\pi}{c} \vec{j} \tag{38}$$

Для описания магнитного поля \vec{B} можно ввести т.н. *векторный потенциал*:

$$\vec{B} = \operatorname{rot} \vec{A},$$

(39)

который, хотя и является (в отличии от электростатического потенциала!) векторной функцией, с плотностью тока связан значительно более простым образом, чем магнитное поле \vec{B} :

$$\vec{A}(r) = \frac{\mu_0}{4\pi} \int \frac{\vec{j}(\vec{r}\,')}{|\vec{r} - \vec{r}\,'|} \mathrm{d}V' \tag{40}$$

(ср. с (26)). Непосредственным вычислением нетрудно убедиться, что rot \vec{A} дает (33). Столь же легко убедиться, что вектор-потенциал \vec{A} (как и скалярный потенциал φ !) удовлетворяет **уравнению Пуассо**на:

$$\Delta \vec{A} = \frac{\mu_0}{4\pi} \int dV' \vec{j}(r') \Delta \left(\frac{1}{|\vec{r} - \vec{r'}|}\right) = \frac{\mu_0}{4\pi} \int dV' \vec{j}(r') \left(-4\pi\delta(\vec{r} - \vec{r'})\right) = -\mu_0 \vec{j} \qquad (41)$$

ИЛИ

$$\Delta \vec{A} = -\mu_0 \vec{j} \tag{42}$$

В отличии от уравнения Пуассона для скалярного потенциала φ (25), содержащего в правой части плотность зарядов $\rho(\vec{r})$, уравнение Пуассона для вектор-потенциала \vec{A} содержит плотность тока $\vec{j}(\vec{r})$

Задача 15 Найти вектор-потенциал \vec{A} для прямолинейного проводника током *I*.

Задача 16 Найти вектор-потенциал \vec{A} для кольцевого контура с током I.

Итак, уравнения, описывающие магнитное *статическое* поля принимают вид (в системе СИ):

$$\operatorname{div} \vec{B} = 0, \qquad \oint_{S} \vec{B} \mathrm{d} \vec{S} = 0; \qquad (43)$$
$$\operatorname{rot} \vec{B} = \mu_{0} \vec{j}, \qquad \oint_{l} \vec{B} \mathrm{d} \vec{l} = \mu_{0} \int \mathrm{d} \vec{S} \, \vec{j} \qquad (44)$$

Первая пара уравнений в дифференциальной и интегральной форме выражает факт отсутствия в природе магнитных зарядов, вторая пара дает связь магнитного поля с задающими его токами.

Для перехода в этих уравнениях к системе CGSE необходимо сделать замену $\mu_0 = 4\pi/c, B \to B/c.$ В заключение отметим также, что из *закона сохранения заряда* (5) также следует, что

в статическом случае <u>линии электрического тока</u> замкнуты: $\operatorname{div} \vec{j} = 0,$ (45)

т.к. заряд не накапливается

$$\partial \rho / \partial t = 0 \tag{46}$$

1.5 Поля, зависящие от времени, закон Фарадея, ток смещения.

До сих пор мы рассматривали лишь случай статических полей. В случае, когда состояние источников поля (зарядов и токов) меняется во времени, возникает ряд новых эффектов.

В 1831 году Майкл Фарадей обнаружил, что переменное магнитное поле может порождать т.н. *вихревое* (непотенциальное) электрическое поле, циркуляция которого отлична от нуля:

$$\oint_{l} \vec{E} d\vec{l} = -\frac{\partial}{\partial t} \int \vec{B} d\vec{S}$$
(47)

и пропорциональна изменению потока магнитного поля. В дифференциальной форме

$$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}.$$
(48)

В свою очередь, переменное *электрическое* поле порождает так называемый "*ток смещения*", введенный Дж. Максвеллом в 1865 г.

$$\operatorname{rot} \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} = \mu_0 (\vec{j} + \vec{j}_{\text{\tiny CM}})$$
(49)

где величина

$$\vec{j}_{\rm CM} = \varepsilon_0 \frac{\partial \vec{E}}{\partial t} = \frac{1}{\mu_0} (\mu_0 \varepsilon_0) \frac{\partial \vec{E}}{\partial t} = \frac{1}{\mu_0} \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$
(50)

интерпретировалась Максвеллом как *ток смещения* зарядов, составляющих т.н. *эфир* — по сути, прототип современного *физического вакуума*. Максвелл ввел "ток смещения", в частности, и для объяснения прохождения *переменного* тока через конденсатор, представляющий собою явный разрыв цепи по *постоянному току*.

Окончательно, полная система уравнений Максвелла принимает вид (в системе СИ):

$\operatorname{div} \vec{E} = \frac{1}{\varepsilon_0} \rho$	$\oint \vec{E} d\vec{S} = \frac{1}{\varepsilon_0} \int \rho dV$	
$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$\oint \vec{E} \mathrm{d} \vec{l} = -\frac{\partial}{\partial t} \int \vec{B} \mathrm{d} \vec{S}$	(51)
$\operatorname{div} \vec{B} = 0$	$\oint \vec{B} \mathrm{d}\vec{S} = 0$	(01)
$rot \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$	$\oint \vec{B} d\vec{l} = \int d\vec{S} \left(\mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \right)$	

1.6 Потенциалы в случае полей, зависящих от времени.

Появление у электрического поля *вихревой* составляющей в присутствии *переменного* магнитного поля означает, что вектор напряженности электрического поля \vec{E} <u>не может</u> быть сведен к *градиенту от скалярной функции*, т.е. не может выражаться <u>только</u> через скалярный потенциал φ .

В случае полей, зависящих от времени, связь электрического поля с потенциалами (скалярным и векторным) должна быть модифицирована.

Сформулируем основные требования, которым обязана удовлетворить искомая связь.

Очевидно, что она должна быть модифицирована за счет добавки, зависящей от векторного потенциала: именно векторпотенциал при наличии магнитного поля несомненно содержит требуемую ненулевую вихревую составляющую: rot $\vec{A} \neq 0$. В силу линейности электродинамики эта связь обязана быть линейной; кроме того, эта добавка должна исчезать в статическом пределе полей, не зависящих от времени.

Модификация этой связи в виде

$$\vec{E} = -\nabla\varphi - \frac{\partial\vec{A}}{\partial t} \tag{52}$$

вполне удовлетворяет всем перечисленным требованиям.

Связь магнитного поля с вектор-потенциалом остается при этом неизменной:

$$\vec{B} = \operatorname{rot} \vec{A} \tag{53}$$

Легко убедиться, что уравнения Максвелла, не содержащие источников выполняются при этом автоматически:

$$\operatorname{rot} \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0 \tag{54}$$

$$\operatorname{div} \vec{B} = 0, \tag{55}$$

в силу математических тождеств:

$$\operatorname{rot}\operatorname{grad}(\ldots) \equiv 0,$$
$$\operatorname{div}\operatorname{rot}(\ldots) \equiv 0.$$

При подстановке потенциалов в оставшиеся два уравнения Максвелла получим:

$$\Delta \varphi + \frac{\partial}{\partial t} \operatorname{div} \vec{A} = -\frac{1}{\varepsilon_0} \rho \tag{56}$$

$$\Delta \vec{A} - \frac{1}{c^2} \frac{\partial^2 A}{\partial t^2} = -\mu_0 \vec{j} + \vec{\nabla} \left(\operatorname{div} \vec{A} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} \right)$$
(57)

Эти уравнения можно упростить, используя неоднозначность потенциалов, определяемых соотношениями $\vec{E} = -\nabla \varphi - \frac{\partial \vec{A}}{\partial t}$ и $\vec{B} = \operatorname{rot} \vec{A}$ (см. (53),(52)):

электрическое поле \vec{E} и магнитное поле \vec{B} остаются неизменными (инвариантными) при преобразовании

$$\vec{A} \rightarrow \vec{A} + \operatorname{grad} f(\vec{r}, t)$$
 (58)

$$\varphi \rightarrow \varphi - \frac{\partial}{\partial t} f(\vec{r}, t)$$
 (59)

Это свойство называется калибровочной инвариантностью уравнений электродинамики (уравнений Максвелла), а соотношения (58),(59) — калибровочными преобразованиями потенциалов. Неоднозначность в выборе потенциалов можно устранить, например, накладывая дополнительное условие, называемое *ка-либровочным условием Лоренца* или *лоренцевской ка-либровкой*:

$$\operatorname{div} \vec{A} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} = 0.$$
 (60)

Замечание 3 Возможны и другие условия, наиболее популярными из которых являются:

$$\operatorname{div} \vec{A} = 0 \tag{61}$$

(кулоновская калибровка), и

$$\varphi = 0 \tag{62}$$

(гамильтонова калибровка).

В лоренцевской калибровке уравнения для потенциалов (56),(57) в **системе СИ** принимают вид

$$\frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} - \Delta \varphi = \Box \varphi = \frac{1}{\varepsilon_0} \rho$$

$$\frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} - \Delta \vec{A} = \Box \vec{A} = \mu_0 \vec{j}$$
(63)
(64)

Эти уравнения называются **уравнениями Даламбера**, а дифференциальный оператор

$$\Box \equiv \frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \Delta \tag{65}$$

называется оператором Даламбера.

Соответствующие уравнения в системе CGSE получаются заменой $\varepsilon_0 \to 1/4\pi, \, \mu_0 \to 4\pi/c^2, \, \vec{A} \to \vec{A}/c$:

$$\frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} - \Delta \varphi = 4\pi\rho$$
$$\frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} - \Delta \vec{A} = \frac{4\pi}{c} \vec{j}$$

причем φ и \vec{A} в этой системе оказываются одной и той же размерности!

В следующем разделе мы увидим, что данная запись уравнений классической электродинамики явным образом подчеркивает ее *релятивистскую ковариантность*.

Другими словами, запись уравнений Максвелла в данной форме отражает тот замечательный факт, что появившиеся в 1884 году уравнения Максвелла в ныне принятой форме² (усилиями Хевисайда, Герца и Гибсса) уже "знали" о релятивистской природе окружающего нас мира — и это более, чем за 20 лет до создания Альбертом Эйнштейном специальной теории относительности!

²Строго говоря, теория классической электродинамики была сформулирована Максвеллом еще в 1864 году, в его знаменитом трактате "Динамическая теория электромагнитного поля" ("A dynamical theory of the electromagnetic field", еще за двадцать лет до того, как она была перефомулирована в ныне привычной форме.)

- 2 Релятивистская ковариантность классической электродинамики.
- 2.1 Основы специальной теории относительности.
- 2.1.1 Основные постулаты.
 - Все *инерциальные* системы отсчета движущиеся с *постоянной* относительной скоростью – *равноправны*.
 - Существует *максимально возможная скорость* и она равна скорости света:

$$c = 2.99793 \cdot 10^8 \,\mathrm{M/cek.}$$
 (66)

Принцип относительности:

все законы природы одинаковы

во всех *инерциальных* системах отсчета

Каждое событие характеризуется точкой (t, x, y, z) в 4-*мерном* пространстве-времени, где (x, y, z) – его пространственное положение, а t – соответствующий ему момент времени.

Понятие интервала. Рассмотрим два события, связанные <u>световым сигналом</u> и отвечающие во времени и пространстве двум точкам (t_1, x_1, y_1, z_1) и (t_2, x_2, y_2, z_2) . Первая точка соответствует испусканию светового сигнала, а вторая – его peruстрации. Тогда из

равенства скорости света во всех инерциальных системах отсчета $o\partial homy$ и тому же универсальному значению c

легко убедиться, что величина s_{21} , построенная как

$$(s_{21})^2 = c^2 (t_2 - t_1)^2 - (x_2 - x_1)^2 - (y_2 - y_1)^2 - (z_2 - z_1)^2 = 0 \quad (67)$$

в этих системах **инвариантна** (и в данном случае равна нулю !). А что будет, если взять два *произвольных* события? Справедливо *общее* утверждение:

Для любой пары событий (t_1, x_1, y_1, z_1) и (t_2, x_2, y_2, z_2) величина s_{21} , определяемая как

$$(s_{21})^2 = c^2 (t_2 - t_1)^2 - (x_2 - x_1)^2 - (y_2 - y_1)^2 - (z_2 - z_1)^2$$
(68)

и называемая **интервалом**, *также инвариантна* во всех (инерциальных) системах отсчета.

Это очень нетривиальное утверждение, имеющее далеко идущие последствия.

В самом деле, в *разных* (инерциальных) системах отсчета каждое из событий будет описываться *разными* наборами четверок (t, x, y, z), характеризующих *время* и *положение* события в пространстве.

Для *пары* событий пространственные расстояния между событиями из этой пары *могут быть разными*: например, если в одной из систем отсчета (обозначим ее A) события произошли в одной и той же пространственной точке, то в системе отсчета, движущейся относительно такой системы со скоростью V (обозначим ее B) расстояние между событиями будет равно $l = V\Delta t_B$, где Δt_B — время, разделяющее эту пару событий в системе B.

Из инвариантности интервала (68) по отношению к системам A и B немедленно следует, что и время, разделяющее эти два события в системе A, будет другим:

$$(\Delta t_A)^2 = (\Delta t_B)^2 - l^2/c^2 < (\Delta t_B)^2$$
(69)

Другими словами, это означает — в отличии от *принципа от*носительности Галилея (!), что

время, разделяющее два события, инвариантом не является и зависит от выбора системы отсчета.

2.1.2 Геометрическая интерпретация.

Инвариантность интервала имеет простую геометрическую интерпретацию, если предположить, что и *временная*, и 3 *пространственные* переменные нашего мира являются компонентами 4-мерного <u>псевдо</u>евклидового ³ векторного пространства.

Определенный выше *интервал* приобретает в таком случае смысл *расстояния* между двумя точками в *псевдоэвклидовом пространственно-временном континууме*.

Каждое тело совершает в этом пространстве движение по некоторой траектории, называемой *мировой линией*.

³В евклидовом пространстве квадрат меры (расстояния) равен положительно определенной сумме квадратов разностей координат. В псевдоевклидовом пространстве в квадрат меры квадраты разностей координат могут входить с произвольными знаками; числа квадратов входящих со знаком (+) и знаком (-) определяют сигнатуру псевдоевклидова пространства. В нашем случае сигнатура равна (1,3).

Даже покоящееся в некоторой системе отсчета тело движется во времени; очевидно, что в других системах отсчета (отвечающих повороту 4-мерной системы координат) такое движение получит и пространственные составляющие.

Переход от одной инерциальной системы отсчета к другой в рамках геометрической картины интерпретируется как *поворот системы координат* в этом пространстве — очевидно, что расстояние между точками от такого поворота системы координат изменяться не должно.

Важная особенность псевдоевклидова пространства состоит в том, что знак квадрата интервала s²₁₂ может быть как *положительным*, так и *отрицательным*. В силу инвариантности интервала инвариантом является и этот знак - соответственно, пары любых событий распадаются на две *инвариантные* группы:

а)пары, для которых $s_{12}^2 > 0$, б) пары, для которых $s_{12}^2 < 0$. В случае, когда для двух событий $s_{12}^2 > 0$, возможен такой поворот системы координат, что оба события окажутся *в одной и той же пространственной точке*, разделенные лишь временным интервалом. В этом случае говорят о **времениподобном** интервале между событиями.

Очевидно, что любые две точки, лежащие на одной *мировой линии* всегда разделены *времениподобным* интервалом — чтобы в этом убедиться, достаточно перейти в систему отсчета, в которой рассматриваемое тело покоится.

Все причинно-связанные события отвечают $s_{12}^2 \ge 0$, причем знак равенства достигается, например, для событий, связанных световым сигналом.

Для двух событий возможно также, что $s_{12}^2 < 0$, — в этом случае, очевидно, не существует такого выбора системы отсчета (поворота системы координат), при котором события будут разделены лишь во времени, однако возможен такой поворот, при котором они станут *одновременными* и будут разделены лишь пространственно. Такой интервал называют *пространствен-ноподобным*.

Очевидно, что пространственноподобные события не могут быть причинно связанными, т.к. воздействие причины на следствие должно в таком случае передаваться с мгновенной скоростью, что противоречит основному постулату о существовании *предельной скорости, равной скорости света*.

2.1.3 Собственное время, парадокс близнецов.

Пусть космонавт, находящийся на космическом корабле, измеряет отрезок времени $\Delta \tau$. Интервал между началом и концом этого отрезка, равный в системе покоя корабля

$$(\Delta s)^2 = c^2 (\Delta \tau)^2, \tag{70}$$

равен интервалу, измеренному в лабораторной системе, относительно которой корабль летит со скоростью *v*:

$$c^{2}(\Delta \tau)^{2} = c^{2}(\Delta t)^{2} - (\Delta x)^{2},$$
 (71)

где Δt — время, прошедшее между началом и концом измерения с точки зрения лабораторного наблюдателя, и $\Delta x = v \cdot \Delta t$ — соответствующее расстояние, пролетаемое космическим кораблем за этот период времени. Тогда

$$\Delta \tau = \Delta t \sqrt{1 - (\Delta x/c \cdot \Delta t)^2} = \Delta t \sqrt{1 - (v/c)^2} = \Delta t \sqrt{1 - \beta^2}$$
(72)

где $\beta \equiv v/c$. Тем самым в лабораторной системе соответствующее время между событиями равно

$$\Delta t = \Delta \tau \gamma, \qquad \gamma \equiv \frac{1}{\sqrt{1 - \beta^2}} > 1,$$
(73)

т.е. движущиеся часы идут медленнее. Время в системе покоя часов (т.е. в системе, где рассматриваемые события происходят в одной и той же пространственной точке) называется собственным временем.

Собственное время в силу (71) с точностью до множителя *с* совпадает с интервалом и поэтому является релятивистским инвариантом. Собственное время всегда меньше времени, прошедшего с точки зрения наблюдателя, движущегося относительно рассматриваемых событий. Это лежит в основе известного "*парадокса близнецов*": близнец, путешествующий на космическом корабле с околосветовой скоростью, после своего возвращения окажется значительно более молодым, чем его брат, остававшийся на Земле.

Замечание 4 На первый взгляд, парадокс близнецов нарушает принцип эквивалентности различных систем отсчета. В действительности, принцип эквивалентности относится лишь к инерциальным системам отсчета, тогда как близнец-путешественник движется *неинерциально*: для того, чтобы вернуться на Землю, он должен менять и скорость, и направление своего движения.

Задача 17 Один близнец движется с постоянной скоростью v_1 , другой покоится. Потом, через время t_0 второй начинает движение со скоростью $v_2 > v_1$. По чьим часам к моменту встречи пройдет больше времени?
2.1.4 Релятивистское сокращение длины.

Пусть линейка движется в продольном направлении (вдоль своей длины) со скоростью $v \parallel x$, и в начальный момент времени t = 0 ее передний конец находится в точке x = 0. Задний конец линейки окажется в точке x = 0 в момент t = l'/v, где l'— длина линейки, *видимая* в лабораторной системе, а соответствующий интервал между двумя событиями

$$s^2 = c^2 t^2 = c^2 l'^2 / v^2.$$

В системе, движущейся вместе с линейкой (в которой линейка покоится), эти события разделены промежутком времени

$$\tau = l_0/v$$

 $(l_0 - длина линейки в системе ее покоя) и пространственным промежутком <math>l_0$, что отвечает интервалу

$$s^{2} = c^{2}\tau^{2} - l_{0}^{2} = l_{0}^{2}(c^{2}/v^{2} - 1).$$

Сравнивая оба интервала, имеем

$$l' = l_0 \sqrt{1 - (v/c)^2} = l_0 / \gamma \tag{74}$$

т.е. движущееся тело сокращается в продольном направлении в γ раз!

Легко сообразить, что *поперечные* размеры тела остаются при этом неизменными.

2.1.5 Поворот в псевдоевклидовой плоскости (x, ct). Преобразования Лоренца

Как известно, преобразования поворота в евклидовой плоскости

$$x' = x \cos \alpha - y \sin \alpha$$
$$y' = y \cos \alpha + x \sin \alpha$$

сохраняют инвариантной длину, квадрат которой определен как $r^2 = x^2 + y^2 = x'^2 + y'^2 = r'^2.$

В *псевдоевклидовой* плоскости (x, ct) при преобразованиях поворота

$$\begin{aligned}
x' &= x \operatorname{ch} \eta - ct \operatorname{sh} \eta \\
ct' &= ct \operatorname{ch} \eta - x \operatorname{sh} \eta
\end{aligned}$$
(75)

(как нетрудно убедиться прямой подстановкой) инвариантным остается *интервал*, квадрат которого определен как

$$s^2 = c^2 t^2 - x^2 = c^2 t'^2 - x'^2$$

Выясним теперь физический смысл параметра η . Пусть координата x = 0, т.е. в системе отсчета связанной с координатами x, t тело покоится в точке x = 0. Тогда в системе отсчета, связанной с координатами x', ct', имеем $x' = -ct \operatorname{sh} \eta$ и $t' = t \operatorname{ch} \eta$, откуда $x'/t' = -c \operatorname{th} \eta$. Другими словами, в системе x', t' тело движется с постоянной скоростью

$$v' = -c \operatorname{th} \eta, \tag{76}$$

поскольку $x' = -ct' \cdot \operatorname{th} \eta \equiv -t' \cdot v'.$

Таким образом, поворот в плоскости (x, ct) на угол η эквивалентен переходу в систему отсчета (x', ct'), двигающуюся относительно системы(x, ct) со скоростью $V = -v' = c \operatorname{th} \eta$

Как и обычные повороты в евклидовом пространстве, неевклидовы повороты в плоскости (*x*, *ct*) аддитивны:

$$(x, ct) \xrightarrow{\eta_1} (x', ct') \xrightarrow{\eta_2} (x'', ct'') \equiv (x, ct) \xrightarrow{\eta_1 + \eta_2} (x'', ct'')$$
(77)

Далее, выражая параметр η через скорость v, получим

$$\operatorname{ch} \eta = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \equiv \gamma, \qquad \operatorname{sh} \eta = \frac{\frac{v}{c}}{\sqrt{1 - \frac{v^2}{c^2}}} \equiv \gamma \frac{v}{c} \qquad (78)$$

в результате чего преобразования (75) примут вид

$$x' = \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}}, \qquad t' = \frac{t - \frac{v}{c^2}x}{\sqrt{1 - \frac{v^2}{c^2}}}.$$
(79)

В этом виде они известны как *преобразования Лоренца*, описывающие преобразования координат и времени в случае, когда одна система отсчета движется относительно другой вдоль оси x со скоростью v. Координаты y, z, перпендикулярные направлению движения остаются инвариантными.

Задача 18 Используя преобразования Лоренца, получить: а) релятивистское замедление времени (73) и б) релятивистское сокращение длины (74). Задача 19 Используя (77), получить релятивистский закон сложения скоростей.

<u>Решение:</u> Пусть тело покоится в системе (x, ct). В системе (x', ct'), повернутой относительно (x, ct) на угол η_1 оно движется со скоростью $v_1 = c \, \text{th} \, \eta_1$. Перейдем теперь в систему (x'', ct''), повернутую относительно системы (x', ct') на угол η_2 ; в ней система (x', ct') движется со скоростью $v_2 = c \, \text{th} \, \eta_2$, а тело — с соответствующей "суммарной" скоростью

$$V = c \operatorname{th}(\eta_1 + \eta_2) = c \frac{\operatorname{sh}(\eta_1 + \eta_2)}{\operatorname{ch}(\eta_1 + \eta_2)} = c \frac{\operatorname{sh} \eta_1 \operatorname{ch} \eta_2 + \operatorname{ch} \eta_1 \operatorname{sh} \eta_2}{\operatorname{ch} \eta_1 \operatorname{ch} \eta_2 + \operatorname{sh} \eta_1 \operatorname{sh} \eta_2} = \frac{v_1 + v_2}{1 + \frac{v_1 v_2}{c^2}}$$
(80)

2.2 Ковариантная фомулировка СТО: скаляры и вектора в 4-мерном пространствевремени Минковского.

2.2.1 Законы преобразования при поворотах.

В обычном 3-мерном пространстве геометрические объекты классифицируются по отношению к преобразованиям поворота как

- а) скаляры, остающиеся неизменными при поворотах,
- b) вектора A_i , преобразующиеся как соответствующие компоненты радиус-вектора x_i ,
- c) тензоры ранга $m A_{i_1...i_m}$ преобразующиеся как произведения $x_{i_1}...x_{i_m}$.

Аналогично в 4-мерном пространстве-времени Минковского объекты могут быть классифицированы по отношению к преобразованиям, включающим в себя обычные повороты и преобразования Лоренца:

- а) релятивистский (лоренцевский) скаляр. Примером является интервал и любая функция от него — и то, и другое инвариантно по определению;
- b) релятивистский 4-вектор $x^{\mu} \equiv (x^0, x^1, x^2, x^3) = (ct, x, y, z) = (x^0, \vec{x}) = (ct, \vec{r})$. Компоненты любого 4-вектора A^{μ} должны преобразовываться по тем же правилам, что и компоненты 4-вектора x^{μ} :

$$A^{\prime 0} = \frac{A^0 - \beta A^1}{\sqrt{1 - \beta^2}}, A^{\prime 1} = \frac{A^1 - \beta A^0}{\sqrt{1 - \beta^2}}, A^{\prime 2} = A^2, A^{\prime 3} = A^3 \quad (81)$$

Примером 4-вектора является также 4-скорость

$$u^{\mu} = c \frac{\mathrm{d}x^{\mu}}{\mathrm{d}s},\tag{82}$$

где ds = cd $\tau = c\sqrt{1 - \beta^2}$ dt.

4-скорость выражается через 3-скорость, как $u^{\mu} = \gamma \frac{dx^{\mu}}{dt} = (\gamma c, \gamma \vec{v})$, но преобразования Лоренца для 3-скорости — **релятивистский закон сложения скоростей** — выглядят несколько сложнее:

пусть космический корабль движется относительно наблюдателя со скоростью V, и пусть \vec{v}' – скорость тела относительно космического корабля, тогда \vec{v} – "суммарная" скорость тела относительно наблюдателя

$$v_{\parallel} = \frac{v_{\parallel}' + V}{1 + (\vec{v}_{\parallel}\vec{V})/c^2}, \quad \vec{v}_{\perp} = \frac{\vec{v}_{\perp} \,'\sqrt{1 - V^2/c^2}}{1 + (\vec{v}_{\parallel}\vec{V})/c^2} \tag{83}$$

Легко видеть, что она никогда не превышает скорости света.

2.2.2 Скалярное произведение 4-векторов, метрический тензор.

Обобщая определение интервала, как скалярное произведение радиус-вектора с самим собой, для двух различных 4-векторов A^{μ} и B^{μ} его следует определить как разность произведения временных компонент и скалярного произведения трехмерных векторов, отвечающих пространственным компонентам:

$$A^{0}B^{0} - (A^{1}B^{1} + A^{2}B^{2} + A^{3}B^{3}).$$
(84)

Удобно для каждого 4-вектора ввести два эквивалентных определения. Первое из них, называемое контравариантным (фактически оно было уже использовано выше) строится из временной A^0 и пространственных компонент $\vec{A} = (A_x, A_y, A_z)$ как

$$A^{\mu} = (A^0, \vec{A}), \tag{85}$$

тогда как определение *ковариантного* вектора A_{μ} отличается знаком пространственных компонент:

$$A_{\mu} = (A^0, -\vec{A}) \tag{86}$$

В обозначениях эти определения отличаются положением индекса: индекс сверху обозначает контравариантный вектор и называется контравариантным индексом, а индекс снизу обозначает ковариантный вектор и называется соответственно ковариантным. Тогда скалярное произведение (84) может быть записано как

$$A^{\mu}B_{\mu} = A_{\mu}B^{\mu}, \qquad (87)$$

где также подразумевается суммирование по паре повторяющихся индексов: $A^{\mu}B_{\mu} \equiv \sum_{\mu=0}^{3} A^{\mu}B_{\mu}$.

Использование контравариантного и ковариантного *метрического тензора*

$$g^{\mu\nu} = g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

дает другой, эквивалентный способ записи скалярного произведения

$$A^{\mu}B_{\mu} = A^{\mu}B^{\nu}g_{\mu\nu} = A_{\mu}B_{\nu}g^{\mu\nu}$$
(88)

Фактически роль метрического тензора сводится к "опусканию"

и "подниманию" индекса:

$$A^{\mu} = g^{\mu\nu} A_{\nu}, \quad A_{\mu} = g_{\mu\nu} A^{\nu} \tag{89}$$

Задача 20 Показать, что для 4-скорости u^{μ} скалярное произведение $u^{\mu}u_{\mu} = 1$.

2.2.3 4-градиент и 4-вектор энергии-импульса.

Вектор 4-градиента строится обычным образом:

$$\frac{\partial}{\partial x^{\mu}} = \left(\frac{1}{c}\frac{\partial}{\partial t}, \vec{\nabla}\right) \equiv \partial_{\mu}, \quad \frac{\partial}{\partial x_{\mu}} = \left(\frac{1}{c}\frac{\partial}{\partial t}, -\vec{\nabla}\right) \equiv \partial^{\mu} \qquad (90)$$

Следует подчеркнуть, что

дифференцирование по <u>контра</u>вариантному вектору дает <u>ко</u>вариантный вектор

и, наоборот:

дифференцирование по <u>ко</u>вариантному вектору дает <u>контра</u>вариантный вектор.

4-вектор энергии-импульса определен как

$$p^{\mu} = (E, c\vec{p}) \equiv (\gamma mc^2, \gamma mc\vec{v})$$
(91)

Отметим, что

хотя энергия E - скаляр по отношению к 3-мерным (пространственным) поворотам, по отношению к преобразованиям Лоренца она неинвариантна, т.к. является временной компонентой 4-вектора энергииимпульса.

Задача 21 Показать, что $p^{\mu}p_{\mu} = m^2 c^4$.

2.3 Релятивистская ковариантность классической электродинамики.

Различные представления уравнений Максвелла (дифференциальное и интегральное) связывают между собою напряженности полей \vec{E}, \vec{H} и порождающие их источники – плотности зарядов и токов ρ, \vec{j} . Однако непосредственно из этих уравнений увидеть релятивистскую ковариантность классической электродинамики непросто. Не менее важная задача — установить правильные преобразования соответствующих величин в зависимости от системы отсчета.

2.3.1 4-вектор тока, уравнение непрерывности.

Проще всего начать с изучения законов преобразования для источников.

Пусть в покоящейся системе плотность зарядов равна ρ_0 . В системе, движущейся со скоростью v, соответствующий элемент объема V_0 сокращается в продольном (вдоль скорости) направлении в γ раз:

$$V = V_0 / \gamma,$$

поэтому соответствующая плотность заряда

$$\rho = \rho_0 \cdot \gamma, \tag{92}$$

т.к. полный заряд инвариантен: $\rho V = \rho_0 V_0$.

Соответственно, для плотности тока получим

$$\vec{j} = \rho_0 \gamma \vec{v} \tag{93}$$

Вспоминая, что 4-вектор скорости имеет вид $u^{\mu} = (c\gamma, \vec{v}\gamma)$, легко сообразить, что и комбинация $j^{\mu} = (\rho c, \vec{j})$ также является 4-вектором, т.к.

$$j^{\mu} = \rho_0 u^{\mu} \tag{94}$$

С учетом этого закон сохранения заряда (5) – уравнение непрерывности — легко записывается в ковариантной форме:

$$\frac{\partial \rho}{\partial t} + \operatorname{div} \vec{j} = \partial_{\mu} j^{\mu} = 0 \tag{95}$$

По существу левая часть уравнения представляет собой 4-дивергенцию 4-вектора тока (94) – т.е. скалярное произведение 4-векторов ∂^{μ} и j^{μ} и является при этом релятивистским скаляром.

2.3.2 4-мерный вектор-потенциал A^{μ} .

Покажем, что комбинация

$$A^{\mu} = (\varphi/c, \vec{A}), \tag{96}$$

где φ и \vec{A} скалярный и векторный потенциалы, определенные соотношениями (52) и (53), соответственно, образует **4-мерный** вектор-потенциал.

Действительно, определение (96) позволяет уравнения Даламбера для скалярного потенциала φ (63) и векторного потенциала \vec{A} (64) записать в виде одного уравнения (в системе СИ)

$$\Box A^{\mu} = \mu_0 j^{\mu} \tag{97}$$

(где использовано $\rho/\varepsilon_0 c = \rho c/\varepsilon_0 c^2 = \mu_0 \rho c$). Оператор Даламбера в 4-мерной записи представляет собой скалярный оператор $\Box \equiv \partial_\mu \partial^\mu$, и действие им на A^μ может дать 4-вектор $\mu_0 j^\mu$ лишь при условии, что A^μ является 4-вектором. Уравнения Даламбера (63),(64) справедливы, если на потенциалы наложено условие лоренцевской калибровки (60), которое (в свою очередь!) в 4-мерных обозначениях обретает смысл равенства нулю 4-мерной дивергенции от A^{μ} :

$$\operatorname{div} \vec{A} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} = \partial_{\mu} A^{\mu} = 0.$$
(98)

Калибровочные преобразования (58),(59) в этих же обозначениях принимают вид

$$A^{\mu} \to A^{\mu} + \partial^{\mu} f \tag{99}$$

2.3.3 4-мерное представление для напряженностей полей.

Поля \vec{E} и \vec{B} связаны с потенциалами φ и \vec{A} как

$$\vec{E} = -\nabla \varphi - \frac{\partial \vec{A}}{\partial t}, \quad \vec{B} = \operatorname{rot} \vec{A},$$

или в покомпонентной записи

$$\begin{array}{c|c|c}
E_x &= -\partial_x \varphi - \partial_t A_x & H_x = \partial_y A_z - \partial_z A_y \\
E_y &= -\partial_y \varphi - \partial_t A_y & H_y = \partial_z A_x - \partial_x A_z \\
E_z &= -\partial_z \varphi - \partial_t A_z & H_z = \partial_x A_y - \partial_y A_x
\end{array} (100)$$

Вычисляя антисимметричный тензор $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$ и сравнивая его компоненты с (100), легко увидеть, что

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} = \begin{pmatrix} 0 & \frac{1}{c}\frac{\partial A_{x}}{\partial t} + \frac{1}{c}\frac{\partial \varphi}{\partial x} & \frac{1}{c}\frac{\partial A_{y}}{\partial t} + \frac{1}{c}\frac{\partial \varphi}{\partial y} & \frac{1}{c}\frac{\partial A_{z}}{\partial t} + \frac{1}{c}\frac{\partial \varphi}{\partial z} \\ -\frac{1}{c}\frac{\partial A_{x}}{\partial t} - \frac{1}{c}\frac{\partial \varphi}{\partial x} & 0 & -\frac{\partial A_{y}}{\partial x} + \frac{\partial A_{x}}{\partial y} & -\frac{\partial A_{z}}{\partial x} + \frac{\partial A_{z}}{\partial z} \\ -\frac{1}{c}\frac{\partial A_{z}}{\partial t} - \frac{1}{c}\frac{\partial \varphi}{\partial z} & \frac{\partial A_{z}}{\partial x} - \frac{\partial A_{x}}{\partial z} & \frac{\partial A_{y}}{\partial z} - \frac{\partial A_{z}}{\partial y} & 0 \end{pmatrix} = \\ = \begin{pmatrix} 0 & -\frac{1}{c}E_{x} & -\frac{1}{c}E_{y} & -\frac{1}{c}E_{z} \\ \frac{1}{c}E_{x} & 0 & -B_{z} & B_{y} \\ \frac{1}{c}E_{z} & -B_{y} & B_{x} & 0 \end{pmatrix} = -F^{\nu\mu}. \quad (101)$$

Тензор $F^{\mu\nu}$ называется *тензором электромагнитного по*ля. Используя лоренцевскую калибровку (98) и уравнение Даламбера (97) и вычисляя 4-дивергенцию тензора $F^{\mu\nu}$:

$$\partial_{\mu}F^{\mu\nu} = \underbrace{\partial_{\mu}\partial^{\mu}A^{\nu}}_{\Box A^{\nu}} - \partial_{\mu}\partial^{\nu}A^{\mu} = \Box A^{\nu} - \partial^{\nu}\underbrace{\partial_{\mu}A^{\mu}}_{=0} = \mu_{0}j^{\nu}$$

получим уравнения Максвелла в ковариантной 4-мерной записи:

$$\partial_{\mu}F^{\mu\nu} = \mu_0 j^{\nu}. \tag{102}$$

Задача 22 Доказать, что тензор $F^{\mu\nu}$ калибровочно инвариантен.

Поскольку и левая, и правая часть уравнения (102) калибровочно инвариантны, это уравнение справедливо в любой калибровке, а не только в лоренцевской, в которой оно было получено.

Уравнения Максвелла (51) представляют собой систему из 8-ми *независимых* уравнений, тогда как в (102) содержится лишь 4 независимых уравнения, а именно:

div
$$\vec{E} = \frac{1}{\varepsilon_0}\rho$$
, rot $\vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$.

Где же остальные четыре:

rot
$$\vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
, div $\vec{B} = 0$?

Эти уравнения содержатся в тождестве Бьянки:

$$C^{\lambda\mu\nu} \equiv \partial^{\lambda}F^{\mu\nu} + \partial^{\nu}F^{\lambda\mu} + \partial^{\mu}F^{\nu\lambda} = 0.$$
 (103)

Задача 23 Прямым вычислением доказать тождество (103), пользуясь определением $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$.

Задача 24 Используя антисимметричность $C^{\lambda\mu\nu}$ по любой паре индексов, доказать, что тождество (103) представляет собой 4 независимых уравнения.

2.3.4 Преобразования Лоренца для потенциалов и полей.

Напомним преобразования Лоренца (81) для координат \vec{x} и времени t:

$$t' = \gamma (t - \frac{1}{c^2} \vec{v} \vec{x}_{\parallel}) \tag{104}$$

$$\vec{x}'_{\parallel} = \gamma(\vec{x}_{\parallel} - \vec{v}t) \tag{105}$$

$$\vec{x}'_{\perp} = \vec{x}_{\perp}. \tag{106}$$

Поскольку потенциалы φ и \vec{A} представляют собой компоненты 4-вектора $A_{\mu} \equiv (\varphi/c, \vec{A})$ (96), они преобразуются аналогичным стандартным образом :

$$\varphi' = \gamma(\varphi - \vec{v}\vec{A}_{\parallel}), \qquad (107)$$

$$\vec{A}'_{\parallel} = \gamma (\vec{A}_{\parallel} - \frac{\vec{v}}{c^2} \varphi), \qquad (108)$$

$$\vec{A}'_{\perp} = \vec{A}_{\perp}. \tag{109}$$

Напряженности полей являются компонентами 4-мерного тензора второго ранга

$$F^{\mu\nu} = \begin{pmatrix} 0 & -\frac{1}{c}E_x & -\frac{1}{c}E_y & -\frac{1}{c}E_z \\ \frac{1}{c}E_x & 0 & -B_z & B_y \\ \frac{1}{c}E_y & B_z & 0 & -B_x \\ \frac{1}{c}E_z & -B_y & B_x & 0 \end{pmatrix}.$$
 (110)

и преобразуются как произведение соответствующих компонент 4-вектора. В 3-мерной записи эти преобразования принимают вид:

$$\begin{cases} \vec{E}'_{\parallel} = \vec{E}_{\parallel}, & \vec{E}'_{\perp} = \gamma(\vec{E}_{\perp} + [\vec{v} \times \vec{B}]) \\ \vec{B}'_{\parallel} = \vec{B}_{\parallel}, & \vec{B}'_{\perp} = \gamma(\vec{B}_{\perp} - \frac{1}{c^2}[\vec{v} \times \vec{E}]) \end{cases}$$
(111)

В нерелятивистском пределе $(v \ll c)$

$$\vec{E}'_{\perp} = \vec{E}_{\perp} + [\vec{v} \times \vec{B}], \qquad \vec{B}'_{\perp} = \vec{B}_{\perp} - \frac{1}{c^2} [\vec{v} \times \vec{E}]$$

Задача 25 Объяснить, почему продольные компоненты поля остаются инвариантными: $\vec{E}'_{\parallel} = \vec{E}_{\parallel}$ и $\vec{B}'_{\parallel} = \vec{B}_{\parallel}$.

2.3.5 Инварианты поля.

Используя тензор $F^{\mu\nu}$ универсальный абсолютно антисимметричный тензор $\epsilon^{\alpha\beta\gamma\delta}$ можно построить две скалярные величины

$$F^{\mu\nu}F_{\mu\nu} = \vec{E}^2 - c^2\vec{B}^2 = \text{inv}$$
 (112)

И

$$\epsilon_{\mu\nu\lambda\rho}F^{\mu\nu}F^{\lambda\rho} = \vec{E}\vec{H} = \text{inv}.$$
(113)

Являясь 4-мерными скалярами, они по отношению к преобразованиям Лоренца *инвариантны*.

Задача 26 Используя (111), явным вычислением доказать инвариантность (112) и (113).

2.3.6 Релятивистская частица в электромагнитном поле.

Физическая траектория частицы отвечает минимуму действия независимо от системы отсчета. Поэтому действие должно быть релятивистским инвариантом.

Для свободной частицы единственным инвариантом, зависящим от траектории частицы является *интервал*, поэтому естественно ожидать, что действие равно

$$S = -mc \int \mathrm{d}s = -mc \int \frac{\mathrm{d}s}{\mathrm{d}t} \mathrm{d}t \tag{114}$$

где интеграл берется между <u>фиксированными</u> мировыми точками, определяющими начало и конец траектории.

Отсюда функция Лагранжа свободной частицы

$$L_0 = -mc \frac{\mathrm{d}s}{\mathrm{d}t} = -mc^2 \sqrt{1 - \frac{v^2}{c^2}}$$
(115)

Минимум действия для свободной частицы в пространстве Минковского означает *максимум длины мировой линии* с фиксированными концами .

Длина мировой линии равна суммарному собственному времени вдоль нее, умноженному на скорость света *с*. Рассмотрим систему отсчета, в которой пространственные координаты начальной и конечной точки мировой линии совпадают. Для свободной частицы которая покоится в такой системе, мировая линия представляет собой прямую, направленную вдоль временной оси. Любая другая траектория, имеющая те же самые начало и конец, описывает движение близнеца-путешественника (вспомним парадокс близнецов!) и собственное время вдоль нее окажется меньше, а значит, меньше будет и суммарная длина соответствующей мировой линии. В пространстве Минковского среди всех линий, соединяющих две мировые точки наибольшей длиной обладает не кривая, а прямая линия!

Взаимодействие с электромагнитным полем дает свой вклад в действие

$$S_{\text{int}} = -\int j_{\mu} A^{\mu} ds =$$

$$= -\int e \frac{c dt}{ds} \frac{\varphi}{c} ds + \int e \frac{d\vec{x}}{ds} \vec{A} ds =$$

$$= -e \int \varphi dt + e \int \vec{A} \frac{d\vec{x}}{dt} dt = \int L_{\text{int}} dt$$
(117)

откуда лагранжиан взаимодействия частицы с электромагнитным полем

$$L_{\rm int} = -e\varphi + e\vec{A}\vec{v} \tag{118}$$

Таким образом, *функция Лагранжа для частицы в элек*тромагнитном поле

$$L = -mc^2 \sqrt{1 - \frac{v^2}{c^2}} + e\vec{A}\vec{v} - e\varphi(\mathbf{B} \text{ системе CH})$$
(119)

ИЛИ

$$L = -mc^2 \sqrt{1 - \frac{v^2}{c^2}} + \frac{e}{c} \vec{A} \vec{v} - e\varphi (\text{b системе CGSE})$$
(120)

Обобщенный импульс – *канонический импульс*

$$\vec{\mathcal{P}} = \frac{\partial L}{\partial \dot{\vec{r}}} = \frac{m\vec{v}}{\sqrt{1 - v^2/c^2}} + e\vec{A} = \vec{p} + e\vec{A}$$
(121)

где $\vec{p} = m\vec{v}\gamma$ "обычный" импульс. В присутствии электромагнитного поля канонический импульс отличается от "обычного" импульса добавкой, пропорциональной вектор-потенциалу \vec{A} . *Гамильтониан частицы в электромагнитном поле* строится обычным образом

$$\mathcal{H} = E = \vec{v} \frac{\partial L}{\partial \vec{v}} - L = \frac{mc^2}{\sqrt{1 - v^2/c^2}} + e\varphi \qquad (122)$$

На первый взгляд, зависимость от поля выпала из гамильтониана. На самом деле она возникнет, если гамильтониан следует выразить в терминах естественных *канонических* переменных — координаты и импульса: $\mathcal{H} = \mathcal{H}(x, \mathcal{P})$.

Сначала выразим скорость через канонический импульс $\vec{\mathcal{P}}$ и вектор-потенциал \vec{A} , используя (121):

$$(\vec{p})^2 = \left(\vec{\mathcal{P}} - e\vec{A}\right)^2 = \left(\frac{m\vec{v}}{\sqrt{1 - v^2/c^2}}\right)^2$$
 (123)

откуда

$$v^{2} = \frac{\left(\vec{\mathcal{P}} - e\vec{A}\right)^{2}}{m^{2}c^{2} + \left(\vec{\mathcal{P}} - e\vec{A}\right)^{2}}$$
(124)

И

$$1 - \frac{v^2}{c^2} = \frac{m^2 c^2}{m^2 c^2 + \left(\vec{\mathcal{P}} - e\vec{A}\right)^2}$$
(125)

Подставляя в выражение для гамильтониана (122), получим

$$\mathcal{H}(x,\mathcal{P}) = \sqrt{m^2 c^4 + c^2 \left(\vec{\mathcal{P}} - e\vec{A}\right)^2} + e\varphi \qquad (126)$$

В <u>нерелятивистском</u> пределе ($\frac{v}{c} \ll 1)$ в системе СИ имеем хорошо известный результат

$$\mathcal{H} = mc^2 + \frac{1}{2m} \left(\vec{\mathcal{P}} - e\vec{A}\right)^2 + e\varphi \qquad (127)$$

и в системе CGSE, соответственно

$$\mathcal{H} = mc^2 + \frac{1}{2m} \left(\vec{\mathcal{P}} - \frac{e}{c}\vec{A}\right)^2 + e\varphi \qquad (128)$$

Рассмотрим теперь уравнения движения частицы в электромагнитном поле. Уравнения Лагранжа

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \vec{v}} = \frac{\partial L}{\partial \vec{r}}, \qquad \text{где} \quad \frac{\mathrm{d}}{\mathrm{d}t} = \frac{\partial}{\partial t} + \vec{v}\frac{\partial}{\partial \vec{r}} \tag{129}$$

дают уравнения движения релятивистской частицы в электромагнитном поле:

$$\dot{\vec{p}} + e\frac{\partial\vec{A}}{\partial t} + e(\vec{v}\,\vec{\nabla})\vec{A} = e\vec{\nabla}(\vec{A}\vec{v}) - e\vec{\nabla}\varphi,\qquad(130)$$

откуда

$$\begin{split} \dot{\vec{p}} &= -e\frac{\partial \vec{A}}{\partial t} - e\vec{\nabla}\varphi + e\vec{\nabla}(\vec{A}\vec{v}) - e(\vec{v}\,\vec{\nabla})\vec{A} = \\ &= -e\frac{\partial \vec{A}}{\partial t} - e\vec{\nabla}\varphi + e\left[\vec{v}\times\left[\vec{\nabla}\times\vec{A}\right]\right] = \\ &= e\vec{E} + e\left[\vec{v}\times\vec{B}\right] = \vec{F}_e. \end{split}$$
Таким образом, *уравнения движения релятивистской частицы в электромагнитном поле* принимают вид:

$$\dot{\vec{p}} = e\vec{E} + e\left[\vec{v} \times \vec{B}\right] = \vec{F}_e.$$
(131)

Первое слагаемое описывает действие электрического поля \vec{E} на заряд, второе – **силу Лоренца**, описывающее действие магнитного поля \vec{B} на *движущийся* заряд. Изменение энергии частицы в единицу времени равно

$$\frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t} = \vec{F}_e \vec{v} = \left\{ e\vec{E} + e\left[\vec{v} \times \vec{B}\right] \right\} \vec{v} = e\vec{E}\vec{v} \qquad (132)$$

т.е. работу над частицей совершает только электрическое поле \vec{E} , и изменение энергии от магнитного поля \vec{B} не зависит.

3 Статические поля.

3.1 Условия применимости статического приближения.

Согласно СТО, скорость распространения полей конечна и не может превышать скорость света. Другими словами, изменение положения зарядов и токов скажутся на величине поля для наблюдателя, удаленного на расстояние R, через время

$$\tau = R/c. \tag{133}$$

Это время должно быть мало по сравнению с характерным временем T движения (или колебания) зарядов внутри системы, т.е. $\tau \ll T$. В случае, когда наблюдатель находится вблизи системы, т.е. $R \sim L$ (размеров системы), это приводит к минимальному требованию – ограничению на скорость зарядов $v/c \ll 1$. При выполнении этого условия справедливо рассмот-

ренное ранее статическое приближение для зарядов, токов и порождаемых ими полей (см. (26),(27) и (40),(33)):

$$\begin{cases} \vec{E} = -\operatorname{grad}\varphi \\ \varphi(r) = \frac{1}{4\pi\varepsilon_0}\int \mathrm{d}V'\frac{\rho(r')}{R} \\ \vec{E}(r) = \frac{1}{4\pi\varepsilon_0}\int \mathrm{d}V'\rho(r')\frac{\vec{R}}{R^3} \end{cases} \begin{cases} \vec{B} = \operatorname{rot}\vec{A} \\ \vec{A}(r) = \frac{\mu_0}{4\pi}\int \mathrm{d}V'\frac{\vec{j}(r')}{R} \\ B(r) = \frac{\mu_0}{4\pi}\int \mathrm{d}V'\frac{\vec{j}(r')\frac{\vec{R}}{R^3}} \end{cases}$$
(134)

т.е. с помощью статических функций Грина (28):

$$G(\vec{r}, \vec{r}') \equiv \frac{1}{4\pi\varepsilon_0} \frac{1}{|\vec{r} - \vec{r}'|}$$
(135)

потенциали (и поля) выражаются через распределения зарядов и токов (здесь $\vec{R} = \vec{r} - \vec{r'}$).

3.2 Электрические поля на больших расстояниях, мультипольное разложение.

Рассмотрим наблюдателя, находящегося на расстоянии $R \gg L$, где L — характерный размер системы зарядов. Выберем начало координат внутри системы зарядов, $\vec{r'}$ — радиус-вектор, указывающий на заряд, \vec{r} — радиус-вектор, указывающий на наблюдателя. Поскольку $|\vec{r'}| \sim L \ll |\vec{r}| \sim R$, для (134) справедливо разложение

$$\frac{1}{R} = \frac{1}{r} - \sum_{i=1}^{3} r'_i \frac{\partial}{\partial r_i} \frac{1}{r} + \frac{1}{2} \sum_{i,j=1}^{3} r'_i r'_j \frac{\partial^2}{\partial r_i \partial r_j} \frac{1}{r} + \dots$$
(136)

что для скалярного потенциала дает

$$\varphi(r) = \frac{1}{4\pi\varepsilon_0} \left\{ \frac{q}{r} - \vec{d} \operatorname{grad} \frac{1}{r} + \frac{1}{6} Q_{ij} \frac{\partial^2}{\partial r_i \partial r_j} \frac{1}{r} + \dots \right\}$$
(137)

где использовано

$$\frac{\partial}{\partial r_i} \frac{1}{r} = -\frac{r_i}{r^3}; \qquad \frac{\partial^2}{\partial r_i \partial r_j} \frac{1}{r} = \frac{3r_i r_j}{r^5} - \frac{\delta_{ij}}{r^3}$$

и введены обозначения

$$q = \int dV \rho(\vec{r}) -$$
полный заряд системы,
 $\vec{d} = \int dV \vec{r} \rho(\vec{r}) -$ электрический дипольный момент системы,
 $Q_{ij} = \int dV \left(r_i r_j - \frac{r^2}{3} \delta_{ij} \right) \rho(\vec{r}) -$ квадрупольный момент системы.

Электрическое поле диполя

$$\vec{E}(r) = -\vec{\nabla}\varphi = \frac{1}{4\pi\varepsilon_0} \left\{ \frac{q\vec{r}}{r^3} + \left(\frac{3\vec{r}(\vec{d}\vec{r})}{r^5} - \frac{\vec{d}}{r^3} \right) \right\}.$$
 (138)

Легко видеть, что поле диполя спадает гораздо быстрее ($\propto \frac{1}{r^3}$), чем поле заряда ($\propto \frac{1}{r^2}$)!

Задача 27 При каком условии дипольный момент не зависит от выбора начала координат?

Решение. Сдвинем начало координат на вектор \vec{a} , тогда дипольный момент

$$\vec{d'} = \int \mathrm{d}V(\vec{a} + \vec{r})\rho(\vec{r}) = \int \mathrm{d}V\vec{r}\rho(\vec{r}) + \int \mathrm{d}V\vec{a}\rho(\vec{r}) = \vec{d} + \vec{a}\cdot q$$

Дипольный момент не зависит от выбора начала координат при услови
иq=0.

Задача 28 Приведите пример диполя и квадруполя.

В общем случае разложение (136) при r' < r может быть представлено в виде

$$\frac{1}{|\vec{r} - \vec{r'}|} = \sum_{l=0}^{\infty} \frac{4\pi}{2l+1} \frac{r'^l}{r^{l+1}} \sum_{m=-l}^{l} Y_{lm}(\theta, \alpha) Y_{lm}^*(\theta', \alpha')$$
(139)

где углы (θ, α) и (θ', α') отвечают направлениям векторов \vec{r} и $\vec{r'}$ соответственно. Тогда соответствующее разложение скалярного потенциала (137) примет вид

$$\varphi(r,\theta,\alpha) = \frac{1}{4\pi\varepsilon_0} \sum_{l=0}^{\infty} \frac{1}{r^{l+1}} \sum_{m=-l}^{l} Y_{lm}(\theta,\alpha) Q_{lm}^*$$
(140)

где соответствующий мультиполь в представлении шаровых функций принимает вид

$$Q_{lm} = \frac{4\pi}{2l+1} \int r'^2 \mathrm{d}r' \mathrm{d}\Omega' \rho(r',\theta',\alpha') r'^l Y_{lm}(\theta,\alpha)$$
(141)

3.3 Магнитные поля на больших расстояниях, магнитный дипольный момент, гиромагнитный фактор.

Рассмотрим вектор-потенциал системы токов на больших расстояниях $r \gg L$, где L — размер области, занимаемой токами $\vec{j}(r)$:

$$\vec{A}(r) = \frac{\mu_0}{4\pi} \int \mathrm{d}V' \frac{\vec{j}(r')}{R} \tag{142}$$

(здесь $\vec{R} = \vec{r} - \vec{r'}$). На больших расстояниях, как и в случае системы зарядов, можно воспользоваться разложением

$$\frac{1}{R} = \frac{1}{r} + \frac{(\vec{r}'\vec{r})}{r^3} + \dots$$

по малому параметру (r'/r) $(L/r) \ll 1$.

Первый член разложения обращается в нуль

$$\vec{A}^{(1)} = \frac{\mu_0}{4\pi} \frac{1}{r} \int dV' \vec{j}(r') = \frac{\mu_0}{4\pi} \frac{1}{r} e \sum_i \vec{v}_i' = \frac{\mu_0}{4\pi} \frac{1}{r} \frac{d}{dt} \left(e \sum_i \vec{r}_i' \right) = \frac{\mu_0}{4\pi} \frac{1}{r} \frac{d}{dt} \vec{d} = 0$$

поскольку в статической системе токов дипольный момент системы не зависит от времени, т.к. заряд не накапливается, распределение заряда стационарно и не зависит от времени.

Рассмотрим теперь второй член разложения

$$\vec{A}^{(2)} = \frac{\mu_0}{4\pi} \int dV' \frac{\vec{j}(r')(\vec{r}\,'\vec{r})}{r^3}$$

Преобразуем, выделяя полную производную по времени:

$$\vec{j}(r')(\vec{r}'\vec{r}) = e \sum_{i} \frac{\vec{v}_{i}'(\vec{r}\vec{r}') - \vec{r}_{i}'(\vec{r}\vec{v}_{i}')}{2} + e \sum_{i} \frac{\vec{v}_{i}'(\vec{r}\vec{r}') + \vec{r}_{i}'(\vec{r}\vec{v}_{i}')}{2} = e \sum_{i} \frac{\vec{r} \times [\vec{v}_{i}' \times \vec{r}_{i}']}{2} + \underbrace{\frac{\mathrm{d}}{\mathrm{d}t}}_{=0} e \sum_{i} \frac{\vec{r}_{i}'(\vec{r}\vec{r}')}{2} = \frac{\vec{r} \times [\vec{j}' \times \vec{r}_{i}']}{2}$$

Второе слагаемое также обращается в нуль для статического распределения зарядов и токов. Таким образом, в рамках данного приближения

$$\vec{A} = \frac{\mu_0}{4\pi} \int \mathrm{d}V' \frac{\vec{r} \times [\vec{j}' \times \vec{r_i}']}{2r^3} = \frac{\mu_0}{4\pi} \left\{ -\left[\vec{m} \times \nabla \frac{1}{r}\right] + \dots \right\} \quad (143)$$

где введен *магнитный дипольный момент*

$$\vec{m} = \frac{1}{2} \int dV' \left[\vec{r}' \times \vec{j}(r') \right]$$
(144)

Соответствующее магнитное поле получается взятием ротора от полученного вектор-потенциала:

$$\vec{B} = \frac{\mu_0}{4\pi} \operatorname{rot} \left[\vec{m} \times \frac{\vec{r}}{r^3} \right] = \frac{\mu_0}{4\pi} \vec{\nabla} \times \left[\vec{m} \times \frac{\vec{r}}{r^3} \right] =$$

$$= \frac{\mu_0}{4\pi} \left(\vec{m} \left(\nabla, \frac{\vec{r}}{r^3} \right) - \left(\vec{m}, \vec{\nabla} \right) \frac{\vec{r}}{r^3} \right) =$$

$$= \frac{\mu_0}{4\pi} \left(\underbrace{\vec{m} 4\pi \delta(\vec{r})}_{=0\text{Ha GOJEBILIX}} - \frac{1}{r^3} \left(\vec{m}, \vec{\nabla} \right) \vec{r} - \vec{r} \left(\vec{m}, \vec{\nabla} \frac{1}{r^3} \right) \right) =$$

$$= -\frac{\mu_0}{4\pi} \left(\underbrace{\vec{m}}_{r^3} - 3 \frac{\vec{r}(\vec{m}, \vec{r})}{r^5} \right) \qquad (145)$$

Задача 29 Найти магнитный момент плоского контура с током *I*. <u>Решение:</u>

$$\frac{1}{2} \int \mathrm{d}V' \left[\vec{r}' \times \vec{j}(r') \right] = \frac{I}{2} \oint \left[\vec{r}' \times \mathrm{d}\vec{l} \right] = I \cdot \vec{S} \tag{146}$$

Для системы движущихся точечных зарядов в (системе СИ) магнитный момент может быть представлен в виде:

$$\vec{m} = \frac{1}{2} \sum_{i} e_i [\vec{r}_i \times \vec{v}_i] \tag{147}$$

(или $\frac{1}{2c}\sum_{i} e_i[\vec{r_i} \times \vec{v_i}]$ в системе CGSE). В случае, когда для всех зарядов $e_i/m_i = \text{const} \equiv e/m$, и $v \ll c$, то магнитный момент системы оказывается пропорционален механическому:

$$\vec{m} = \frac{1}{2} \sum_{i} \frac{e_i}{m_i} [\vec{r}_i \times \vec{p}_i] = \frac{e}{2m} \sum_{i} [\vec{r}_i \times \vec{p}_i] = g\vec{M}$$
(148)

где \vec{M} — механический момент импульса системы, и

$$g = e/2m \tag{149}$$

называется гиромагнитным отношением или *гиромагнитным фактором*. Гиромагнитный фактор может быть определен так-

же для любого тела, распределения плотности массы и заряда в котором совпадают.

4 Энергия поля.

4.1 Плотность энергии поля и вектор Пойнтинга.

Изучим для замкнутой системы и заряженных частиц, и электромагнитного поля баланс энергии. Поскольку для замкнутой системы полная энергия сохраняется, изменение механической энергии заряженных частиц будет связано с изменением энергии взаимодействующего с зарядами поля.

Начнем с рассмотрения уравнений Максвелла, описывающих взаимодействие поля с источниками:

$$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t},$$
$$\operatorname{rot} \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

Умножая первое на $(-\vec{B}),$ а второе – на (\vec{E}) и складывая, получим

$$\frac{1}{2}\frac{\partial}{\partial t}\left\{\frac{1}{c^2}E^2 + B^2\right\} + \mu_0 \cdot \left(\vec{j}\vec{E}\right) = \left(\vec{E} \cdot \operatorname{rot} \vec{B}\right) - \left(\vec{B} \cdot \operatorname{rot} \vec{E}\right)$$
(150)

Покажем, что правая часть равна $[-\operatorname{div}(\vec{E} \times \vec{B})]$:

$$\begin{aligned} \operatorname{div}(\vec{E} \times \vec{B}) &= \varepsilon^{ijk} \nabla^i (E^j B^k) = \\ &= \varepsilon^{ijk} B^k (\nabla^i E^j) + \varepsilon^{ijk} E^j (\nabla^i B^k) = \\ &= B^k \underbrace{\varepsilon^{kij} (\nabla^i E^j)}_{\operatorname{rot} \vec{E}} - E^j \underbrace{\varepsilon^{jik} (\nabla^i B^k)}_{\operatorname{rot} \vec{B}} \end{aligned}$$

что и требовалось доказать. Далее, учтем, что слагаемое $\left(\vec{j}\vec{E}\right)$ описывает скорость изменения кинетической энергии.

$$\left(\vec{j}\vec{E}\right) = \sum_{i} e\vec{v}_{i}\vec{E} = \frac{\mathrm{d}}{\mathrm{d}t}\varepsilon_{\mathrm{KHH}}$$

Интегрируя (150) по объему, получим

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{1}{2}\int\left\{\frac{1}{c^2}E^2 + B^2\right\}\mathrm{d}V + \mu_0\frac{\mathrm{d}}{\mathrm{d}t}\underbrace{\int}_{\mathcal{E}_{\mathrm{KHH}}} \varepsilon_{\mathrm{KHH}}\mathrm{d}V = -\int\mathrm{d}V\,\mathrm{div}(\vec{E}\times\vec{B}) = \\ = -\oint\mathrm{d}\vec{S}[\vec{E}\times\vec{B}] \quad (151)$$

Таким образом, изменение кинетической энергии частиц, взаимодействующих с электромагнитным полем

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}_{\mathrm{K}\mathrm{UH}} = -\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{1}{2} \int \left\{ \varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right\} \mathrm{d}V \right] - \oint \mathrm{d}\vec{S} \frac{1}{\mu_0} [\vec{E} \times \vec{B}]$$
(152)

складывается из изменения энергии электромагнитного поля (первое слагаемое) и потока энергии через охватывающую поверхность (второе слагаемое). Тем самым мы установили, что поле обладает *плотностью энергии*

$$w_{\text{поля}} = \frac{1}{2} \left\{ \varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right\}$$
(153)

и потоком энергии

$$\vec{S} = \frac{1}{\mu_0} [\vec{E} \times \vec{B}] \tag{154}$$

(вектор Пойнтинга). Т.е. поле выступает как материальный объект, а не абстракция для описания дальнодействия.

4.2 Электростатическая энергия заряженной системы.

Электростатическая *потенциальная энергия* системы заряженных частиц по сути является *энергией электрического поля*, порождаемого зарядами этих частиц.

Вычисляя энергию электрического поля и выражая поля через распределение индуцировавших их зарядов, получаем

$$W_{\mathfrak{B}} = \int \mathrm{d}V \cdot \frac{\varepsilon_{0}E^{2}}{2} = \frac{\varepsilon_{0}}{2} \int \mathrm{d}V \cdot \vec{E} \cdot \left(-\vec{\nabla}\varphi\right) =$$
$$= \frac{\varepsilon_{0}}{2} \int \mathrm{d}V\varphi \cdot \mathrm{div} \,\vec{E} - \frac{\varepsilon_{0}}{2} \int \mathrm{d}V \cdot \mathrm{div}(\varphi\vec{E}) =$$
$$= \frac{1}{2} \int \mathrm{d}V\varphi \cdot \rho - \frac{\varepsilon_{0}}{2} \oint \mathrm{d}\vec{S} \cdot \underbrace{\varphi\vec{E}}_{\propto r^{-3}}, \qquad (155)$$

последнее слагаемое можно отбросить, выбирая охватывающую

поверхность S на бесконечности. Далее, используя

$$\varphi = \frac{1}{4\pi\varepsilon_0} \int \mathrm{d}V' \frac{\rho(r')}{|\vec{r} - \vec{r}'|}$$

мы убеждаемся, что энергия поля тождественна *потенциаль*ной энергии создающих поле зарядов:

$$W_{\mathfrak{s}} = \frac{1}{2} \int \mathrm{d}V \varphi \cdot \rho = \frac{1}{8\pi\varepsilon_0} \int \mathrm{d}V \mathrm{d}V' \frac{\rho(r)\rho(r')}{|\vec{r} - \vec{r}'|} = \frac{1}{4\pi\varepsilon_0} \sum_{i>j} \frac{e_i e_j}{|\vec{r} - \vec{r}'|}$$
(156)

Задача 30 Найти энергию шара, равномерно заряженного по объему. Ответ:

$$W_{\mathfrak{s}} = \frac{3}{5} \frac{q^2}{4\pi\varepsilon_0 a} \tag{157}$$

где *q* – заряд шара, *a* – радиус шара.

Задача 31 Найти энергию равномерно заряженной сферы радиуса *a*. *Ответ*:

$$W_{\mathfrak{s}} = \frac{1}{2} \frac{q^2}{4\pi\varepsilon_0 a} \tag{158}$$
$$127$$

4.3 Электростатическая собственная энергия точечного заряда. Классический радиус электрона.

Допустим, вся масса электрона имеет электромагнитное происхождение, и электрон представляет собой сферу радиуса r_e , тогда

$$r_e = \frac{e^2}{4\pi\varepsilon_0 mc^2} = 2.8 \cdot 10^{-13} \text{cm}$$
(159)

Это принципиальная граница *классической электродинамики* — на меньших расстояниях $r < r_e$ она противоречива и неприменима.

На самом деле значительно раньше проявляются квантовые эффекты, которые становятся существенными начиная с расстояний порядка комптоновской длины волны, определяемой как

$$\lambda_c = \frac{\hbar}{mc} = 3.9 \cdot 10^{-11} \text{cm} \tag{160}$$

С учетом квантовых эффектов вычисление электромагнитной энергии электрона дает

$$W_{\rm s}/mc^2 = \frac{3\alpha}{2\pi} \ln \frac{\lambda_c}{a} \tag{161}$$

где постоянная тонкой структуры $\alpha = e^2/4\pi\varepsilon_0\hbar c \approx 1/137$. Условие, что это отношение не превышает единицу, означает непротиворечивость **квантовой электродинамики** вплоть до расстояний

$$r_{\rm kb} = \lambda_c e^{-2\pi/3\alpha} = \lambda_c e^{-287} = 8.9 \cdot 10^{-136} {\rm cm}$$
 (162)

На самом деле, граница эта практически недостижима, поскольку уже на расстояниях $\lambda_{\rm KXД} \sim 10^{-13}$ см начинают сказываться эффекты сильных взаимодействий, а на расстояниях $\lambda_{\rm weak} \sim 10^{-16}$ см начинает работать объединенная теория электрослабых взаимодействий и, наконец, на расстояниях $\lambda_{\rm грав} \sim 10^{-33}$ см вступает в игру квантовый характер пространства-времени.

4.4 Взаимодействие двух заряженных подсистем.

Взаимодействие двух заряженных подсистем может рассматриваться как результат своеобразной "интерференции" электростатических полей этих подсистем.

Каждая из подсистем создает свое поле, $\vec{E}^{(1)}$ и $\vec{E}^{(2)}$. В соответствии с принципом суперпозиции, суммарное поле есть векторная сумма ($\vec{E}^{(1)} + \vec{E}^{(2)}$), а плотность энергии суммарного поля, кроме плотности энергий каждого из полей содержит перекрестный член, билинейный по каждому из полей. Именно этот перекрестный член и ответственен за электростатическое взаимодействие двух подсистем:

$$w = \frac{\varepsilon_0}{2} (\vec{E}^{(1)} + \vec{E}^{(2)})^2 = \frac{\varepsilon_0}{2} (\vec{E}^{(1)})^2 + \frac{\varepsilon_0}{2} (\vec{E}^{(2)})^2 + \varepsilon_0 \vec{E}^{(1)} \vec{E}^{(2)}$$

Изучим его подробнее.

Аналогично (155), убеждаемся, что вклад этого члена в энергию поля

$$W_{9}^{(12)} = \int dV \cdot \varepsilon_{0} \vec{E}^{(1)} \vec{E}^{(2)} =$$

$$= \int dV \cdot \rho^{(1)} \varphi^{(2)} = \int dV \cdot \rho^{(2)} \varphi^{(1)} =$$

$$= \frac{1}{4\pi\varepsilon_{0}} \int dV dV' \frac{\rho^{(1)}(r)\rho^{(2)}(r')}{|\vec{r} - \vec{r}'|}$$
(163)

тождественен энергии кулоновского взаимодействия заряженных подсистем.

4.5 Энергия системы зарядов во внешнем поле

Рассмотрим теперь взаимодействие системы зарядов $\rho(r)$ с внешним электрическим полем с потенциалом $\varphi^{\text{ext}}(r)$:

$$W_{\mathfrak{s}}^{\text{ext}} = \int \mathrm{d}V \cdot \rho(\vec{r})\varphi^{\text{ext}}(\vec{r})$$
(164)

В случае, когда на размерах системы поле меняется слабо, можно поле разложить на размерах системы в ряд Тейлора

$$\varphi^{\text{ext}}(\vec{r} = \vec{r}_0 + \vec{r}') = \varphi^{\text{ext}}(\vec{r}_0) + \vec{r}' \vec{\nabla} \varphi^{\text{ext}}(\vec{r}_0) + \dots$$
$$\varphi^{\text{ext}}(\vec{r}_0) - \vec{r}' \vec{E}^{\text{ext}}(\vec{r}_0) + \dots$$
(165)

где $\vec{r_0}$ выбран в центре распределения зарядов системы.

Подстановка разложения в (164) дает для энергии взаимо-

действия

$$W_{\vartheta}^{\text{ext}} = \varphi^{\text{ext}}(\vec{r_0}) \cdot \int dV' \cdot \rho(r') - \vec{E}^{\text{ext}}(\vec{r_0}) \int dV' \cdot \vec{r}' \rho(\vec{r}') =$$
$$= \varphi^{\text{ext}}(\vec{r_0}) \cdot q - \vec{E}^{\text{ext}}(\vec{r_0}) \vec{d} \qquad (166)$$

В случае одиночного точечного заряда, расположенного в точке \vec{r} , его потенциальная энергия равна

$$W_{\mathfrak{s}}^{\mathrm{ext}} = e\varphi^{\mathrm{ext}}(\vec{r}) = U(\vec{r})$$

Для электрического диполя во внешнем поле

$$W_{\mathfrak{H}}^{\text{ext}} = -\vec{E}^{\text{ext}}(\vec{r})\vec{d} = U(\vec{r}) \tag{167}$$

Сила и момент сил, действующих на диполь

$$\vec{F} = -\operatorname{grad} W_{\mathfrak{H}}^{\operatorname{ext}} = (\vec{d}\vec{\nabla})\vec{E}^{\operatorname{ext}}(\vec{r})$$
(168)
$$\vec{K} = [\vec{d} \times \vec{E}^{\operatorname{ext}}(\vec{r})]$$
(169)

4.6 Магнитная энергия в статическом случае. Используя rot $\vec{B} = \mu_0 \vec{j}$, получим

$$W_{M} = \int dV \frac{\vec{B}^{2}}{2\mu_{0}} = \frac{1}{2\mu_{0}} \int dV \vec{B} \operatorname{rot} \vec{A} =$$

$$= -\frac{1}{2} \int dV \left(\vec{A} \vec{j}\right) + \frac{1}{2} \int dV \operatorname{div}[\vec{A} \times \vec{B}] =$$

$$= -\frac{1}{2} \int dV \vec{A} \vec{j} \qquad (170)$$

Подставляя $\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int dV' \frac{\vec{j}(\vec{r}')}{|\vec{r}-\vec{r}'|}$ (см. 40) видим, что энергия магнитного поля сводится к энергии взаимодействия токов

$$W_M = -\frac{1}{2} \int dV \vec{A} \, \vec{j} = -\frac{\mu_0}{4\pi} \int dV dV' \frac{\vec{j}(r)\vec{j}(r')}{|\vec{r} - \vec{r'}|}$$
(171)

Взаимодействие двух подсистем токов

$$W_M = -\frac{\mu_0}{4\pi} \int_1 \int_2 \mathrm{d}V_1 \mathrm{d}V_2 \frac{\vec{j}(r_1)\vec{j}(r_2)}{|\vec{r_1} - \vec{r_2}|} = -\int_1 \mathrm{d}V \vec{A_1} \vec{j_2} = -\int_2 \mathrm{d}V \vec{A_2} \vec{j_1}$$
(172)

Энергия системы токов во внешнем поле

$$W_M^{\text{ext}} = -\int \mathrm{d}V \vec{A}^{\text{ext}}(r) \vec{j}(r) = U(r)$$
(173)

Раскладывая вектор-потенциал относительно центра $\vec{r_0}$ системы (1), получим

$$\vec{A}(\vec{r} = \vec{r}_0 + \vec{r}') = \vec{A}(\vec{r}_0) + (\vec{r}' \, \vec{\nabla}) \vec{A}(\vec{r}_0) + \cdots,$$

Подставляя

$$-\int dV \vec{A}^{\text{ext}}(r) \vec{j}(r) = -\vec{A}^{\text{ext}}(r_0) \underbrace{\int dV' \vec{j}(r')}_{=0} - \int dV' \vec{j}(\vec{r}') (\vec{r}' \, \vec{\nabla}) \vec{A}^{\text{ext}}$$
(174)

$$-\int dV'(\vec{r}' \,\vec{\nabla}) \vec{A}^{\text{ext}} \vec{j}(\vec{r}') = -\int dV' r'_i j_k(r') \nabla_i A^{\text{ext}}_k =$$

$$= -\int dV' \left[\frac{1}{2} (r'_i j_k(r') + r'_k j_i(r')) \right] \nabla_i A^{\text{ext}}_k +$$

$$-\int dV' \underbrace{ \left[\frac{1}{2} (r'_i j_k(r') - r'_k j_i(r')) \right]}_{\varepsilon_{ikl} r'_i j_k(r')} \underbrace{ \left[\frac{1}{2} \left(\nabla_i A^{\text{ext}}_k - \nabla_i A^{\text{ext}}_k \right) \right]}_{\varepsilon_{ikl} \nabla_i A^{\text{ext}}_k} =$$

$$= -\vec{B}^{\text{ext}} \int dV' \frac{1}{2} (r'_i j_k(r') - r'_k j_i(r')). \qquad (175)$$

Энергия магнитного диполя

$$W_M^{\text{ext}} = -\vec{B}^{\text{ext}}(r)\vec{m} = U(r)$$
(176)

Сила, действующая на магнитный диполь в неоднородном магнитном поле

$$\vec{F} = -\vec{\nabla}U = (\vec{m}\vec{\nabla})\vec{B} \tag{177}$$

а момент сил

$$\vec{K} = [\vec{m} \times \vec{B}] \tag{178}$$

5 Тензор энергии-импульса электромагнитного поля.

Выше мы получили, что плотность энергии электромагнитного поля выражается через напряженности \vec{E} и магнитную индукцию \vec{B} как

$$w = \frac{1}{2} \left\{ \varepsilon_0 \vec{E}^2 + \frac{1}{\mu_0} \vec{B}^2 \right\}$$
(179)

а поток энергии (вектор Пойнтинга)

$$\vec{S} = \frac{1}{\mu_0} \left\{ \vec{E} \times \vec{B} \right\} \tag{180}$$

В отличии от плотности заряда и тока, образующих 4-вектор $j^{\mu} = (c\rho, \vec{j})$, плотность энергии и ее поток 4-вектора не образуют, т.к. энергия – в отличии от заряда – релятивистским скаляром не является.

Согласно (179),(180) плотность и поток энергии поля квадратичны по полю, поэтому естественно ожидать, что **тензор энергии-импульса** формируется как

$$T^{\mu\nu} = \frac{1}{\mu_0} \left(a F^{\mu\rho} g_{\rho\sigma} F^{\sigma\nu} + b g^{\mu\nu} F^{\lambda\rho} F_{\lambda\rho} \right)$$
(181)

Выпишем покомпонентно

$$\begin{aligned}
F^{\mu\rho}g_{\rho\sigma}F^{\sigma\nu} &= \\
\begin{pmatrix} \frac{1}{c^{2}}\vec{E}^{2} & \frac{1}{c}[\vec{E}\times\vec{B}]_{x} & \frac{1}{c}[\vec{E}\times\vec{B}]_{y} & \frac{1}{c}[\vec{E}\times\vec{B}]_{z} \\
\frac{1}{c}[\vec{E}\times\vec{B}]_{x} & \frac{1}{c^{2}}E_{x}^{2} - B_{z}^{2} - B_{y}^{2} & \frac{E_{x}E_{y}}{c^{2}} + B_{x}B_{y} & \frac{E_{x}E_{z}}{c^{2}} + B_{x}B_{z} \\
\frac{1}{c}[\vec{E}\times\vec{B}]_{y} & \frac{E_{x}E_{y}}{c^{2}} + B_{x}B_{y} & \frac{1}{c^{2}}E_{y}^{2} - B_{z}^{2} - B_{x}^{2} & \frac{E_{y}E_{z}}{c^{2}} + B_{y}B_{z} \\
\frac{1}{c}[\vec{E}\times\vec{B}]_{z} & \frac{E_{x}E_{z}}{c^{2}} + B_{x}B_{z} & \frac{E_{y}E_{z}}{c^{2}} + B_{y}B_{z} & \frac{1}{c^{2}}E_{z}^{2} - B_{y}^{2} - B_{x}^{2} \\
\end{aligned}$$
(182)

и $F^{\lambda\rho}F_{\lambda\rho} = -2\left(\frac{1}{c^2}\vec{E}^2 - \vec{B}^2\right)$. Требование, чтобы плотность энергии T^{00} совпадала с (179), дает a = 1, b = 1/4, откуда окончательно

(183)

где **3-мерный тензор натяжений**

Закон сохранения энергии при этом принимает вид

$$\frac{\partial w}{\partial t} + \operatorname{div} \vec{S} = \frac{\partial T^{0\mu}}{\partial x^{\mu}} = -\vec{j}\vec{E} = -\vec{f}\vec{v} = -\frac{\partial\epsilon}{\partial t}$$
(185)
140

где ϵ – плотность энергии частиц. В интегральной форме

$$\frac{\partial W}{\partial t} + \oint \vec{S} d\vec{s} = -\frac{\partial \mathcal{E}}{\partial t}.$$
(186)

Другими словами, сумма энергии частиц $\mathcal{E} = \int_V \epsilon dV$ и энергии поля $W = \int_V w dV$ сохраняется, если полный поток энергии через охватывающую поверхность равен нулю:

$$\oint \vec{S} d\vec{s} = 0. \tag{187}$$

Если размер области $R \to \infty$, площадь поверхности $\propto R^2$ и полный поток стремится к нулю при условии, что вектор Пойнтинга $|\vec{S}|$ убывает быстрее, чем R^{-2} . В случае, когда $|\vec{S}| \propto R^{-2}$, поток энергии распространяется сколь угодно далеко, и мы имеем дело с *излучением* электромагнитной энергии. Закон сохранения импульса для электромагнитного поля

$$\underbrace{\frac{\partial}{\partial t}\frac{1}{c^2}S^i + \frac{\partial}{\partial x^i}T^{ik}}_{\frac{\partial}{\partial x^\mu}T^{i\mu}} = -f^i = -\frac{\partial p^i}{\partial t}$$
(188)

где \vec{p} плотность импульса частиц, а $\vec{g} = \frac{1}{c^2} \vec{S} = \frac{1}{c^2 \mu_0} [\vec{E} \times \vec{B}] = \varepsilon_0 [\vec{E} \times \vec{B}]$ – плотность импульса поля.

Баланс импульса можно увидеть и непосредственно из уравнений Максвелла. Запишем производную по времени от плотности импульса поля

$$\frac{\partial}{\partial t}\vec{g} = \varepsilon_0 \left[\frac{\partial \vec{E}}{\partial t} \times \vec{B}\right] + \varepsilon_0 \left[\vec{E} \times \frac{\partial \vec{B}}{\partial t}\right] = \\ = -c^2 \mu_0 \varepsilon_0 [\vec{j} \times \vec{B}] + c^2 \varepsilon_0 [\operatorname{rot} \vec{B} \times \vec{B}] - \varepsilon_0 [\vec{E} \times \operatorname{rot} \vec{E}]$$

где производные по времени от полей подставлены из уравнений Максвелла

$$\operatorname{rot} \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$
(189)

И

$$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}.$$
(190)

Далее, используя тождество

$$\varepsilon^{ijk}\varepsilon^{lmk} = \delta^{il}\delta^{jm} - \delta^{im}\delta^{lj},$$
143

можно преобразовать

$$\begin{bmatrix} \vec{E} \times \operatorname{rot} \vec{E} \end{bmatrix}^{i} = \varepsilon^{ijk} E^{j} (\operatorname{rot} \vec{E})^{k} = \varepsilon^{ijk} E^{j} \varepsilon^{klm} \partial^{l} E^{m} = E^{j} \partial^{i} E^{j} - (E^{j} \partial^{j}) E^{i} = \frac{1}{2} \vec{\nabla} (\vec{E})^{2} - (\vec{\nabla} \vec{E}) \vec{E} + \vec{E} \underbrace{(\operatorname{div} \vec{E})}_{\frac{1}{\varepsilon_{0}} \rho} = \frac{1}{2} \vec{\nabla} (\vec{E})^{2} - (\vec{\nabla} \vec{E}) \vec{E} + \frac{\vec{E}}{\varepsilon_{0}} \rho$$

$$(191)$$

$$\begin{bmatrix} \vec{B} \times \operatorname{rot} \vec{B} \end{bmatrix} = \frac{1}{2} \vec{\nabla} (\vec{B})^2 - (\vec{\nabla} \vec{B}) \vec{B} + \vec{B} \underbrace{(\operatorname{div} \vec{B})}_{=0} = \frac{1}{2} \vec{\nabla} (\vec{B})^2 - (\vec{\nabla} \vec{B}) \vec{B}$$
(192)
В итоге получаем

$$\left\{ \frac{\partial}{\partial t} \vec{g} + \rho \left(\vec{E} + [\vec{v} \times \vec{B}] \right) \right\}^{i} = -\nabla^{i} \frac{1}{2} \left\{ \varepsilon_{0} \vec{E}^{2} + \frac{1}{\mu_{0}} \vec{B}^{2} \right\} + \varepsilon_{0} \nabla^{k} (E^{i} E^{k}) + \frac{1}{\mu_{0}} \nabla^{k} (B^{i} B^{k})$$

$$\tag{193}$$

Правая часть представляет собой полную производную и при интегровании по объему сводится к интегралу от тензора натяжений по охватывающей объем поверхности: ∮ ds^kT^{ik}. При стремлении размеров области к бесконечности, при достаточно быстром убывании полей она обратится в ноль, что означает сохранения суммарного импульса электромагнитного поля и взаимодействующих с ним частиц.

6 Электромагнитные волны.

Рассмотрим уравнения Максвелла в пустоте в отсутствии источников (или когда источники находятся на бесконечности):

div
$$\vec{E} = 0,$$
 (194)
rot $\vec{E} = -\frac{\partial \vec{B}}{\partial t},$ (195)

$$\operatorname{div} \vec{B} = 0, \tag{196}$$

$$\operatorname{rot}\vec{B} = \frac{1}{c^2}\frac{\partial E}{\partial t},\tag{197}$$

где $\vec{B} = \operatorname{rot} \vec{A}, \ \vec{E} = -\vec{\nabla}\varphi - \frac{\partial \vec{A}}{\partial t}$. Отметим, что эти уравнения симметричны относительно замены $E \longleftrightarrow iBc$, т.е. магнитное и электрическое поле входят в них равноправным образом! Эта симметрия отсутствует, однако, на уровне потенциалов.

Легко увидеть, что нетривиальные решения возникают лишь для полей, зависящих от времени: $\frac{\partial \vec{E}}{\partial t} \neq 0, \frac{\partial \vec{B}}{\partial t} \neq 0.$

6.1 Волновые уравнения.

Подстановкой одного уравнения в другое нетрудно получить:

$$\operatorname{rot\,rot}\vec{E} = -\frac{1}{c^2}\frac{\partial^2 \vec{E}}{\partial t^2} \Longrightarrow \Delta \vec{E} - \frac{1}{c^2}\frac{\partial^2 \vec{E}}{\partial t^2} = 0, \qquad (198)$$
$$\operatorname{rot\,rot}\vec{B} = -\frac{1}{c^2}\frac{\partial^2 \vec{B}}{\partial t^2} \Longrightarrow \Delta \vec{B} - \frac{1}{c^2}\frac{\partial^2 \vec{B}}{\partial t^2} = 0, \qquad (199)$$

где использовано тождество

$$\operatorname{rot}\operatorname{rot}\vec{X} = -\Delta\vec{X} + \vec{\nabla}(\operatorname{div}\vec{X}), \qquad (200)$$

и отсутствие зарядов, не только магнитных

$$\operatorname{div} \vec{B} = 0,$$

но — в рассматриваемом случае *свободного электромагнитного поля* — и *электрических* тоже:

$$\operatorname{div} \vec{E} = 0. \tag{201}$$

Выражая поля через потенциалы, из уравнений Максвелла в отсутствии источников получим

$$\operatorname{div} \vec{E} = \operatorname{div} \left(-\nabla \varphi - \frac{\partial \vec{A}}{\partial t} \right) = -\Delta \varphi + \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} - \frac{\partial}{\partial t} \left(\frac{1}{c^2} \frac{\partial \varphi}{\partial t} + \operatorname{div} \vec{A} \right) = 0,$$

rot rot
$$\vec{A} = -\Delta \vec{A} + \vec{\nabla} (\operatorname{div} \vec{A}) = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} = \frac{1}{c^2} \frac{\partial}{\partial t} \left(-\vec{\nabla} \varphi - \frac{\partial \vec{A}}{\partial t} \right)$$

откуда $-\Delta \vec{A} + \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = -\vec{\nabla} \left(\frac{1}{c^2} \frac{\partial \varphi}{\partial t} + \operatorname{div} \vec{A} \right).$

Выбирая калибровку Лоренца $\frac{1}{c^2} \frac{\partial \varphi}{\partial t} + \text{div } \vec{A} = 0$, получим волновые уравнения для потенциалов (см. (63), (64) и (97)):

$$\frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} - \Delta \varphi = 0, \qquad (202)$$
$$\frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} - \Delta \vec{A} = 0 \qquad (203)$$

6.2 Решение волновых уравнений. Избыточность решений.

Частным решением волновых уравнений являются т.н. плоские волны

$$\varphi(\vec{r},t) = \varphi(t - \frac{\vec{n}\vec{r}}{c}), \qquad (204)$$
$$\vec{A}(\vec{r},t) = \vec{A}(t - \frac{\vec{n}\vec{r}}{c}), \qquad (205)$$

где \vec{n} – единичный вектор в направлении распространения волны. Аналогичные решения справедливы и для полей \vec{E}, \vec{B} .

На первый взгляд решение содержит 4 произвольных функции. на самом деле степень произвола значительно меньше. Пусть \vec{n} параллельно оси x, и пусть $\varphi = \varphi(t - \frac{\vec{n}\vec{r}}{c}) \neq 0$, тогда из калибровочного условия Лоренца:

$$\frac{1}{c^2}\frac{\partial\varphi}{\partial t} = \frac{1}{c^2}\varphi' = -\frac{\partial A_x}{\partial x} = \frac{1}{c}A'_x \qquad \text{откуда} \qquad A_x = \frac{\varphi}{c} \quad (206)$$

Легко показать, что вклад продольной компоненты $A_{\parallel} \equiv A_x$ в поля равен нулю:

$$\vec{B} = \operatorname{rot} \vec{A}_x = 0;$$
 $\vec{E}_{\parallel} = -\frac{\partial \varphi}{\partial x} - \frac{\partial A_{\parallel}}{\partial t} = 0.$

Итак, в нашей калибровке можно без потери общности положить

$$\varphi \equiv 0, \qquad A_{\parallel} = 0; \qquad (207)$$

и отличными от нуля остается лишь поперечная часть векторпотенциала $\vec{A}_{\perp} \neq 0$. Равенство нулю продольных компонент $E_{\parallel} = B_{\parallel} = 0$ следует также из уравнений div $\vec{E} = 0$, div $\vec{B} = 0$. Окончательно, в общем случае решения в виде плоской волны можно представить в виде, содержащим лишь поперечные компоненты вектор-потенциала:

$$\vec{A} = \vec{A}_{\perp}, \tag{208}$$

$$\vec{E} = -\frac{\partial \vec{A}}{\partial \tau}, \qquad \text{где } \tau = t - \frac{\vec{n}\vec{r}}{c},$$
 (209)

$$\vec{B} = -\frac{1}{c} \left[\vec{n} \times \frac{\partial \vec{A}}{\partial \tau} \right] = \frac{1}{c} \left[\vec{n} \times \vec{E} \right].$$
(210)

В такой записи магнитное поле заведомо поперечно, $\vec{B} \perp \vec{n}$. Можно также переписать выражение для электрического поля в заведомо поперечном виде

$$\vec{E} = \vec{n} \times \left[\vec{n} \times \frac{\partial \vec{A}}{\partial \tau} \right].$$
 (211)

Последнее выражение остается справедливым и в калибровках,

в которых продольная составляющая вектор-потенциала отлична от нуля. Легко легко также увидеть, что в плоской волне \vec{E} и \vec{B} не только поперечны, но и взаимно перпендикулярны:

$$\vec{n}\vec{E} = 0; \quad \vec{n}\vec{B} = 0; \quad \vec{E}\vec{B} = 0.$$
 (212)

Плотность энергии в плоской волне

$$w = \frac{1}{2} \left\{ \varepsilon_0 \vec{E}^2 + \frac{1}{\mu_0} \vec{B}^2 \right\} = \varepsilon_0 \vec{E}^2 = \frac{1}{\mu_0} \vec{B}^2$$
(213)

т.к. $\sqrt{\varepsilon_0}E = B/\sqrt{\mu_0}$. Очевидно также, что плотность потока энергии

$$\vec{S} = \frac{1}{\mu_0} \left[\vec{E} \times \vec{B} \right] = \vec{n} c w, \qquad (214)$$

т.е. электромагнитная энергия в плоской волне распространяется со скоростью света.

6.3 Сферические волны.

Для точечного источника, расположенного в начале координат, решение для потенциалов

$$\varphi(\vec{r},t) = \frac{1}{r}f(t-\frac{r}{c}) \tag{215}$$

$$\vec{A}(\vec{r},t) = \frac{1}{r}\vec{a}(t-\frac{r}{c})$$
 (216)

описывает расходящиеся сферические волны. Для напряженностей полей, аналогично случаю плоской волны, имеем

$$\vec{E} = \frac{1}{r} \left[\vec{n} \times \left[\vec{n} \times \frac{\partial \vec{a}}{\partial \tau} \right] \right]$$
(217)
$$\vec{B} = -\frac{1}{cr} \left[\vec{n} \times \frac{\partial \vec{a}}{\partial \tau} \right]$$
(218)

где $\tau = t - r/c$.

6.4 Монохроматические плоские и сферические волны.

Пусть зависимость полей от времени и координат имеет вид

$$\vec{E}(\vec{r},t) = \vec{E}_0 e^{i(\vec{k}\vec{r}-\omega t)},$$
 (219)

$$\vec{B}(\vec{r},t) = \vec{B}_0 e^{i(\vec{k}\vec{r}-\omega t)},$$
 (220)

(где $\vec{E}_0 = c[\vec{n} \times \vec{B}_0]$). Это решение описывает монохроматическую плоскую волну с частотой ω и волновым вектором \vec{k} , $k = \omega/c$, или $\vec{k} = \vec{n}k$. Длина волны $\lambda = 2\pi/k$, а период $T = 2\pi/\omega$.

Аналогичное решение для сферической волны

$$\vec{E}(\vec{r},t) = \vec{e}_0 \frac{1}{r} e^{i(kr - \omega t)},$$

$$\vec{B}(\vec{r},t) = \vec{b}_0 \frac{1}{r} e^{i(kr - \omega t)}.$$
(221)
(222)

Комплексные вектора \vec{E}_0, \vec{e}_0 и \vec{B}_0, \vec{b}_0 описывают амплитуду $|E_0|$ и фазу φ волны:

$$\vec{E}_0 = |E_0| \cdot \mathrm{e}^{i\varphi}$$

Волновое уравнение является линейным уровнением *второго* порядка, и *два* линейно независимых решения описываются как мнимая и действительная часть данного решения (еще одно следствие линейности уравнений Максвелла!).

В определении *квадратичных* величин – таких, как плотность энергии, поток энергии при этом необходимо умножение квадрат модуля амплитуды на дополнительный фактор $\frac{1}{2}$ (среднее значение от \cos^2 , \sin^2)

Несколько слов о поляризации волны.

Вектора \vec{E}_0, \vec{e}_0 и \vec{B}_0, \vec{b}_0 лежат в *двумерной* плоскости, перпендикулярной направлению распространения волны \vec{n} . Выберем в качестве базиса два вектора \vec{e}_1, \vec{e}_2 , так, что $\vec{e}_1 \perp \vec{n}$ и $\vec{e}_2 = [\vec{e}_1 \times \vec{n}]$. Пусть $\vec{E}_0 = \alpha_1 \vec{e}_1 e^{i\varphi_1} + \alpha_2 \vec{e}_2 e^{i\varphi_2}$, где $\alpha_{1,2}$ и $\varphi_{1,2}$ – вещественные числа.

Тогда,

а) при $\varphi_1 = \varphi_2 \operatorname{Re} \vec{E}(t)$ колеблется вдоль некоторого направления – случай линейной поляризации;

б) при $\varphi_1 = \varphi_2 + \pi/2 \operatorname{Re} \vec{E}(t)$ колеблется по эллипсу – случай эллиптической поляризации.

6.5 Волновые пакеты. Фазовая и групповая скорость.

Рассмотрим для простоты одномерный волновой пакет, т.е. собранный из плоских монохроматических волн, распространяющихся в одном направлении

$$\varphi(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}k g(k) \mathrm{e}^{i(kx - \omega(k)t)}$$
(223)

В частности, в 3-мерном пространстве

$$\varphi(\xi,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}k g(k) \mathrm{e}^{i(k\xi - \omega t)},$$

где $\xi = \vec{n}\vec{r}$. Пусть амплитуда $g(k) \neq 0$ сосредоточена в узкой области вблизи $k = k_0$.

Покажем, что *огибающая* (профиль) пакета распространяется с т.н. *групповой скоростью*

$$v_{\rm rp} = \left(\frac{\partial \omega(k)}{\partial k}\right)_{k=k_0},\tag{224}$$

т.е.

$$\varphi(x,t) = G(x - v_{\rm rp}t) \cdot e^{i(k_0 x - \omega_0 t)}$$
(225)

где $\omega_0 = \omega(k_0)$. Действительно, разлагая вблизи $k = k_0$

$$kx - \omega(k)t \approx (k_0x - \omega(k_0)t) + (k - k_0) \cdot \left[x - \left(\frac{\partial \omega(k)}{\partial k}\right)_{k_0} \cdot t\right] + \dots$$

и подставляя в (223), получим

$$\varphi(x,t) = \underbrace{\left\{\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}kg(k) \mathrm{e}^{i(k-k_0) \cdot (x-v_{\mathrm{rp}}t)}\right\}}_{G(x-v_{\mathrm{rp}}t)} \cdot \mathrm{e}^{i(k_0x-\omega_0t)},$$

что и требовалось доказать.

Подчеркнем, что групповая скорость отличается от **фазо**вой скорости

$$v_{\Phi} = \frac{\omega}{k} \tag{226}$$

которая описывает скорость распространения фронта постоянной фазы $(kx - \omega(k)t) = \text{const.}$ Для света в вакууме $v_{\phi} = v_{\text{гр}} = c$.

Задача 32 Найти фазовую и групповую скорости для электромагнитной волны в волноводе сечением $l_x \times l_y$.

6.6 Эффект Доплера.

Распространение монохроматической волны описывается формулой

$$\varphi \propto \exp\left[i(\vec{k}\vec{r}-\omega t)\right],$$

где $|\vec{k}| = \omega/c$. Фаза волны

$$\theta \equiv \vec{k}\vec{r} - \omega t = -k^{\mu}x_{\mu}$$

является *релятивистским скаляром*, и поскольку $x^{\mu} = (ct, \vec{r})$ – 4-вектор, 4-компонентный сомножитель $k^{\mu} = (\omega/c, \vec{k})$ также должен быть 4-вектором.

Применяя к нему преобразования Лоренца, получим

закон преобразования его компонент

$$\vec{k}_{\parallel}' = \gamma \cdot \left(\vec{k}_{\parallel} - \vec{v}_{c^{2}}^{\omega}\right)$$
(227)
$$\vec{k}_{\perp}' = \vec{k}_{\perp}$$
(228)
$$\omega' = \gamma \cdot \left(\omega - \vec{k}\vec{v}\right) =$$
$$= \gamma \cdot \left(\omega - \frac{\omega}{c}v\cos\theta\right) = \gamma\omega \cdot \left(1 - \frac{v}{c}\cos\theta\right)$$
(229)

Пусть источник волны с частотой ω_0 покоится в системе (x'), движущейся относительно неподвижного в (x) наблюдателя со скоростью v (т.е. $\omega' \equiv \omega_0$), тогда из последнего уравнения в частота в системе отсчета наблюдателя (x) равна:

$$\omega = \frac{\sqrt{1 - v^2/c^2}}{1 - \frac{v}{c}\cos\theta}\omega_0,\tag{230}$$

(здесь θ — угол прихода волны также в системе отсчета *наблюдателя*). В нерелятивистском пределе $\beta \equiv v/c \ll 1$ эффект Доплера принимает вид

$$\omega = (1 + \beta \cos \theta) \omega_0.$$

В поперечном направлении $\theta = \pi/2$ нерелятивистский эффект Доплера отсутствует, а точная формула (230) дает

$$\omega = \sqrt{1 - \beta^2} \omega_0 = \omega_0 / \gamma, \qquad (231)$$

отражая простой факт замедления времени в движущейся относительно (x) релятивистской системе отсчета (x'). Рассмотрим теперь преобразование угла распространения волны. Пусть источник в системе (x') излучает под углом θ' ; найдем угол, под которым распространяется волна в системе отсчета наблюдателя (x). Для этого поделим уравнение (228) на уравнение (227):

$$\operatorname{tg} \theta' = \frac{1}{\gamma} \, \frac{\sin \theta}{(\cos \theta - \beta)}.\tag{232}$$

Передняя полусфера в системе источника (x') 0 < $\theta' \leq \pi/2$ отвечает в системе наблюдателя

$$1 \ge \cos \theta \ge \beta. \tag{233}$$

причем угол в системе источника $\theta' = \pi/2$ соответствует в системе наблюдателя $\cos \theta - \beta = 0$. В ультрарелятивистском пределе $\gamma \gg 1, \beta \to 1$, разлагая $\cos \theta \approx 1 - \theta^2/2$, имеем

$$\cos\theta - \beta \approx 1 - \theta^2/2 - \beta = (1 - \beta) - \theta^2/2 = 0$$

откуда

$$\theta^2 = 2(1 - \beta) \approx (1 + \beta)(1 - \beta) = 1/\gamma^2.$$

Таким образом, передняя полусфера в системе источника в ультрарелятивистском случае сжимается с точки зрения наблюдателя в узкий конус $\theta \lesssim 1/\gamma \ll 1$.

Задача 33 Как искажается карта звездного неба для космонавта, двигающегося с ультрарелятивистской скоростью, $\gamma \gg 1$?

Рекомендую: "Тау-ноль" (Пол Андерсон). ссылка 1 и ссылка2 + отзывы

7 Запаздывающие потенциалы и поля.

7.1 Поле равномерно движущегося заряда.

Пусть точечный заряд e движется в *лабораторной* системе (x) (системе наблюдателя) со скоростью \vec{v} паралельно оси x. В *собственной* системе отсчета (x') заряд покоится в начале системы кординат x' = y' = z' = 0, и соответствующее поле заряда равно

$$\varphi' = \frac{e}{4\pi\varepsilon_0 R'}; \qquad \vec{A'} = 0. \tag{234}$$

Пусть также в момент t = 0 начала обеих систем координат совпадают:

$$x(t=0) = x' = 0, \ y(t=0) = y' = 0, \ u \ z(t=0) = z' = 0.$$

Используя преобразования Лоренца для потенциалов

$$\varphi = \gamma \cdot (\varphi' + vA'_x), \qquad A_x = \gamma \cdot (A'_x + \frac{v}{c^2}\varphi'),$$

в лабораторной системе системе получим

$$\varphi = \frac{e}{4\pi\varepsilon_0} \frac{1}{R'\sqrt{1-v^2/c^2}} = \gamma \frac{1}{4\pi\varepsilon_0} \frac{e}{R'},$$
$$A_x = \frac{v}{c^2} \frac{e}{4\pi\varepsilon_0} \frac{1}{R'\sqrt{1-v^2/c^2}} = \gamma \frac{\mu_0}{4\pi} v_x \frac{e}{R'},$$

где $R' = \sqrt{x'^2 + y'^2 + z'^2}$ – расстояние до наблюдателя в *системе покоя заряда*. Учитывая преобразования

$$x' = \gamma \cdot (x - vt), y' = y, z' = z,$$

выразим R' через координаты x, y, z в лабораторной системе (в системе наблюдателя):

$$R' = \gamma \sqrt{(x - vt)^2 + (1 - \beta^2)(y^2 + z^2)},$$
(235)

где $\beta \equiv v/c$.

Введение "эффективного расстояния" $R^* = R'/\gamma$, определяемого как

$$R^* = \sqrt{(x - vt)^2 + (1 - \beta^2)(y^2 + z^2)},$$
(236)

позволяет потенциалы записать в виде, <u>напоминающем</u> соответствующий результат в нерелятивистском пределе

$$\varphi = \frac{1}{4\pi\varepsilon_0} \frac{e}{R^*}, \qquad \vec{A} = \frac{\mu_0}{4\pi} \vec{v} \frac{e}{R^*}.$$
(237)

"Эффективное расстояние" R^* можно выразить также через угол между \vec{R} и \vec{v} :

$$R^* = R\sqrt{1 - \beta^2 \sin^2 \theta} \tag{238}$$

где R — расстояние до заряда в <u>лабораторной</u> системе (x):

$$R = \sqrt{(x - vt)^2 + y^2 + z^2} \tag{239}$$

Аналогичным образом можно найти поля быстро движущегося заряда. Записывая в *системе покоя заряда* выражения для полей

$$\vec{E'} = \frac{e\vec{R'}}{4\pi\varepsilon_0 R'^3}; \qquad \vec{B'} = 0,$$

и используя соответствующие релятивистские преобразования для полей

$$\vec{E}_{\parallel} = \vec{E}_{\parallel}'; \qquad \vec{E}_{\perp} = \gamma(\vec{E}_{\perp}' - [\vec{v} \times \vec{B}']) = \gamma \vec{E}_{\perp}', \\ \vec{B}_{\parallel} = \vec{B}_{\parallel}'; \qquad \vec{B}_{\perp} = \gamma(\vec{B}_{\perp}' + \frac{1}{c^2}[\vec{v} \times \vec{E}']) = \gamma \frac{1}{c^2}[\vec{v} \times \vec{E}'] = \frac{1}{c^2}[\vec{v} \times \vec{E}]$$
(240)

в лабораторной системе имеем

$$E_x = \frac{ex'}{4\pi\varepsilon_0 R'^3} = \frac{1}{4\pi\varepsilon_0} \frac{e}{\gamma^3 R^{*^3}} \gamma \cdot (x - vt) = \frac{1}{4\pi\varepsilon_0} \frac{e \cdot (x - vt)}{\gamma^2 R^{*^3}},$$

$$\vec{E}_\perp = \gamma \vec{E}'_\perp = \frac{1}{4\pi\varepsilon_0} \gamma \frac{e\vec{r}_\perp}{R'^3} = \frac{1}{4\pi\varepsilon_0} \frac{e\vec{r}_\perp}{\gamma^2 R^{*^3}}$$

Объединяя эти формулы, получим

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} (1-\beta^2) \frac{e\vec{R}}{{R^*}^3} = \frac{1}{4\pi\varepsilon_0} \frac{e\vec{R}(1-\beta^2)}{R^3(1-\beta^2\sin^2\theta)^{3/2}},$$
 (241)

что, в соответствии с (240) для магнитного поля дает:

$$\vec{B} = \frac{1}{c^2} [\vec{v} \times \vec{E}]. \tag{242}$$

Напомним, что радиус-вектор $\vec{R} = (x - vt, y, z) = \vec{r} - \vec{r_e}(t)$, где $\vec{r} = (x, y, z)$ и $\vec{r_e} = (vt, 0, 0)$ – положение в лабораторной системе наблюдателя и точечного заряда, соответственно.

7.2 Решение уравнений Максвелла с заданными источниками, учет запаздывания.

В лоренцевской калибровке

$$\operatorname{div} \vec{A} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} = 0 \tag{243}$$

потенциалы электромагнитного поля удовлетворяют волновому уравнению с правой частью:

$$\nabla^2 \varphi - \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} = -\frac{1}{\varepsilon_0} \rho \qquad (244)$$
$$\nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{j} \qquad (245)$$

Для решения этих уравнений полезно перейти от временно́го (t) к спектральному (или частотному) представлению (ω) :

$$\varphi(r,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega e^{-i\omega t} \varphi_{\omega}(r), \qquad \rho(r,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega e^{-i\omega t} \rho_{\omega}(r),$$

 $\vec{A}(r,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega e^{-i\omega t} \vec{A}_{\omega}(r), \qquad \vec{j}(r,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega e^{-i\omega t} \vec{j}_{\omega}(r),$

в котором уравнения (243),(244),(245) принимают вид

$$\nabla^2 \varphi_\omega + k^2 \varphi_\omega = -\frac{1}{\varepsilon_0} \rho_\omega, \qquad (246)$$

$$\nabla^2 \vec{A}_{\omega} + k_{\omega}^2 \vec{A}_{\omega} = -\mu_0 \vec{j}_{\omega}, \qquad (247)$$

$$\operatorname{div} \vec{A}_{\omega} - \frac{\imath \kappa}{c} \varphi_{\omega} = 0.$$
 (248)

и где использовано $k = \frac{\omega}{c}$.

Полученные уравнения не содержат зависимости от времени, напоминая обсуждавшиеся ранее уравнения для *статиче*ского распределения зарядов и токов. Как и в статическом случае, решения этих уравнений ввиду линейности могут быть получены методом функции Грина:

$$\varphi_{\omega}(\vec{r}) = -\frac{1}{\varepsilon_0} \int dV' G_{\omega}(\vec{r} - \vec{r}') \rho_{\omega}(\vec{r}') \qquad (249)$$

$$\vec{A}_{\omega}(\vec{r}) = -\mu_0 \int dV' G_{\omega}(\vec{r} - \vec{r}') \vec{j}_{\omega}(\vec{r}') \qquad (250)$$

где функция Грина $G_{\omega}(\vec{r}-\vec{r'})$ удовлетворяет уравнению Гельмгольца для "точечных" источников:

$$\nabla^2 G_\omega(\vec{R}) + k^2 G_\omega(\vec{R}) = \delta(\vec{R}).$$
(251)

По сути, это отражение того факта, что произвольное распределение плотности (например, зарядов) может быть "набрано" из точечных источников, и соответствующие им потенциалы и поля являются суммой от потенциалов и полей соответствующих точечных источников.

Тем самым, решение исходной задачи для произвольных источников свелось к задаче (251) для точечного источника. Дальнейший переход в (251), теперь уже к *импульсному* представлению при подстановке в (251)

$$G_{\omega}(\vec{R}) = \frac{1}{(2\pi)^3} \int d^3k' e^{i\vec{k}'\vec{R}} G_{\omega}(k')$$
(252)

дает

$$G_{\omega}(k') = \frac{1}{k^2 - k'^2} \tag{253}$$

Это выражение имеет полюса $k'^2 = k^2$. Для удовлетворения принципа причинности необходимо доопределить правило обхода полюсов. Выбор

$$k' = \pm \sqrt{k^2 + i\varepsilon \frac{\omega}{c}} \tag{254}$$

где бесконечно малая $\varepsilon > 0$ дает нам требуемую запаздывающую функцию Грина. "Запаздывающая" функция Грина описывает решение в виде расходящихся волн:

$$G_{\omega}^{\text{ret}}(\vec{R}) = \lim_{\varepsilon \to 0} \frac{1}{(2\pi)^3} \int d^3 k' e^{i\vec{k}'\vec{R}} \frac{1}{k^2 - k'^2 + i\varepsilon_{c}^{\omega}} = -\frac{1}{4\pi} \frac{e^{ikR_{|\omega|}^{\omega}}}{R} = -\frac{1}{4\pi} \frac{e^{i\frac{\omega}{c}R}}{R}.$$
 (255)

Фактически она описывает решение для единичного заряда, умноженное на фазовый множитель $e^{i\frac{\omega}{c}R}$, учитывающий набег фазы на расстоянии R, при распространении волны с частотой ω из точки испускания в точку наблюдения.

Именно этот набег фазы отличает соответствующее решение для запаздывающих потенциалов в спектральном представлении:

$$\varphi_{\omega}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int dV' e^{i\frac{\omega}{c}R} \frac{\rho_{\omega}(\vec{r}')}{R}$$
(256)
$$\vec{A}_{\omega}(\vec{r}) = \frac{\mu_0}{4\pi} \int dV' e^{i\frac{\omega}{c}R} \frac{\vec{j}_{\omega}(\vec{r}')}{R}$$
(257)

от статических решений (26).

Переходя от спектрального к временному представлению, получим запаздывающие потенциалы

$$\varphi(\vec{r},t) = \frac{1}{4\pi\varepsilon_0} \int dV' \frac{\rho(\vec{r}',t-R/c)}{R}$$
(258)

$$\vec{A}(\vec{r},t) = \frac{\mu_0}{4\pi} \int dV' \frac{j(\vec{r}',t-R/c)}{R}$$
(259)

в правую часть которых явным образом вошло время распространения волны от источника до наблюдателя, равное R/c.

7.3 Поля произвольно движущегося точечного заряда.

7.3.1 Потенциалы Лиенара-Вихерта.

Рассмотрим случай произвольно движущегося точечного заряда

$$\rho(\vec{r},t) = e\delta(\vec{r} - \vec{r}_0(t));$$
(260)

$$\vec{j}(\vec{r},t) = e\vec{v}(t)\delta(\vec{r} - \vec{r}_0(t));$$
(261)

где $\vec{v}(t) \equiv \mathrm{d}\vec{r_0}(t)/\mathrm{d}t.$

Переходя к спектральному представлению для плотности движущегося точечного заряда и тока

$$\rho_{\omega}(\vec{r}) = \int_{-\infty}^{\infty} \mathrm{d}\tau \mathrm{e}^{i\omega\tau} e\delta(\vec{r} - \vec{r}_0(\tau))$$
(262)

$$\vec{j}_{\omega}(\vec{r}) = \int_{-\infty}^{\infty} \mathrm{d}\tau \mathrm{e}^{i\omega\tau} e\vec{v}\delta(\vec{r}-\vec{r}_0(\tau))$$
(263)

и подставляя их в (256),(257), для потенциалов в спектральном представлении, получим

$$\varphi_{\omega}(\vec{r}) = \frac{1}{4\pi\varepsilon_{0}} \int dV' e^{i\frac{\omega}{c}R} \frac{1}{R} \underbrace{\int_{-\infty}^{\infty} d\tau e^{i\omega\tau} e\delta(\vec{r}' - \vec{r_{0}}(\tau))}_{\rho_{\omega}(r')} = \frac{e}{4\pi\varepsilon_{0}} \int_{-\infty}^{\infty} d\tau \frac{1}{R(\tau)} e^{i(\omega\tau + \frac{\omega}{c}R(\tau))}, \qquad (264)$$
$$\vec{A}_{\omega}(\vec{r}) = \frac{\mu_{0}}{4\pi} \int dV' e^{i\frac{\omega}{c}R} \frac{1}{R} \underbrace{\int_{-\infty}^{\infty} d\tau e^{i\omega\tau} e\vec{v}\delta(\vec{r} - \vec{r_{0}}(\tau))}_{j_{\omega}(r')} = \frac{\mu_{0}e}{4\pi} \int_{-\infty}^{\infty} d\tau \frac{\vec{v}(\tau)}{R(\tau)} e^{i(\omega\tau + \frac{\omega}{c}R(\tau))}. \qquad (265)$$

Потенциалы *во временном представлении* получаются с помощью обратного преобразования Фурье:

$$\varphi(\vec{r},t) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \mathrm{e}^{-i\omega t} \varphi_{\omega}(\vec{r}) = \frac{e}{4\pi\varepsilon_{0}} \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}\tau \frac{1}{R(\tau)} \mathrm{e}^{i(\omega(\tau-t)+\frac{\omega}{c}R(\tau))} = \\
= \frac{e}{4\pi\varepsilon_{0}} \int_{-\infty}^{\infty} \mathrm{d}\tau \frac{1}{R(\tau)} \delta\left(\tau - t + \frac{R(\tau)}{c}\right) \\
= \frac{1}{4\pi\varepsilon_{0}} \frac{e}{R(\tau)} \frac{1}{\left|\frac{\mathrm{d}}{\mathrm{d}\tau}\left(\tau + R(\tau)/c\right)\right|} = \\
= \frac{e}{4\pi\varepsilon_{0}} \frac{1}{R(\tau)\left(1 - \vec{n}\vec{v}/c\right)},$$
(266)

где использовано

$$\frac{\mathrm{d}}{\mathrm{d}\tau}R(\tau) \equiv \frac{(\vec{r} - \vec{r}_0(\tau))}{|\vec{r} - \vec{r}_0(\tau)|} \frac{\mathrm{d}}{\mathrm{d}\tau}(\vec{r} - \vec{r}_0(\tau)) = -\vec{n}\vec{v}$$

Аналогично, для векторного потенциала имеем

$$\vec{A}(\vec{r},t) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} e^{-i\omega t} \vec{A}_{\omega}(\vec{r}) =$$
$$= \frac{\mu_0}{4\pi} \frac{e\vec{v}}{R(\tau) (1 - \vec{n}\vec{v}/c)} = \frac{\vec{v}}{c^2} \varphi \qquad (267)$$

В правой части (266) и (267) зависящие от времени величины берутся в момент времени τ , определяемый из уравнения

$$t - \tau = R(\tau)/c \tag{268}$$

Полученные выражения (266) и (267) называются *потенциала*ми Лиенара-Вихерта.

7.3.2 Поля точечного заряда.

Напряженности полей могут быть вычислены непосредственно из потенциалов (266) и (267), однако при вычислении производных необходимо учесть, что потенциалы в момент времени t на самом деле выражены через величины, заданные в момент времени τ , где $t = \tau + R(\tau)/c$:

$$\frac{\partial}{\partial t} = \frac{\partial \tau}{\partial t} \frac{\partial}{\partial \tau} = \frac{1}{(1 - \vec{n}\vec{v}/c)} \frac{\partial}{\partial \tau}$$
(269)
$$\nabla|_{t=\text{const}} = \nabla|_{\tau=\text{const}} + (\nabla \tau) \frac{\partial}{\partial \tau} =$$
$$= \nabla|_{\tau=\text{const}} - \frac{\vec{n}}{c \cdot (1 - \vec{n}\vec{v}/c)} \frac{\partial}{\partial \tau}$$
(270)
Вычисления дают

$$\vec{E} = \frac{e}{4\pi\varepsilon_0} \frac{1 - v^2/c^2}{(1 - \vec{n}\vec{v}/c)^3} \frac{\vec{n} - \vec{v}/c}{R^2} + \frac{e}{4\pi\varepsilon_0} \frac{1}{c^2 (1 - \vec{n}\vec{v}/c)^3} \frac{[\vec{n} \times [(\vec{n} - \vec{v}/c) \times \vec{a}]]}{R}, \quad (271)$$
$$\vec{B} = \frac{1}{c} [\vec{n} \times \vec{E}] \qquad (272)$$

Напомним, что положение, скорость и ускорение в этих формулах берутся в момент времени $\tau = t - R(\tau)/c$, где $R(\tau)/c$ время, необходимое для распространения поля от источника до наблюдателя.

Поле распадается на два слагаемых: первое зависит от координаты заряда $\vec{r_0}$ и его скорости \vec{v} и убывает с расстоянием $\propto R^{-2}$, второе же зависит еще и от ускорения $\vec{a} = \vec{v}$, но убывает с расстоянием как $\propto R^{-1}$. Первое слагаемое доминирует в области вблизи движущегося заряда, называемой *квазистатической зоной*, второе – в области на больших расстояниях, называемой *волновой зоной*.

7.3.3 Поля в квазистатической зоне, связь с полем равномерно движущегося заряда.

Основной вклад в квазистатической зоне дает слагаемое

$$\vec{E}(\vec{r},t) = \frac{e}{4\pi\varepsilon_0} \frac{1 - v^2/c^2}{(1 - \vec{n}\vec{v}/c)^3} \frac{\vec{n} - \vec{v}/c}{R^2} \Big|_{\tau = t - R(\tau)/c}, \quad (273)$$
$$\vec{B} = \frac{1}{c} [\vec{n} \times \vec{E}].$$

Итак, в квазистатической зоне поля не зависят от ускорения и спадают $\propto R^{-2}$.

Поле в точке наблюдения \vec{r} в момент времени t определяется, согласно (273), положением заряда $\vec{r_0}$ и его скоростью \vec{v} в некоторый *предшествующий* момент времени $\tau = t - R(\tau)/c$. Введем радиус-вектор \vec{R} описывающий "эффективное полоэксение" заряда, в котором заряд оказался бы в момент времени t, если, начиная с момента τ , он продолжал бы двигаться c постоянной скоростью $\vec{v} = \vec{v}(\tau)$:

$$\widetilde{\vec{R}} = \vec{r} - [\vec{r}_0(\tau) + (t - \tau)\vec{v}] = \underbrace{\vec{r} - \vec{r}_0(\tau)}_{\vec{R}(\tau)} - \underbrace{(t - \tau)}_{R(\tau)/c} \vec{v} = R(\tau) \cdot \left(\vec{n} - \frac{\vec{v}}{c}\right)$$

Выразим поля в квазистатической зоне через R:

$$\vec{E}(\vec{r},t) = \frac{1}{4\pi\varepsilon_0} \frac{e\tilde{\vec{n}}}{\tilde{R}^2} \frac{1 - v^2/c^2}{\left(1 - \frac{v^2}{c^2}\sin^2\tilde{\theta}\right)^{3/2}},$$

$$\vec{B}(\vec{r},t) = \frac{\mu_0}{4\pi} \frac{e \cdot [\vec{v} \times \tilde{\vec{n}}]}{\tilde{R}^2} \frac{1 - v^2/c^2}{\left(1 - \frac{v^2}{c^2}\sin^2\tilde{\theta}\right)^{3/2}} = \frac{1}{c} [\vec{n} \times \vec{E}].$$
(274)

Эти выражения по виду совпадают с результатами (241),(242) для заряда, движущегося с постоянной скоростью $\vec{v} = \vec{v}(\tau)$.

В нерелятивистском пределе $(v/c \ll 1)$

$$\vec{E}(\vec{r},t) = \frac{1}{4\pi\varepsilon_0} \frac{e\tilde{\vec{n}}}{\tilde{R}^2}, \qquad (276)$$
$$\vec{B}(\vec{r},t) = \frac{\mu_0}{4\pi} \frac{e \cdot [\vec{v} \times \tilde{\vec{n}}]}{\tilde{R}^2}, \qquad (277)$$

электрическое поле сферически симметрично, а магнитное поле мало: $c|\vec{B}|/|\vec{E} \models v/c \ll 1$.

В ультрарелятивистском случае $(v/c \rightarrow 1)$ поля велики в узкой области $\Delta \tilde{\theta} \sim 1/\gamma$ вблизи плоскости, перпендикулярной скорости частицы и проходящей через ее эффективное положение в момент t.

Квазистатическое поле перемещается вместе с зарядом, не отрываясь от него, и **не дает** вклада в излучение.

7.3.4 Поле в волновой зоне, излучение.

На достаточно больших расстояниях, в т.н. волновой зоне, поля определяются вторым слагаемым в (271):

$$\vec{E}(\vec{r},t) = \frac{e}{4\pi\varepsilon_0} \frac{1}{c^2 (1-\vec{n}\vec{v}/c)^3} \frac{[\vec{n} \times [(\vec{n}-\vec{v}/c) \times \vec{a}]]}{R}, \quad (278)$$
$$\vec{B}(\vec{r},t) = \frac{1}{c} [\vec{n} \times \vec{E}]. \quad (279)$$

которое описывает *расходящиеся сферические волны*: поля \vec{E} и \vec{B} убывают пропорционально R^{-1} , а полный поток энергии $\propto 4\pi R^2 \cdot \frac{1}{\mu_0} [\vec{E} \times \vec{B}] \to \text{const.}$ Согласно (217), (218) для сферической волны поля могут быть выражены также и через производную вектор-потенциала (267) по времени

$$\vec{E}(\vec{r},t) = \begin{bmatrix} \vec{n} \times \left[\vec{n} \times \frac{\partial \vec{A}}{\partial t} \right] \end{bmatrix} = \frac{1}{1 - \vec{n}\vec{v}/c} \begin{bmatrix} \vec{n} \times \left[\vec{n} \times \frac{\partial \vec{A}}{\partial \tau} \right] \end{bmatrix},$$
(280)
$$\vec{B}(\vec{r},t) = -\frac{1}{c} \begin{bmatrix} \vec{n} \times \frac{\partial \vec{A}}{\partial t} \end{bmatrix} = \frac{1}{1 - \vec{n}\vec{v}/c} \begin{bmatrix} \vec{n} \times \frac{\partial \vec{A}}{\partial \tau} \end{bmatrix}.$$
(281)

Интенсивность излучения (поток энергии, измеряемый наблюдателем) в заданный телесный угол dΩ равна

$$dI(\theta,\varphi) = c\varepsilon_0 E^2 \cdot R^2 d\Omega = \frac{e^2}{4\pi\varepsilon_0} \frac{\left[\vec{n} \times \left[(\vec{n} - \vec{v}/c) \times \vec{a}\right]\right]^2}{c^3 \left(1 - \vec{n}\vec{v}/c\right)^6} \frac{d\Omega}{4\pi}.$$
 (282)

Изменение энергии заряженной частицы W в единицу времени за счет излучения в заданный телесный угол d Ω соответственно равно:

$$-\frac{\mathrm{d}^{2}W}{\mathrm{d}\Omega\mathrm{d}\tau}\mathrm{d}\Omega = \frac{\mathrm{d}t}{\mathrm{d}\tau}\cdot\mathrm{d}I(\theta,\varphi) = (1-\vec{n}\vec{v}/c)\,\mathrm{d}I(\theta,\varphi) =$$
$$= \frac{e^{2}}{4\pi\varepsilon_{0}}\frac{\left[\vec{n}\times\left[\left(\vec{n}-\vec{v}/c\right)\times\vec{a}\right]\right]^{2}}{c^{3}\left(1-\vec{n}\vec{v}/c\right)^{5}}\frac{\mathrm{d}\Omega}{4\pi}.$$
(283)

Интегрирование по всем направлениям дает

$$-\frac{\mathrm{d}W}{\mathrm{d}\tau} = \frac{2}{3} \frac{e^2}{4\pi\varepsilon_0} \frac{a^2 - \left[\frac{\vec{v}}{c} \times \vec{a}\right]^2}{c^3(1 - \frac{v^2}{c^2})^3}$$
(284)

8 Излучение электромагнитных волн.

8.1 Характер излучения в нерелятивистском и ультрарелятивистском случаях, угловое распределение.

В *нерелятивистком пределе* выражение (283) для излучаемой мощности дает

$$-\frac{\mathrm{d}^2 W}{\mathrm{d}\Omega \mathrm{d}\tau} \mathrm{d}\Omega = \frac{e^2}{4\pi\varepsilon_0} \frac{[\vec{n}\times\vec{a}]^2}{c^3} \frac{\mathrm{d}\Omega}{4\pi} = \frac{1}{4\pi\varepsilon_0} \frac{[\vec{n}\times\vec{d}]^2}{c^3} \frac{\mathrm{d}\Omega}{4\pi}, \quad (285)$$

где $\vec{d}(t) \equiv e\vec{r}(t)$ — дипольный момент заряда, движущегося по траектории $\vec{r} = \vec{r}(t)$.

Мы видим, что в *нерелятивистском приближении* излучение точечного заряда носит *дипольный* характер.

Угловое распределение зависит от конкретной зависимости $\vec{d}(t)$. В частности, пусть зависимость $\vec{d}(t) = \vec{d}_0 \cos \omega_0 t$, и пусть $\vec{d}_0 \| z$, тогда интенсивность излучения

$$dI(\theta,\varphi) = \frac{1}{4\pi\varepsilon_0} \frac{\omega^4 |d_0|^2}{c^3} \cos^2 \omega_0 t \sin^2 \theta \frac{d\Omega}{4\pi}$$
(286)

Задача 34 Пусть дипольный момент d вращается в плоскости xy, с частотой ω_0 . Найти распределение интенсивности по углам, а также полную интенсивность излучения.

Полная мощность дипольного излучения дается интегрированием по углам:

$$-\frac{\mathrm{d}W}{\mathrm{d}\tau} = \frac{2}{3} \frac{e^2}{4\pi\varepsilon_0} \frac{a^2}{c^3} = \frac{2}{3} \frac{1}{4\pi\varepsilon_0} \frac{\vec{d}^2}{c^3}$$
(287)

В ультрарелятивистском пределе основная мощность излучения сосредоточена в узком конусе $\Delta \theta \sim 1/\gamma$.

Если $\vec{a} \| \vec{v}$, то

$$-\frac{\mathrm{d}^2 W}{\mathrm{d}\Omega \mathrm{d}\tau} \mathrm{d}\Omega = \frac{1}{4\pi\varepsilon_0} \frac{[\vec{n} \times \vec{d}]^2}{c^3 \left(1 - \vec{n}\vec{v}/c\right)^5} \frac{\mathrm{d}\Omega}{4\pi}$$
(288)

а полная (проинтегрированная по углам) мощность излучения

$$\frac{\mathrm{d}W}{\mathrm{d}\tau} = \frac{2}{3} \frac{e^2}{4\pi\varepsilon_0} \frac{a^2}{c^3 \left(1 - v^2/c^2\right)^3} = (289)$$
$$= \frac{2}{3} \frac{e^2}{4\pi\varepsilon_0} \frac{|\vec{d}|^2}{c^3 \left(1 - v^2/c^2\right)^3} (290)$$

пропорциональна γ^6 ! (Лиенар, 1898г)

Если же
$$\vec{a} \perp \vec{v}$$
 (пусть $\vec{v} \parallel z, \vec{a} \parallel x$)

$$-\frac{\mathrm{d}^2 W}{\mathrm{d}\Omega \mathrm{d}\tau} \mathrm{d}\Omega = \frac{e^2}{4\pi\varepsilon_0} \frac{a^2}{c^3} \frac{\left(1 - \frac{v}{c}\cos\theta\right)^2 - \left(1 - \frac{v^2}{c^2}\right)\sin^2\theta\cos^2\varphi}{\left(1 - \frac{v}{c}\cos\theta\right)^5} \frac{\mathrm{d}\Omega}{4\pi}$$
(291)

и полная мощность излучения в этом случае

$$-\frac{\mathrm{d}W}{\mathrm{d}\tau} = \frac{2}{3} \frac{e^2}{4\pi\varepsilon_0} \frac{a^2}{c^3 \left(1 - v^2/c^2\right)^2}$$
(292)

пропорциональна γ^4 !

Обратим внимание, что при том же ускорени
иaмощность излучения в этом случае в
 γ^2 раз меньше.

8.2 Излучение при движении в ускорителях и накопителях.

Ускорение частицы, движущейся во внешнем электромагнитном поле равно (см. (131)):

$$\vec{a} = \frac{1}{m} \sqrt{1 - \frac{v^2}{c^2}} \left\{ \vec{F}^e - \frac{\vec{v}}{c^2} \left(\vec{v} \vec{F}^e \right) \right\}$$
(293)

где

$$\vec{F}^e = e\left(\vec{E}^e + \left[\vec{v} \times \vec{B}^e\right]\right) \tag{294}$$

Подстановка ускорения в (284) дает полную мощность потерь на излучение

$$-\frac{\mathrm{d}W}{\mathrm{d}\tau} = \frac{2}{3} \frac{e^2}{4\pi\varepsilon_0} \frac{(\vec{F}^e)^2 - \frac{1}{c^2} \left(\vec{v}\vec{F}^e\right)^2}{m^2 c^3 \left(1 - v^2/c^2\right)}.$$
 (295)

Удобно этот результат выразить через энергию и импульс частицы

$$-\frac{\mathrm{d}W}{\mathrm{d}\tau} = \frac{2}{3} \frac{e^2}{4\pi\varepsilon_0} \frac{1}{m^4 c^7} \left\{ (\vec{F}^e)^2 W^2 - c^2 \left(\vec{p} \vec{F}^e \right)^2 \right\}$$
(296)

Весьма важным является факт, что излучение быстро падает с ростом массы частицы: при той же самой энергии частиц потери электронов на излучение оказываются в $\sim 10^9$ раз больше⁴, чем протонов!

⁴для циклических ускорителей.

8.2.1 Потери в линейных ускорителях.

В линейных ускорителях основным является ускоряющее электрическое поле:

$$\vec{E}^e \| \vec{p}, \vec{B}^e = 0.$$
 (297)

Мощность потерь

$$-\frac{\mathrm{d}W}{\mathrm{d}\tau} = \frac{2}{3} \frac{e^2}{4\pi\varepsilon_0} \frac{|\vec{E}^e|^2}{m^2 c^3} \tag{298}$$

в этом случае *не зависит* от энергии частицы W. Максимальная энергия, приобретаемая частицей $W_{\max} \approx e E^e L$, где L – длина, на которой действует ускоряющее поле. Полная потеря энергии за все время ускорения

$$-\Delta W \sim -\frac{\mathrm{d}W}{\mathrm{d}\tau}\frac{L}{c} = \frac{2}{3}\frac{e^2}{4\pi\varepsilon_0}\frac{\vec{E}^{e^2}}{m^2c^3}\frac{L}{c} = \frac{2}{3}\frac{1}{4\pi\varepsilon_0}\frac{W_{\mathrm{max}}^2}{m^2c^4L}.$$
 (299)

Ускорение становится неэффективным при $-\Delta W \sim W_{\text{max}}$, откуда следует, что длина ускорителя, необходимая для ускорения частицы до энергии W_{\max} :

$$L \sim \frac{2}{3} \frac{1}{4\pi\varepsilon_0} \frac{W_{\text{max}}}{m^2 c^4} \tag{300}$$

растет с W_{\max} линейно.

8.2.2 Потери в циклических ускорителях, синхротронное излучение.

В циклическом ускорителе (накопителе) электрическое поле отсутствует $\vec{E}^e = 0$, и движение по замкнутой орбите обеспечивается постоянным по времени магнитным полем $\vec{B}^e \perp \vec{p}$. Соответствующая мощность потерь на излучение, называемое в этом случае *синхротронным*

$$-\frac{\mathrm{d}W}{\mathrm{d}\tau} = \frac{2}{3} \frac{e^2}{4\pi\varepsilon_0} \frac{p^2 B^{e^2}}{m^2 c^3} \tag{301}$$

в отличии от потерь в линейном ускорителе (298) растет пропорционально квадрату импульса частицы. В ультрарелятивистском случае $p^2 \to W^2/c^2$, и

$$-\frac{\mathrm{d}W}{\mathrm{d}\tau} = \frac{2}{3} \frac{e^2}{4\pi\varepsilon_0} \frac{B^{e^2} W^2}{m^2 c^5}.$$
(302)

Частота обращения и радиус орбиты связаны с магнитным полем как

$$\omega_{\text{obp}} = eB^e c^2 / W, R_{\text{obp}} = W / eB^e c; \qquad (303)$$

а поле, отвечающее заданному радиусу

$$eB^e = W/cR_{\text{obp}}.$$

В результате при фиксированном радиусе накопительного кольца $R_{\rm obp}$ мощность синхротронного излучения растет с энергией как

$$-\frac{\mathrm{d}W}{\mathrm{d}\tau} = \frac{2}{3} \frac{e^2}{4\pi\varepsilon_0} \frac{W^4}{m^4 c^7 R_{\mathrm{obp}}^2} = \frac{2}{3} \frac{e^2 c}{4\pi\varepsilon_0 R_{\mathrm{obp}}^2} \gamma^4 \tag{304}$$

Потери за один оборот составляют

$$-\Delta W = \frac{e^2}{3\varepsilon_0 R_{\rm obp}} \gamma^4 \tag{305}$$

Использование циклических ускорителей становится бессмысленным, если потери энергии за оборот сопоставимы с полной энергией частицы: $-\Delta W \sim W$, соответственно, требуемый минимальный радиус ускорителя

$$R_{\rm obp} \gtrsim \frac{e^2}{3\varepsilon_0 m c^2} \gamma^3 = \frac{e^2}{3\varepsilon_0 m^4 c^8} W^3 \tag{306}$$

растет как куб энергии ускоряемых частиц!

8.3 Тормозное излучение при рассеянии.

Пусть частица рассеивается на некотором рассеивающем центре, расположенном в начале координат $\vec{r} = 0$. Предположим также, что размеры области рассеяния малы, и изменение импульса частицы $\vec{p_1} \rightarrow \vec{p_2}$ происходит быстро. Для простоты мы будем считать это изменение мгновенным.

Ниже нас будет интересовать спектральный состав излучения. Энергия, излученная в телесный угол $d\Omega$, может быть вычислена через электрическое поле $\vec{E}(t)$ (или магнитное $\vec{B}(t)$ движущегося заряда на больших расстояниях (*в волновой зоне*), как

$$\frac{\mathrm{d}W}{\mathrm{d}\Omega}\mathrm{d}\Omega = \int_{-\infty}^{\infty} \mathrm{d}t \, c \, \varepsilon_0 E^2(t) \cdot R^2 \mathrm{d}\Omega = c \varepsilon_0 R^2 \mathrm{d}\Omega \frac{1}{\pi} \int_0^{\infty} \mathrm{d}\omega |\vec{E}_{\omega}|^2$$
$$= \int_{-\infty}^{\infty} \mathrm{d}t \, \frac{c}{\mu_0} B^2(t) \cdot R^2 \mathrm{d}\Omega = \frac{c}{\mu_0} R^2 \mathrm{d}\Omega \frac{1}{\pi} \int_0^{\infty} \mathrm{d}\omega |\vec{B}_{\omega}|^2$$
(307)

В свою очередь, спектральная плотность тормозного излучения равна

$$\frac{\mathrm{d}^2 W(\theta,\varphi;\omega)}{\mathrm{d}\Omega\mathrm{d}\omega} \cdot \mathrm{d}\Omega\mathrm{d}\omega = \frac{1}{\pi} c\varepsilon_0 |\vec{E}_{\omega}|^2 R^2 \mathrm{d}\Omega\mathrm{d}\omega = \frac{1}{\pi} \frac{c}{\mu_0} |\vec{B}_{\omega}|^2 R^2 \mathrm{d}\Omega\mathrm{d}\omega$$
(308)

В волновой зоне поля выражаются (сравни с(211))через векторпотенциал $\vec{A_\omega}$ как

$$\vec{E}_{\omega} = -i\frac{c^2}{\omega}[\vec{k} \times [\vec{k} \times \vec{A}_{\omega}]], \qquad (309)$$
$$\vec{B}_{\omega} = i[\vec{k} \times \vec{A}_{\omega}],$$

и задача сводится к вычислению вектор-потенциала \vec{A}_{ω} .

Используя (257), имеем

$$\vec{A}_{\omega}(\vec{r}) = \frac{\mu_0}{4\pi} \int dV' \frac{\vec{j}_{\omega}(\vec{r}\,')}{R} e^{i\frac{\omega}{c}R} \approx$$
$$\approx \frac{\mu_0}{4\pi} \frac{e^{ikR_0}}{R_0} \int dV' e^{-i\vec{k}\cdot\vec{r}\,'} \vec{j}_{\omega}(\vec{r}\,') =$$
$$= \frac{\mu_0}{4\pi} \frac{e^{ikR_0}}{R_0} \vec{j}_{\omega}(\vec{k}).$$
(310)

Здесь предполагается, что наблюдатель находится на расстояниях R очень больших по сравнению с 1/k – размером области, в которой формируется излучение с частотой ω . Вводя $R_0 = |\vec{r}|$ – расстояние от центра рассеяния (находящегося в начале координат) до наблюдателя \vec{r} , мы использовали разложение $Rk \approx (R_0 - \vec{n} \cdot \vec{r}')k = R_0k - \vec{k} \cdot \vec{r}'$. Таким образом, спектральное и угловое распределение тормозного излучения (308) выражаются через фурье-образ $\vec{j}_{\omega}(\vec{k})$ пространственно-временного распределение токов:

$$\frac{\mathrm{d}^2 W(\theta,\varphi;\omega)}{\mathrm{d}\Omega \mathrm{d}\omega} \cdot \mathrm{d}\Omega \mathrm{d}\omega = \frac{1}{4\pi^2 \varepsilon_0 c} \left| \left[\vec{k} \times \vec{j}_\omega(k) \right] \right|^2 \frac{\mathrm{d}\Omega}{4\pi} \mathrm{d}\omega \qquad (311)$$

Вычисляя $\vec{j}_{\omega}(\vec{k})$ для движущегося заданным образом точечного заряда, получим

$$\vec{j}_{\omega}(\vec{k}) = \int dV \int_{-\infty}^{\infty} dt \underbrace{e\delta(\vec{r} - \vec{r}_{0}(t)) \cdot \vec{v}(t)}_{\vec{j}(t)} \cdot e^{i(\omega t - \vec{k}\vec{r})} = e \int_{-\infty}^{\infty} dt \int dV \cdot \delta(\vec{r} - \vec{r}_{0}(t)) \cdot \vec{v}(t) \cdot e^{i(\omega t - \vec{k}\vec{r})} = e \int_{-\infty}^{\infty} dt \vec{v}(t) \cdot e^{i(\omega t - \vec{k}\vec{r}_{0}(t))}$$
(312)

Для малых частот $\omega \ll 1/\tau_c$, где τ_c – время соударения можно считать, что траектория частицы состоит из двух участков: до

рассеяния t < 0, и после рассеяния t > 0:

$$\vec{r}_0(t) = \begin{cases} \vec{v}_1 t, \ t < 0; \\ \vec{v}_2 t, \ t > 0. \end{cases}$$

Подставляя в (312), получим

$$\vec{j}_{\omega}(\vec{k}) = e \int_{-\infty}^{0} \mathrm{d}t \vec{v}_{1} \cdot \mathrm{e}^{i(\omega - \vec{k}\vec{v}_{1})t} + e \int_{0}^{\infty} \mathrm{d}t \vec{v}_{2} \cdot \mathrm{e}^{i(\omega - \vec{k}\vec{v}_{2})t} =$$

$$= ie \left(\frac{\vec{v}_{2}}{\omega - \vec{k}\vec{v}_{2}} - \frac{\vec{v}_{1}}{\omega - \vec{k}\vec{v}_{1}}\right) =$$

$$= ie \left(\frac{m\vec{v}_{2}\gamma}{\frac{\omega}{c}mc\gamma - \vec{k}m\vec{v}_{2}\gamma} - \frac{m\vec{v}_{1}\gamma}{\frac{\omega}{c}mc\gamma - \vec{k}m\vec{v}_{1}\gamma}\right) =$$

$$= ie \left(\frac{\vec{p}_{2}}{kp_{2}} - \frac{\vec{p}_{1}}{kp_{1}}\right) \qquad (313)$$

Здесь $kp \equiv \frac{\omega}{c}mc\gamma - \vec{k}m\vec{v}\gamma$ обозначает скалярное произведение

двух 4-векторов,
$$k = (\frac{\omega}{c}, \vec{k})$$
 и $p = (mc\gamma, m\vec{v}\gamma)$. В итоге

$$\frac{\mathrm{d}^2 W(\theta,\varphi;\omega)}{\mathrm{d}\Omega\mathrm{d}\omega} = \frac{1}{4\pi\varepsilon_0} \frac{1}{4\pi^2 c} \left| \frac{[\vec{k}\times\vec{p_2}]}{kp_2} - \frac{[\vec{k}\times\vec{p_1}]}{kp_1} \right|^2 \tag{314}$$

Очевидно, что при $p_2 = p_1$ излучение отсутствует.

Легко также убедиться, что интенсивность тормозного излучения не зависит от частоты – вплоть до частот $\omega \sim 1/\tau_c$, где τ_c –характерное время соударения, величиной которого мы выше при вычислении (313) пренебрегли.

Число излученных квантов частоты ω равно отношению излученной энергии к энергии одного кванта:

$$\mathrm{d}N = \frac{1}{\hbar\omega} \frac{\mathrm{d}^2 W(\theta,\varphi;\omega)}{\mathrm{d}\Omega\mathrm{d}\omega} = \frac{\alpha}{(2\pi)^2} \left| \frac{[\vec{k}\times\vec{p_2}]}{kp_2} - \frac{[\vec{k}\times\vec{p_1}]}{kp_1} \right|^2 \frac{\mathrm{d}\omega}{\omega}$$

Полное число излучаемых фотонов бесконечно, т.к. $\int \frac{\mathrm{d}\omega}{\omega} \to \infty$

8.4 Реакция излучения.

Потери энергии частицы, связанные с излучением, можно связать с наличием силы радиационного трения $\vec{F_r}$, вызывающей торможение частицы

$$-\frac{\mathrm{d}W}{\mathrm{d}t} = -\vec{F}_r \vec{v}.$$
(315)

Выражение для мощности излучения (287)⁵ можно преобразовать к такому виду следующим образом:

$$-\frac{\mathrm{d}W}{\mathrm{d}t} = I = \frac{2}{3} \frac{1}{4\pi\varepsilon_0} \frac{(\vec{d}\,)^2}{c^3} = \qquad (316)$$
$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{2}{3} \frac{1}{4\pi\varepsilon_0 c^3} \,\vec{d}\,\vec{d}\right) - \underbrace{\left(\frac{2}{3} \frac{e^2}{4\pi\varepsilon_0 c^3} \,\vec{v}\right)}_{\vec{F_r}} \vec{v} \qquad (317)$$

⁵Мы ограничиваемся нерелятивистским пределом – в противном случае определение и силы, и мощности, и формулы для мощности излучения становятся сложными для анализа.

Первое слагаемое представляет собой полную производную по времени и в случае периодического движения в результате усреднения по периоду обращается в нуль. Второе слагаемое дает

$$\vec{F}_r = \frac{2}{3} \frac{e^2}{4\pi\varepsilon_0 c^3} \ddot{\vec{v}}$$
(318)

Этот результат применим лишь тогда, когда сила радиационного трения $\vec{F_r}$ мала по сравнению с остальными силами $\vec{F^e}$, определяющими движение частицы

$$\left. \vec{F_r} \right| \ll \left| \vec{F^e} \right| \tag{319}$$

В случае периодического движения, например, в переменном электрическом поле с частотой ω , данное условие дает

$$\omega \ll \frac{4\pi\varepsilon_0 mc^3}{e^2},\tag{320}$$

или $\lambda \gg r_e \ (r_e$ – классический радиус электрона).

Для иллюстрации этого ограничения предположим, что на частицу действует лишь сила радиационного трения, а остальные силы равны нулю. Тогда уравнение движения примет вид

$$\dot{\vec{v}} = \frac{\vec{F_r}}{m} = \frac{2}{3} \frac{e^2}{4\pi\varepsilon_0 c^3 m} \ddot{\vec{v}} =$$

$$= \frac{2}{3} \frac{r_e}{c} \ddot{\vec{v}}, \qquad r_e = \frac{e^2}{4\pi\varepsilon_0 mc^2}$$
(321)
(322)

Это уравнение помимо тривиального решения $\vec{v} = \mathrm{const}$ имеет лишь абсурдное решение

$$\dot{\vec{v}} \propto \vec{v} \propto \vec{r} \propto \exp\left\{\frac{3}{2}\frac{ct}{r_e}\right\}$$
 (323)

что демонстрирует, что пользоваться понятием силы радиационного трения надо с осторожностью.

8.5 Излучение гармонического осциллятора.

Рассмотрим излучение заряженного осциллятора, предполагая заряд точечным:

$$\vec{r}_0(t) = \vec{r}_0 \cos(\omega_0 t + \alpha).$$
 (324)

Воспользуемся дипольным приближением (286), применимым при условии

$$kr_0 = 2\pi \frac{r_0}{\lambda} \ll 1,$$
 или $\frac{v_0}{c} \ll 1.$ (325)

Подставляя дипольный момент $\vec{d}(t) = e\vec{r}_0(t) = e\vec{r}_0\cos(\omega_0 t + \alpha)$ в (285), получим интенсивность излучения

$$\frac{\mathrm{d}^{2}I(\theta,\varphi;t)}{\mathrm{d}\Omega}\mathrm{d}\Omega = \frac{1}{4\pi\varepsilon_{0}} \frac{|[\vec{n}\times\vec{\vec{d}}\,]|^{2}}{c^{3}} \frac{\mathrm{d}\Omega}{4\pi} = \frac{1}{4\pi\varepsilon_{0}} \frac{\omega_{0}^{4}e^{2}r_{0}^{2}}{c^{3}}\cos^{2}\omega_{0}t\sin^{2}\theta\frac{\mathrm{d}\Omega}{4\pi}, \quad (326)$$

Усреднение по времени дает дополнительный множитель $\cos^2 \omega_0 t = 1/2.$

Легко видеть, что спектральная интенсивность излучения

$$\frac{\mathrm{d}^2 I(\theta,\varphi;\omega)}{\mathrm{d}\Omega\mathrm{d}\omega}\mathrm{d}\Omega\mathrm{d}\omega = \frac{1}{4\pi\varepsilon_0} \frac{\omega^4 e^2 r_0^2}{2c^3} \sin^2\theta \frac{\mathrm{d}\Omega}{4\pi} \delta(\omega-\omega_0)\mathrm{d}\omega,(327)$$

пропорциональна ω^4 . Полная интенсивность дипольного излучения

$$I = \frac{e^2}{4\pi\varepsilon_0} \frac{\omega_0^4 r_0^2}{2c^3} \tag{328}$$

Учет силы радиационного трения приводит к затуханию колебаний осциллятора

$$\vec{d}(t) = e\vec{r_0}e^{-\gamma t}e^{-i\omega_0 t}, \qquad (329)$$

где

$$\gamma = \frac{e^2}{4\pi\varepsilon_0} \frac{\omega_0^2}{3mc^3} = \frac{1}{3} r_e \frac{\omega_0^2}{c} \tag{330}$$

210

В этом случае движение осциллятора уже не является монохроматичным:

$$\vec{d}_{\omega} = \int_0^\infty \mathrm{d}t \mathrm{e}^{i\omega t} \vec{d}(t) = \tag{331}$$

$$= \int_0^\infty \mathrm{d}t \mathrm{e}^{i\omega t} e \vec{r_0} \mathrm{e}^{-\gamma t} \mathrm{e}^{-i\omega_0 t} = \frac{e r_0}{\gamma - i(\omega - \omega_0)} \qquad (332)$$

а угловое и спектральное распределение излученной энергии в этом случае

$$\frac{\mathrm{d}^2 W(\theta,\varphi;\omega)}{\mathrm{d}\Omega \mathrm{d}\omega} \mathrm{d}\Omega \mathrm{d}\omega = \frac{1}{4\pi\varepsilon_0} \frac{\omega^4 e^2 r_0^2}{2c^3} \sin^2 \theta \frac{\mathrm{d}\Omega}{4\pi} \frac{\omega_0^4}{(\omega-\omega_0)^2 + \gamma^2} \mathrm{d}\omega.$$
(333)

Проинтегрировав по углам, получим спектральное распределение излученной энергии

$$W(\omega) = W \cdot \frac{1}{\pi} \frac{\gamma}{(\omega - \omega_0)^2 + \gamma^2}$$
(334)

где

$$W = \int d\Omega \frac{d^2 W(\theta, \varphi; \omega)}{d\Omega d\omega} = \frac{e^2}{4\pi\varepsilon_0} \frac{r_0^2 \omega_0^4}{6\gamma c^3} = \frac{e^2}{4\pi\varepsilon_0} \frac{r_0^2 \omega_0^4}{3c^3} \tau, \qquad (335)$$

где $\tau = 1/2\gamma$ – время жизни (высвечивания) возбужденного состояния осциллятора, а γ – естественная ширина линии излучения.

9 Рассеяние электромагнитных волн.

Рассеяние электромагнитных волн удобно характеризовать сечением рассеяния (переизлучения), определяемым как отношение интенсивности dI рассеянной волны к вектору Пойнтинга падающей волны

$$d\sigma = \frac{dI}{\tilde{S}} \tag{336}$$

9.1 Рассеяние свободным зарядом.

В нерелятивистском приближении сила, действующая на заряд в поле электромагнитной волны $\vec{E} = \vec{E}_0 e^{i(\vec{k}\vec{r} - \omega t)}$ равна

$$\vec{F} = e\vec{E} = e\vec{E}_0 e^{-i\omega t}$$

в дипольном приближении $kr \ll 1$, тогда из уравнения движения $m\ddot{\vec{r}} = e\vec{E}$ имеем для дипольного момента $\ddot{\vec{d}} = e^2\vec{E}/m$. Используя дипольное приближение

$$\mathrm{d}I = \frac{1}{4\pi\varepsilon_0} \frac{|[\vec{n} \times \vec{d}]|^2}{c^3} \frac{\mathrm{d}\Omega}{4\pi}$$

с учетом потока энергии падающей волны $\tilde{S} = c \varepsilon_0 E_0^2$ получим

$$d\sigma = \left(\frac{e^2}{4\pi\varepsilon_0 mc^2}\right)^2 \sin^2\psi d\Omega = r_e^2 \sin^2\psi d\Omega \qquad (337)$$

Здесь ψ – угол между направлением вектора \vec{E}_0 в падающей волне и направлением \vec{n} рассеянной волны. В частности, соз $\psi = \sin \theta \cos \varphi$, где θ угол рассеяния, φ угол поляризации падающей волны. Если падающая волна неполяризована, то после усреднения по поляризациям

$$\mathrm{d}\sigma_T = \frac{1}{2} r_e^2 (1 + \cos^2 \theta) \mathrm{d}\Omega \tag{338}$$

Полное сечение

$$\sigma_T = \frac{8}{3}\pi r_e^2,\tag{339}$$

ИЗВЕСТНОЕ КАК *томсоновское сечение рассеяния*, *не зависит* от частоты.

9.2 Рассеяние осциллятором.

Уравнение движения осциллятора в поле волны имеет вид

$$\ddot{\vec{r}} + 2\delta\dot{\vec{r}} + \omega_0^2\vec{r} = \frac{e}{m}\vec{E} = \frac{e}{m}\vec{E}_0e^{-i\omega t}$$
(340)

где $\delta = \frac{1}{3} r_e \frac{\omega_0^2}{c}$ (оценка радиационного трения). Решая уравнение, имеем

$$\vec{d} = \frac{1}{\omega_0^2 - \omega^2 - 2i\omega\delta} \frac{e^2}{m} \vec{E}$$

Далее, для амплитуды и фазы второй производной дипольного момента

$$\vec{\vec{d}} = \operatorname{Re}\left\{\frac{-\omega^2}{\omega_0^2 - \omega^2 - 2i\omega\delta}\frac{e^2}{m}\vec{E}\right\} = -\frac{\omega^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\omega^2\delta^2}}\frac{e^2}{m}\vec{E}_0\cos(\omega t - \beta),$$

где $\operatorname{tg}\beta = \frac{2\omega\delta}{\omega_0^2 - \omega^2},$
216
а сечение рассеяния

$$d\sigma = \frac{\omega^4}{(\omega_0^2 - \omega^2)^2 + 4\omega^2 \delta^2} \cdot d\sigma_T.$$
(341)

Интегрируя по углам, для полного сечения получим аналогично

$$\sigma = \frac{\omega^4}{(\omega_0^2 - \omega^2)^2 + 4\omega^2 \delta^2} \cdot \sigma_T \approx \frac{1}{4} \frac{\omega^2}{(\omega_0 - \omega)^2 + \delta^2} \cdot \sigma_T. \quad (342)$$

Здесь $d\sigma_T, \sigma_T$ дифференциальное и полное томсоновское сечение рассеяния на свободной частице.

Сечение рассеяния на осцилляторе $d\sigma$, σ носит резонансный характер. В резонансе ($\omega = \omega_0$) сечение велико и **не зависит от свойств осциллятора** и определяется лишь длиной рассе-иваемой волны:

$$\sigma(\omega = \omega_0) = \frac{\omega_0^2}{(2\pi\delta)^2} \cdot \sigma_T = \frac{3}{2\pi}\lambda^2 \gg r_e^2,$$

(здесь λ –длина волны).

В пределе малых частот $\omega \ll \omega_0$ (рэлеевское рассеяние) сечение рассеяния

$$\sigma = \left(\frac{\omega}{\omega_0}\right)^4 \cdot \sigma_T \tag{343}$$

быстро растет с частотой.

Это, в частности, обеспечивает голубой цвет неба – коротковолновая (голубая) часть спектра рассеивается сильнее, чем длинноволновая (красная). Этот же эффект приводит к красному оттенку заходящего солнца.

10 Электромагнитное поле в веществе.

10.1 Строение вещества, микроскопические поля в веществе и уравнения Максвелла-Лоренца.

Внутри вещества электромагнитное поле есть сумма полей, создаваемых внешними зарядами и токами, и полей, создаваемых зарядами среды.

Заряды среды возникают в результате *поляризации среды* пространственного смещения микроскопических зарядов среды и возбуждении в ней микроскопических токов порождаемых воздействием этого *суммарного* электромагнитного поля. Точные микроскопические уравнения Максвелла-Лоренца

$$\operatorname{div} \vec{e} = \frac{1}{\varepsilon_0} \rho_t, \tag{344}$$

$$\operatorname{rot} \vec{e} = -\frac{\partial b}{\partial t},\tag{345}$$

$$\operatorname{div}\vec{b} = 0, \tag{346}$$

$$\operatorname{rot} \vec{b} = \mu_0 \vec{j}_t + \frac{1}{c^2} \frac{\partial \vec{e}}{\partial t}, \qquad (347)$$

и уравнение непрерывности

$$\frac{\partial \rho_t}{\partial t} + \operatorname{div} \vec{j_t} = 0. \tag{348}$$

связывают микроскопические поля \vec{e}, \vec{b} – электрическое и магнитное, соответственно, с ρ_t – полной плотностью всех зарядов (включая заряды среды) и с \vec{j}_t – полной плотностью всех соответствующих токов.

10.2 Усредненные уравнения Максвелла-Лоренца, макроскопические поля.

Микроскопические поля испытывают большие флуктуации на расстояниях порядка атомных. На практике представляют интерес сглаженные – *макроскопические* поля, усредненные по размеру много больше атомного, но малому по сравнению с масштабом изменения макроскопического поля

$$\vec{E} = \langle \vec{e} \rangle, \qquad \vec{B} = \langle \vec{b} \rangle$$
 (349)

для напряженности электрического поля и индукции магнитного поля, соответственно.

В силу *линейности* микроскопических уравнений по полям и порождающим их источникам оказывается возможным эти усредненные поля выразить через *усредненные распределения зарядов в среде*. Уравнения Максвелла для макроскопических полей в среде

$$\operatorname{div} \vec{E} = \frac{1}{\varepsilon_0} \langle \rho_t \rangle, \qquad (350)$$

$$\operatorname{rot}\vec{E} = -\frac{\partial B}{\partial t},\tag{351}$$

$$\operatorname{div}\vec{B} = 0, \tag{352}$$

$$\operatorname{rot} \vec{B} = \mu_0 \langle \vec{j}_t \rangle + \frac{1}{c^2} \frac{\partial E}{\partial t}, \qquad (353)$$

а усредненные заряды и токи среды удовлетворяют уравнению непрерывности:

$$\frac{\partial \langle \rho_t \rangle}{\partial t} + \operatorname{div} \langle \vec{j}_t \rangle = 0.$$
(354)

Среда может относиться либо к *проводникам*, заряды в которых обладают подвижностью и могут перетекать из одной части в другую, либо к *диэлектрикам*, в которых заряды "связаны" и могут лишь смещаться на расстояния порядка атомных размеров. Ниже мы ограничимся лишь рассмотрением диэлектриков.

Полная плотность заряда складывается из плотности *внеш*них заданных зарядов ρ и плотности *связанных* зарядов диэлектрика $\rho_{\text{связ}}$:

$$\langle \rho_t \rangle = \rho + \rho_{\text{связ}}, \qquad (355)$$

$$\langle \vec{j}_t \rangle = \vec{j} + \vec{j}_{\text{связ}} \tag{356}$$

Вычисление наведенных плотностей связанных зарядов и токов в диэлектрике задача достаточно нетривиальная, и ниже мы рассмотрим величины, связанные с наведенными зарядами и токами, но более удобные для описания. Смещение зарядов диэлектрика под воздействием электрического поля приводит к появлению плотности дипольного момента \vec{P} в диэлектрике, называемому также **вектором поляризации среды**. Дипольный момент диэлектрического тела создается как объемной, так и поверхностной плотностью зарядов

$$\int dV \vec{P} = \int dV (\rho_{\text{связ}} \vec{r}) + \oint_S dS (\sigma_{\text{связ}} \vec{r})$$
(357)

В свою очередь, и объемная, и поверхностная плотность зарядов может быть выражена через вектор поляризации

$$\rho_{\rm CBH3} = -\operatorname{div} \vec{P}, \sigma_{\rm CBH3} = P_n, \qquad (358)$$

что, как мы увидим ниже, значительно удобнее для описания. Тем самым, вместо плотности наведенных зарядов мы используем вектор поляризации среды \vec{P} .

Далее, таким же образом вместо токов связанных зарядов $\vec{j}_{\text{связ}}$, складывающихся из поляризационных токов \vec{j}_P и токов намагничивания \vec{j}_M :

$$\vec{j}_{\text{CBA3}} = \vec{j}_P + \vec{j}_M,\tag{359}$$

удобно использовать вектор поляризации \vec{P}

$$\vec{j}_P = \frac{\partial \vec{P}}{\partial t} \tag{360}$$

и вектор намагниченности \dot{M} :

$$\vec{j}_M = \operatorname{rot} \vec{M} \tag{361}$$

имеющий смысл магнитного момента единицы объема вещества). Поверхностная плотность токов намагниченности также может быть выражена через вектор намагниченности \vec{M} как $\vec{i}_M = [\vec{M} \times \vec{n}]$, где \vec{n} – вектор нормали к поверхности тела. Введем теперь вектор электрической индукци
и \vec{D} определенный как

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} \tag{362}$$

и вектор напряженности магнитного поля \vec{H} :

$$\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M}$$
(363)

Определенные таким образом величины удовлетворяют уравнениям Максвелла в среде:

$$\operatorname{div} \vec{D} = \rho, \qquad (364)$$

$$\operatorname{div} \vec{B} = 0, \qquad (365)$$

$$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}, \qquad (366)$$

$$\operatorname{rot} \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}$$
(367)

и уравнению непрерывности – закону сохранения зарядов.

$$\frac{\partial \rho}{\partial t} + \operatorname{div} \vec{j} = 0,$$

из которых наведенные в среде плотности зарядов $\rho_{\rm связ}$ и токов $\vec{j}_{\rm связ}$ выпали полностью, правда ценой введения векторных полей \vec{P} и \vec{M} , определить которые нам еще предстоит. Поскольку каждое из этих полей характеризует локальную электрическую и магнитную поляризацию среды, естественно предположить, что электрическая поляризация вещества определяется электрическим полем: $\vec{P} = \vec{P}(\vec{E})$, а намагниченность – магнитным: $\vec{M} = \vec{M}(\vec{H})$. Для достаточно слабых полей эта связь должна быть линейной:

$$P^{i} = \varepsilon_{0} \kappa_{e}^{ij} E^{j}, \qquad (368)$$
$$M^{i} = \kappa_{m}^{ij} H^{j} \qquad (369)$$

а величины κ_e^{ij} и κ_m^{ij} называются тензорами соответственно ∂u электрической и магнитной восприимчивости.

В случае изотропной среды $\vec{P} \| \vec{E}$ и $\vec{M} \| \vec{H}$, и эти тензора сводятся к скалярным функциям $\kappa_e(\vec{E})$ и $\kappa_m(\vec{H})$:

$$\kappa_e^{ij} = \kappa_e \delta^{ij}, \quad \kappa_m^{ij} = \kappa_m \delta^{ij}.$$
(370)

Заряды всегда смещаются по направлению поля, поэтому для всех диэлектриков $\kappa_e > 0$.

В случае магнитного поля наведенный магнитный момент может быть направлен как по полю: $\kappa_m > 0$ (парамагнетизм), так и против поля: $\kappa_m < 0$ (диамагнетизм).

Поля \vec{P} и \vec{M} можно исключить вовсе, вводя диэлектрическую и магнитную проницаемость

$$\varepsilon = (1 + \kappa_e), \qquad \varepsilon \ge 1;$$
 (371)

$$\mu = (1 + \kappa_m), \qquad \mu \ge 0; \tag{372}$$

$$\vec{D} = \varepsilon \varepsilon_0 \vec{E}, \tag{373}$$

$$\vec{B} = \mu \mu_0 \vec{H} \tag{374}$$

Вместе с уравнениями Максвелла в среде это дает замкнутую систему уравнений.

10.3 Условия на границе раздела двух сред.

В случае, когда среда состоит из нескольких областей, разделенных границами, уравнения электродинамики можно решать в каждой из этих областей, на границе между областями необходимо эти решения "сшить".

Условия сшивки для нормальной компоненты электрической индукции имеют вид имеют вид

$$\vec{D}_{2n} - \vec{D}_{1n} = \sigma \tag{375}$$

где σ – поверхностная плотность **внешних** (не путать с *наведенными*!) зарядов на границе раздела. Ввиду отсутствия *магнитных* зарядов соответствующие условия для магнитной индукции

$$\vec{B}_{2n} - \vec{B}_{1n} = 0. ag{376}$$

Для тангенциальной компоненты электрического поля условие

$$\vec{E}_{2t} - \vec{E}_{1t} = 0 \tag{377}$$

следует из потенциальности электрического поля \vec{E} . Наконец, для тангенциальной компоненты напряженности магнитного поля имеем условие

$$\vec{H}_{2t} - \vec{H}_{1t} = i, (378)$$

где *i* – поверхностная плотность *внешних* токов на границе раздела, следует из уравнения Максвелла (367).

10.4 Потенциалы в среде. Плотность энергии и потока энергии в среде.

В среде связь потенциалов с полями E, B остается неизменной

$$\vec{E} = -\nabla\varphi - \frac{\partial\vec{A}}{\partial t}, \qquad (379)$$
$$\vec{B} = \operatorname{rot}\vec{A}. \qquad (380)$$

В однородной изотропной среде уравнения для потенциалов имеют вид ($v^2 \equiv 1/(\varepsilon \varepsilon_0 \mu \mu_0)$):

$$\nabla^2 \varphi - \frac{1}{v^2} \frac{\partial^2 \varphi}{\partial t^2} = -\frac{1}{\varepsilon \varepsilon_0} \rho, \qquad (381)$$

$$\nabla^2 \vec{A} - \frac{1}{v^2} \frac{\partial^2 A}{\partial t^2} = -\mu \mu_0 \vec{j}, \qquad (382)$$

$$\operatorname{div} \vec{A} + \frac{1}{v^2} \frac{\partial \varphi}{\partial t} = 0.$$
(383)

232

Последнее уравнение представляет собою условие лоренцевской калибровки для потенциалов в среде.

Плотность энергии и импульса в среде определена как

$$w = \frac{1}{2} \left(\vec{E}\vec{D} + \vec{B}\vec{H} \right), \qquad (384)$$

$$\vec{g} = \frac{1}{c^2}\vec{S},\tag{385}$$

где $\vec{S} = [\vec{E} \times \vec{H}]$ — вектор Пойнтинга, описывающий поток энергии электромагнитного поля в среде.