На правах рукописи

СУХАРЕВ Андрей Михайлович

ИЗМЕРЕНИЕ ПРОИЗВЕДЕНИЯ ЭЛЕКТРОННОЙ ШИРИНЫ НА ВЕРОЯТНОСТЬ РАСПАДА В ПАРУ МЮОНОВ $\psi(2S)$ -МЕЗОНА

01.04.16 — физика атомного ядра и элементарных частиц

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Новосибирск-2018

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте ядерной физики им. Г. И. Будкера Сибирского отделения Российской академии наук.

НАУЧНЫЙ РУКОВОДИТЕЛЬ:

Тихонов	_	доктор физико-математических наук, профес-
Юрий		сор, член-корреспондент РАН, Федеральное
Анатольевич		государственное бюджетное учреждение науки
		Институт ядерной физики им. Г. И. Будкера
		Сибирского отделения Российской академии
		наук, г. Новосибирск.

ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ:

Арбузов	_	доктор физико-математических наук, профес-
Андрей		сор РАН, Международная межправительствен-
Борисович		ная организация Объединенный институт ядер-
		ных исследований, г. Дубна, начальник секто-
	ра №5 Научного отдела теории фундаменталь-	
		ных взаимодействий Лаборатории теоретической
		физики им. Н. Н. Боголюбова.
Мизюк		доктор физико-математических наук, член-кор-
Роман		респондент РАН, Федеральное государственное
Владимирович		бюджетное учреждение науки Физический инсти-
	тут им. П. Н. Лебедева Российской академии наук,	
		г. Москва, главный научный сотрудник.
ВЕДУЩАЯ		Федеральное государственное бюджетное учре-
ОРГАНИЗАЦИЯ:		ждение Институт физики высоких энергий

Федеральное государственное оюджетное учреждение Институт физики высоких энергий им. А. А. Логунова Национального исследовательского центра «Курчатовский институт», г. Протвино.

Защита диссертации состоится «<u>05</u>» <u>октября</u> 2018 г. в «<u>15:00</u>» часов на заседании диссертационного совета <u>Д</u> 003.016.02 Федерального государственного бюджетного учреждения науки Института ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук.

Адрес: 630090, г. Новосибирск, проспект Академика Лаврентьева, 11.

С диссертацией можно ознакомиться в библиотеке Федерального государственного бюджетного учреждения науки Института ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук.

Автореферат разослан «02» августа 2018 г.

Ученый секретарь диссертационного совета, д.ф.-м.н., профессор, чл.-корр. РАН

В.С. Фадин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Свойства узкого $\psi(2S)$ -резонанса, в частности, полная и лептонная ширины, определяются главным образом сильным взаимодействием, что делает его сравнительно простым и удобным объектом для изучения в рамках квантовой хромодинамики (КХД). Теоретические предсказания его параметров могут основываться на различных потенциальных моделях или вычисляться в рамках КХД на решётках, и для их проверки необходимы экспериментальные измерения. Значения электронной ширины узких резонансов требуются при использовании правила сумм для определения массы *с*-кварка. Используя лептонную ширину и соответствующую вероятность распада, можно получить полную ширину резонанса наиболее точно. На сегодняшний день не существует актуальных измерений $\Gamma_{ee} \times \mathcal{B}_{\mu\mu}$ для $\psi(2S)$ -мезона. В данной работе проводится такое измерение, и с его использованием получается самое точное на сегодня значение электронной ширины $\psi(2S)$.

Цель работы состояла в обеспечении возможности эффективного использования мюонной системы детектора КЕДР в физическом анализе, измерении с детектором КЕДР параметра $\Gamma_{ee} \times \mathcal{B}_{\mu\mu} \psi(2S)$ -мезона и получении электронной ширины $\psi(2S)$.

Личный вклад автора. Приведенные результаты получены автором лично или при его определяющем вкладе.

Научная новизна. В опубликованных Particle Data Group (PDG) таблицах свойств $\psi(2S)$ отсутствуют упоминания об измерениях параметров $\Gamma_{ee} \times \mathcal{B}_{\mu\mu}$ и $\Gamma_{ee} \times \mathcal{B}_{ee}$. Таким образом, проведённое в данной работе измерение $\Gamma_{ee} \times \mathcal{B}_{\mu\mu}$ является единственным актуальным на сегодня.

Значение электронной ширины Γ_{ee} [$\psi(2S)$], полученное в работе, согласуется с результатами предыдущих измерений и является в настоящее время самым точным.

Эти и многие другие обладающие научной новизной результаты детектора КЕДР получены с использованием мюонной системы, которой посвящена часть данной работы.

Научная и практическая ценность работы. Результаты измерений могут быть использованы при проведении экспериментов по физике элементарных частиц и обработке их результатов, при разработке и проверке различных теоретических гипотез и моделей, а также для вычисления других параметров частиц.

Опыт, полученный при создании и эксплуатации мюонной системы детектора КЕДР, может быть полезен при проектировании как мюонных

систем новых детекторов для экспериментов по физике элементарных частиц, так и регистрирующих систем других экспериментов.

Основные положения, выносимые на защиту:

- Разработка программного обеспечения мюонной системы детектора КЕДР, включающего процедуры калибровки и определения статусов каналов системы, а также моделирование и реконструкцию событий в системе. Обеспечение эксплуатации мюонной системы детектора КЕДР на протяжении более десяти экспериментальных сезонов, достижение ожидаемых параметров системы, ввод в эксплуатацию торцевой части мюонной системы.
- Измерение произведения электронной ширины на вероятность распада в пару мюонов $\psi(2S)$ -мезона.
- Получение с лучшей на данный момент точностью электронной ширины $\psi(2S)$.

Апробация работы. Материалы диссертации были представлены в ноябре 2007 года, декабре 2008 года, ноябре 2011 года на сессиях-конференциях Секции ядерной физики Отделения физических наук Российской академии наук, а также на международных конференциях International Workshop on e^+e^- Collisions From Phi to Psi (Frascati, Italy, 2008), International Workshop on e^+e^- Collisions From Phi to Psi (Rome, Italy, 2013), Instrumentation for Colliding Beam Physics (Новосибирск, Россия, 2014), International Workshop on e^+e^- Collisions From Phi to Psi (Schloss Waldthausen, Germany, 2017), The 9th International Workshop on Charm Physics (Новосибирск, Россия, 2018).

Основные результаты опубликованы в статьях [1,3–5], входящих в список ВАК по направлению «Физика».

Структура работы. Диссертация состоит из введения, 7 глав, заключения, списка использованной литературы, списка иллюстраций, списка таблиц и двух приложений. Общий объем диссертации 117 страниц, включая 42 рисунка и 23 таблицы. Список литературы содержит 117 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность работы, сформулирована цель и аргументирована научная новизна исследований, представлены выносимые на защиту результаты.

В первой главе даётся исторический обзор экспериментов, в которых были обнаружены первые резонансы семейства ψ и измерены их ос-

новные параметры. Обсуждаются современные теоретические подходы к предсказанию параметров чармония (потенциальные модели, вычисления КХД на решётках).

Актуальные на сегодня экспериментальные измерения электронной пирины $\psi(2S)$ сделаны в работах BES2 2002, 2006 и 2008 годов и BES3 2015 года. В работах BES2 применялся не вполне корректный метод определения радиационных поправок и учёта эффектов интерференции, приводящий к некоторому сдвигу полученных результатов. В отличие от J/ψ , таблицы PDG не содержат результатов измерений $\Gamma_{ee} \times \mathcal{B}_{\ell\ell}$ для $\psi(2S)$ ни в мюонном, ни в электронном канале.

Аналитическое выражение для сечения процесса $e^+e^- \rightarrow \mu^+\mu^-$ вблизи резонанса с учётом радиационных поправок в мягкофотонном приближении можно записать в виде:

$$\left(\frac{d\sigma}{d\Omega}\right)^{ee \to \mu\mu} = \left(\frac{d\sigma}{d\Omega}\right)^{ee \to \mu\mu}_{\text{K} \ni \text{Д}} + \frac{3}{4W^2} \left(1 + \delta_{\text{sf}}\right) \left(1 + \cos^2\theta\right) \times \left\{\frac{3\Gamma_{ee}\Gamma_{\mu\mu}}{\Gamma M} \text{Im} \,\mathcal{F} - \frac{2\alpha\sqrt{\Gamma_{ee}\Gamma_{\mu\mu}}}{M} \operatorname{Re} \frac{\mathcal{F}}{1 - \Pi_0}\right\},$$
$$\mathcal{F} = \frac{\pi\beta}{\sin\pi\beta} \left(\frac{M/2}{-W + M - i\Gamma/2}\right)^{1-\beta}, \beta = \frac{4\alpha}{\pi} \left(\ln\frac{W}{m_e} - \frac{1}{2}\right). \quad (1)$$

Здесь W — энергия в системе центра масс, M, Γ , Γ_{ee} и $\Gamma_{\mu\mu}$ — масса резонанса и его полная, электронная и мюонная ширина соответственно, θ — полярный угол разлетающихся частиц, α — постоянная тонкой структуры, m_e — масса электрона, $\delta_{\rm sf}$ — поправка с точностью до β^2 . Оператор вакуумной поляризации Π_0 не включает вклад собственно резонанса. В формуле (1) члены, пропорциональные Im \mathcal{F} и Re \mathcal{F} , описывают вклад резонансного и интерференционного эффектов соответственно; эти вклады имеют общую угловую зависимость $d\sigma/d\theta \sim 1 + \cos^2 \theta$. Точность формулы (1) составляет около 0.1%. В аналогичной формуле для e^+e^- -сечения резонансная и s-интерференционная части имеют одинаковую угловую зависимость $d\sigma/d\theta \sim 1 + \cos^2 \theta$, не совпадающую с угловой зависимостью интерференции в t-канале $d\sigma/d\theta \sim (1 + \cos \theta)^2/(1 - \cos \theta)$.

С экспериментальной точки зрения процесс $\psi(2S) \to \ell^+ \ell^-$ существенно отличается от похожего процесса $J/\psi \to \ell^+ \ell^-$ наличием дополнительных фоновых распадов резонанса. Вклад в наблюдаемое $\ell^+ \ell^-$ -сечение от фоновой моды m с бранчингом $\mathcal{B}_m = \Gamma_m/\Gamma$:

$$\sigma_m(W) = \mathcal{B}_m \times \sigma_0(W), \sigma_0(W) = \frac{4\pi}{W^2} (1 + \delta_{\rm sf}) \frac{3\Gamma_{ee}}{M} {\rm Im} \,\mathcal{F}.$$
 (2)

Для учёта энергетического разброса пучков коллайдера теоретические сечения сворачиваются с распределением энергии частиц в пучках.

Во второй главе дано общее описание экспериментального комплекса ВЭПП-4М/КЕДР.

Электрон-позитронный коллайдер ВЭПП-4М способен работать в диапазоне энергии пучка от 1 до 5.5 ГэВ. На энергии $\psi(2S)$ его максимальная светимость составляет $2 \times 10^{30} \text{ см}^{-2} \text{c}^{-1}$. Коллайдер обладает уникальными возможностями прецизионного измерения энергии пучков.

КЕДР — универсальный магнитный детектор. Его основными системами, использованными в данной работе, являются вершинный детектор (ВД), дрейфовая камера (ДК), время-пролётная система (ВПС), цилиндрический э/м калориметр на основе жидкого криптона (LKr), торцевой э/м кристаллический (CsI[Na]) калориметр и мюонная система. Триггер детектора построен по двухуровневой схеме, решение триггера принимается на основании информации от ВД, ДК, ВПС, калориметров.

В главе также дано краткое описание магнитной системы детектора, системы сбора данных, программного обеспечения и вычислительной среды детектора.

Третья глава посвящена мюонной системе детектора КЕДР.

Мюонная система детектора КЕДР состоит из 2208 однопроволочных газовых камер, работающих в самогасящемся стримерном режиме — т. н. стримерных трубок. Блоки системы располагаются в трёх зазорах магнитного ярма детектора, железо которого служит поглотителем сильновзаимодействующих частиц. Толщина железа перед каждым слоем мюонной системы — 23 см (около 1.4 ядерной длины). Телесный угол, покрываемый средним слоем системы, составляет около $0.7 \times 4\pi$, диапазон полярных углов — $46^{\circ} \div 134^{\circ}$.

Мюоны начинают уверенно проходить в первый слой системы при импульсе около 800 МэВ, а для пионов с таким импульсом вероятность выхода составляет 2–3 процента (рис. 1).

Мюонная система продувается взрывобезопасной газовой смесью аргон + углекислый газ + н-пентан (60–68:25–32:7–8), приготовляемой в установке барботерного типа.

Камерная электроника сконструирована таким образом, чтобы определять координату срабатывания вдоль анодной проволочки по разности времён прихода сигналов на концы цепочки трубок. Поперечная координата не измеряется. Сигналы с концов проволочек поступают на дискриминаторы «старт» и «стоп», а с них — на экспандер, который формирует логический сигнал длительностью в несколько десятков раз больше интервала между фронтами «старта» и «стопа». С выхода экспандера сигнал

Рис. 1. Вероятность выхода частиц в (слева направо) первый, второй и третий слои мюонной системы в зависимости от импульса (моделирование). Частицы направлялись из центра детектора перпендикулярно оси пучков.

передаётся на время-цифровой преобразователь, производящий измерение его длительности методом прямого счёта с дискретностью 2–2.5 нс.

Реконструкцию событий в мюонной системе можно разделить на несколько подзадач: восстановление координатной информации для каждого отдельного срабатывания, поиск и подгонка прямолинейных треков в мюонной системе без учёта других систем, установление соответствия между срабатываниями мюонной системы и треками, обнаруженными другими системами детектора. Для их решения автором диссертации написан набор программных библиотек, интегрированный в общую среду обработки данных детектора КЕДР.

Калибровка мюонной системы заключается в установлении уникальных для каждого канала наборов калибровочных констант $\{T_{\text{нач}}; T_{\text{кон}}\}$ — измеренных ВЦП времён, соответствующих концам каждой трубки. Реализованы генераторная калибровка и калибровка по временны́м спектрам от реальных частиц.

Разработана программа программа-монитор, осуществляющая уточнение калибровочных констант и определение координатного разрешения и эффективности регистрации мюонной системы по мере набора экспериментальных данных. Достигнуты разрешение по продольной координате ~ 4 см (на уровне многократного рассеяния) и эффективность регистрации $\gtrsim 99\%$.

В общей программе моделирования детектора КЕДР создана часть, отвечающая за моделирование мюонной системы и магнитного ярма детек-

тора. Для обработки событий моделирования реализован учёт реального состояния детектора и наложение событий со случайным запуском.

В первые годы эксплуатации системы существенной проблемой были частые поломки время-цифровых преобразователей. Регулярно во время пауз в наборе статистики проводились проверки всех ВЦП на специально созданном стенде. К 2004 году были разработаны и изготовлены новые ВЦП на современной элементной базе. Это позволило достичь практически стопроцентной надёжности.

В 2014 году было решено, что торцевая мюонная система будет полезной для подавления фона от космических частиц. С осени 2015 года семь торцевых блоков работают в составе детектора.

В конце главы даны выработанные на основании накопленного за время работы мюонной системы опыта рекомендации по построению будущих подобных систем.

Четвёртая глава содержит общее описание эксперимента по измерению $\Gamma_{ee} \times \mathcal{B}_{uu} \psi(2S)$ -мезона.

В работе использовалась статистика четырёх сканирований резонанса (данные набирались не менее чем в пяти точках по энергии) и пяти наборов «пик/подложка» (набор на пике сечения и несколько ниже него). В таблице 1 приведены интегральная светимость для каждого набора данных и разброс суммарной энергии сталкивающихся частиц σ_w , определявшийся в сканированиях по сечению процесса $\psi(2S) \rightarrow$ адроны. Для наборов «пик/подложка» величина энергетического разброса бралась от наиболее подходящего сканирования. «Сканирование 0» использовалось только для определения энергетического разброса.

Набор	Период	$\int L dt$, нб ⁻¹	σ_W , МэВ			
сканирование 0	конец 2004		1.08			
пик/подложка 1	начало 2005	358	1.08			
пик/подложка 2	осень 2005	222	0.99			
сканирование 1	весна 2006	255	0.99			
пик/подложка 3	весна 2006	631	0.99			
пик/подложка 4	осень 2006	701	0.99			
пик/подложка 5	осень 2007	1081	1.01			
сканирование 2	конец 2007	967	1.01			
сканирование 3	лето 2010	379	1.00			
сканирование 4	конец 2010	2005	0.98			

Таблица 1. Набор статистики в области $\psi(2S)$ -резонанса.

За столь длительное время проведения эксперимента (2004–2010 гг.) условия набора данных, состояние детектора и качество калибровок его систем существенно менялись.

При обработке экспериментальной статистики и моделирования отбирались события $e^+e^- \rightarrow \mu^+\mu^-$ и необходимые для определения светимости события $e^+e^- \rightarrow e^+e^-$. Для того, чтобы выровнять вероятности прохождения отборов событиями экспериментальных данных и моделирования, и к тем, и к другим применялся программный триггер, вычисляющий решение на основании оцифрованной информации с детектора с учётом неработающих каналов и с более высокими значениями порогов.

В качестве $\mu^+\mu^-$ отбирались события, в которых восстановлено ровно два трека с противоположными зарядами, выходящих из области около места встречи пучков. Оба трека должны иметь соответствующее мюонам энерговыделение в калориметре и подтверждение в мюонной системе. Имеелось также ограничение на полярный угол треков и их неколлинеарность. Для подавления фонов ограничивалась энергия не привязанных к трекам кластеров в калориметре. Космические мюоны исключались условием на времена пролёта частиц.

Отбор e^+e^- отличался от отбора $\mu^+\mu^-$ условиями на энергии привязанных кластерам треков и диапазоном допустимых полярных углов. Требование подтверждения в мюонной системе и условие на время пролёта для отбора e^+e^- не применялись.

Эффективность детектора по отношению к нерезонансным процессам $e^+e^- \to e^+e^-, \mu^+\mu^-,$ процессам $e^+e^- \to \psi(2{\rm S}) \to e^+e^-, \mu^+\mu^-,$ а также к различным фоновым процессам определялась на моделировании.

При обработке моделирования принималось во внимание состояние детектора во время каждого экспериментального захода. Чтобы учесть различные ускорительные фоны, пролёты космических частиц, а также шумы детектора, в заходах специально сохранялись события с т. н. случайным запуском (RND). При обработке на каждое событие моделирования накладывалось очередное событие из сохранённого RND-набора. Излучение фотонов в конечном состоянии учитывалось с помощью пакета PHOTOS, который применялся при моделировании событий как эффекта, так и фона.

События распадов резонанса $\psi(2\mathrm{S}) \rightarrow \mu^+\mu^-, \, \psi(2\mathrm{S}) \rightarrow e^+e^-$ моделировались с помощью простых генераторов с угловыми распределениями $d\sigma/d\theta \sim 1 + \cos^2\theta$ и $d\sigma/d\theta \sim (1 + \cos\theta)^2/(1 - \cos\theta)$. Упругое e^+e^- -рассеяние моделировалось с использованием основного генератора BHWIDE и проверочных генераторов МССРЈ и ВАВАҮАGА.

Для моделирования фоновых процессов был использован генератор JETSET 7.4. Наибольшее влияние на результат даёт процесс $\psi(2S) \rightarrow$

 $J/\psi \pi^+\pi^-$ — от 2 до 9% в различных наборах данных. Такой значительный разброс объясняется существенно изменившимся состоянием детектора, в частности, отключением нескольких слоёв дрейфовой камеры.

Пятая глава. Из-за проблем в оцифровывающем тракте электроники время-пролётной системы неэффективность восстановления времени пролёта достигала ~ 10%. Вероятность потери временной информации пропорциональна шумовой загрузке счётчика, что указывает на наличие мёртвого времени ВЦП. Установить точную причину просчётов и ликвидировать её экспертам так и не удалось. Триггерные сигналы от ВПС проходят через отдельный электронный тракт и не подвержены указанной проблеме.

Поскольку информация о времени пролёта необходима для отделения пучковых мюонных событий от космических, требуется определить эффективность соответствующего условия отбора $\varepsilon_{\rm BRC}$. Для каждого из двух отобранных треков требовалось $|t \times \sin \theta - T_0| \leq 3\sigma_{\rm BRC}$, где t и θ — время пролёта и полярный угол треков, $T_0 = 2.4$ нс — время пролёта для мюонов от распада $\psi(2S)$ в поперечной плоскости детектора, $\sigma_{\rm BRC} = 0.36$ нс — временно́е разрешение продольных счётчиков ВПС.

Для измерения эффективности условия отбора на время пролёта можно использовать события каскадных распадов $\psi(2S) \rightarrow J/\psi \pi^+\pi^- u \,\psi(2S) \rightarrow J/\psi \pi^0 \pi^0$, в которых J/ψ , в свою очередь, распадается на пару мюонов, но статистическая точность этот метода (исторически реализованного первым) невысока. Другой его недостаток — эффективность фактически измеряется только в заходах, набранных на пике резонанса.

Основной метод определяет эффективность по отдельности для каждого из двух отобранных треков. Для событий, прошедших отбор $\mu^+\mu^-$, можно построить гистограмму времени пролёта для одного из треков (пример показан на рис. 2) и определить, сколько событий соответствуют рождению мюонных пар. Тогда эффективность для трека с зарядом *i* будет рассчитываться по формуле $\varepsilon_i = N^{\mathfrak{I}}/(N_i - N_i^{\phi on})$, где $N^{\mathfrak{I}} -$ число событий, прошедших полный отбор на время пролёта, N_i и $N_i^{\phi on}$ — полное число событий и число фоновых событий от космических частиц, проходящих условие на время для этого трека. Уровень равномерно распределённого космического фона $L_i^{\phi on}$ определяется подгонкой гистограммы в областях вдали от пучковых событий, и из него получается $N_i^{\phi} = 6\sigma_{\rm BIRC}L_i^{\phi on}/\Delta t$, где Δt — ширина бина гистограммы.

В отсутствии корреляций эффективность $\varepsilon_{\rm BRC} = \varepsilon_+ \varepsilon_-$. Она определяется для заходов, набранных как в резонансной, так и в нерезонансной области.

Для определения систематической погрешности варьировались некоторые параметры вычисления эффективности. К полученной таким обра-

Рис. 2. К определению эффективности измерения времени пролёта для одного трека. Горизонтальной линией показан подогнанный уровень космического фона $L^{\phi o n}$, штриховкой выделены события, проходящие условие на время пролёта. События с t = 0 соответствуют эффекту потери времён.

зом величине квадратично добавлялся вклад 0.3% от возможной корреляции потери времён. Итоговая эффективность условия отбора на время пролёта менялась в пределах 80–87% для различных наборов данных, её статистические и систематические неопределённости составляли $\lesssim 1\%$.

Шестая глава содержит описание процедуры подгонки результатов в отдельных наборах данных и процедуры их усреднения, а также детальный анализ систематических погрешностей.

Совместный анализ мюонного и электронного каналов проводился для каждого набора данных независимо. Для извлечения светимости события e^+e^- разбивались на равные интервалы по «среднему» полярному углу $\theta = (\pi - \theta_+ + \theta_-)/2$, где θ_+ и θ_- — углы для позитрона и электрона соответственно. Ожидаемое число событий на энергии в системе центра масс W_i и в *j*-ом угловом интервале:

$$N_{e^+e^-}^{\text{ожид}}(W_i,\theta_j) = \mathcal{L}_i \times \left[(\sigma_{\text{pes}}^{\text{теор}}(W_i,\theta_j) + \sigma_{\text{s-инт}}^{\text{теоp}}(W_i,\theta_j)) \times \varepsilon_{\text{pes}}(\theta_j) |_i + \sigma_{\text{t-инт}}^{\text{теоp}}(W_i,\theta_j) \times \varepsilon_{\text{подл}}(W_i,\theta_j) \times \varepsilon_{\text{подл}}(\theta_j) |_i + \sigma_{\text{фон}}^{\text{ожид}}(W_i,\theta_j) = \mathcal{L}_i \times \sigma_{ee}^{\text{ожид}}(W_i), \quad (3)$$

где \mathcal{L}_i — интегральная светимость в заходах на энергии W_i , $\sigma^{\text{теор}}$ — теоретические сечения, $\varepsilon(\theta_j)|_i$ — полученные на моделировании эффективности регистрации для состояния детектора во время работы на энергии W_i , включающие в себя аксептанс для *j*-ого углового интервала. Последний член в сумме — ожидаемый вклад фоновых процессов.

Поскольку для событий $\mu^+\mu^-$ разбиения по θ не требуется, имеем:

$$N_{\mu^{+}\mu^{-}}^{\text{ожид}}(W_{i}) = \mathcal{L}_{i} \times \varepsilon_{\text{впс}}^{\text{набл}}|_{i} \times \left[(\sigma_{\text{рез}}^{\text{теор}}(W_{i}) + \sigma_{\text{инт}}^{\text{теор}}(W_{i})) \times \varepsilon_{\text{рез}}|_{i} + \sigma_{\text{подл}}^{\text{мод}} \times \varepsilon_{\text{подл}}|_{i} + \sigma_{\text{фон}}^{\text{ожид}}(W_{i}) \right] = \mathcal{L}_{i} \times \sigma_{\mu\mu}^{\text{ожид}}(W_{i}), \quad (4)$$

куда дополнительно входит измеренная эффективность ВПС $\varepsilon_{\rm Bnc}^{\rm hada}$. Подложечные сечения $\sigma_{\rm nod,n}^{\rm mod}$ и для e^+e^- , и для $\mu^+\mu^-$ рассчитываются программой моделирования.

Интегральная светимость \mathcal{L}_i определялась максимумом пуассоновской функции правдоподобия:

$$\mathcal{L}_{i} = \frac{N_{\mu\mu}^{\text{HaGn}}|_{i} + N_{ee}^{\text{HaGn}}|_{i}}{\sigma_{\mu\mu}^{\text{own}}(W_{i}) + \sigma_{ee}^{\text{own}}(W_{i})},\tag{5}$$

где $N_{ee}^{\text{набл}}$ и $\sigma_{ee}^{\text{ожид}}$ — суммы по θ -бинам.

Свободными параметрами подгонки являлись $\Gamma_{ee} \times \mathcal{B}_{\mu\mu}$ и $\Gamma_{ee} \times \mathcal{B}_{ee}$.

Наборы данных, использованные в данной работе, рассматриваются как практически независимые эксперименты, имеющие независимые статистические ошибки, но частично скоррелированные систематические ошибки. Итоговый результат получался усреднением результатов измерений в отдельных наборах данных с весами, включающими вклад статистических ошибок и некоррелированной части систематических ошибок. Оценка систематической погрешности суммарного результата включала как коррелированную часть, так и усреднённый вклад некоррелированных частей.

Основные вклады в систематические неопределённости величины $\Gamma_{ee} \times \mathcal{B}_{\mu\mu}$ для всех использованных наборов данных и оценки скоррелированной части систематической ошибки $\sigma_{cucr}^{\text{корр}}$ приведены в таблице 2. Систематические погрешности оценивались, как правило, изменением условий отбора в разумных пределах и варьированием использованных внешних параметров в пределах точности, с которой они известны. Если отсутствовали указания на степень корреляции какой-то неопределённости в различных наборах данных, предполагалось, что коррелированная часть соответствует минимальному значению этой неопределённости.

$\sigma^{\rm kopp}_{\rm cuct}$	0	0.1	< 0.1	0.9	0.2	0.8	1.0	0.1	0.1	0.5	0	0.1	< 0.1	< 0.1	0.3	0.1	0.8	< 0.1	0.1	1.9
ск. 4	1.7	0.9	2.7	0.9	0.3	1.6	1.3	0.4	0.2	1.6	< 0.1		0.2	0.3	0.3	0.3	2.3	0.1	0.1	4.9
ск. 3	2.9	0.2	3.8	2.6	0.3	5.4	2.1	1.0	0.4	1.7	0.7		0.4	0.9	0.4	0.4	2.7	0.1	0.1	8.7
ск. 2	1.1	0.5	0.2	1.6	0.2	1.5	1.6	0.1	0.2	2.2	0.6		0.5	0.1	0.4	0.1	2.8	0.2	0.1	4.7
n/n	2.6	0.7	0.5	2.1	0.2	1.4	1.2	1.9	0.1	0.6	0.5		0.4	0.3	0.4	0.3	0.9	0.1	0.1	4.5
$n/\pi 4$	2.2	0.7	0.3	1.1	0.2	2.1	1.0	0.2	0.1	1.0	0.3	0.3	< 0.1	< 0.1	0.4	0.5	0.8	0.1	0.1	3.7
п/п 3	2.9	0.3	1.7	1.7	0.2	0.8	1.0	0.6	0.9	0.5	0.6	0.1	0.1	< 0.1	0.4	0.5	1.2	0.1	0.1	4.4
ск. 1	1.1	0.1	< 0.1	2.2	0.3	2.4	1.8	0.8	0.5	2.2	2.2	0.5	0.2	< 0.1	0.4	0.6	1.5	0.2	0.1	5.4
п/п 2	2.7	0.6	0.6	1.4	0.2	2.8	2.0	0.3	0.2	1.2	2.7	0.7	0.1	0.1	0.4	0.2	2.5	< 0.1	0.1	6.2
n/n 1	1.9	0.7	3.1	1.4	0.2	0.8	1.1	0.6	0.9	1.4	2.5	0.3	0.1	0.2	0.4	0.6	1.9	0.9	0.1	5.7
Источник систематической неопределённости	внергетический разброс коллайдера	2 Табличное значение $M_{\psi(2S)}, \Gamma_{\psi(2S)}$	з измерение энергии пучков	1 моделирование нерез. e^+e^- -рассеяния	моделирование нерез. μ ⁺ μ ⁻ -рассеяния	условия на коллинеарность треков	7 угловой диапазон для e^+e^-	3 восстановление заряда) асимметрия детектора	0 условие на лишнее энерговыделение	1 условие на мюонную систему	2 тригтерные пороги подавления фона	3 калориметрические пороги триггера	4 аффект случайных совпадений (RND)	5 фотоны в конечном состоянии (PHOTOS)	6 разбиение событий e^+e^- по θ	7 эффективность измерения времени пролёта	8 эффективность триггера	9 точность теории	квадратичная сумма
	-	2	3	4	5	9	4	x	6	10	11	12	13	14	15	16	17	18	19	

Таблица 2. Основные источники систематических неопределённостей и их относительные вклады для девяти наборов данных, %. В седьмой главе приведены результаты измерения произведения $\Gamma_{ee} \times \mathcal{B}_{\mu\mu} \psi(2S)$ -мезона в отдельных наборах данных и их статистические и систематические погрешности (рис. 3). После их усреднения получается окончательный результат:

$$\Gamma_{ee} \times \mathcal{B}_{\mu\mu} = 19.3 \pm 0.3 \pm 0.5 \text{ sB}.$$

Рагticle Data Group не приводит прямых измерений $\Gamma_{ee} \times \mathcal{B}_{\mu\mu}$ и не даёт для него значения. Если взять табличные $\Gamma_{ee} = 2.34 \pm 0.04$ кэВ и $\mathcal{B}_{\mu\mu} = (7.9 \pm 0.9) \times 10^{-3}$, можно получить «среднемировое» $\Gamma_{ee} \times \mathcal{B}_{\mu\mu} = 18.5 \pm 2.1$ эВ, которое хорошо согласуется с результатом данной работы и существенно уступает ему по точности.

Рис. 3. Результаты отдельных измерений $\Gamma_{ee} \times \mathcal{B}_{\mu\mu}$ со статистическими и полными ошибками. Точка справа — расчёт по PDG. Горизонтальной линией обозначен итоговый результат, полосами показаны его статистическая и полная ошибки. Приведено качество усреднения.

С использованием среднего значения $\Gamma_{ee} \times \mathcal{B}_{\mu\mu}$, а также измеренного ранее детектором КЕДР значения $\Gamma_{ee} \times \mathcal{B}_{aдроны}$ и в предположении лептонной универсальности получена электронная ширина $\psi(2S)$ -мезона:

$$\Gamma_{ee}|_{\pi,v} = 2.279 \pm 0.015 \pm 0.042$$
 кэВ.

Поскольку произведение $\Gamma_{ee} \times \mathcal{B}_{ee}$ тоже является одним из параметров подгонки, оно автоматически определяется в результате описанного анализа. К сожалению, для $\psi(2S)$ -мезона резонансное e^+e^- -сечение слишком мало́ по сравнению с сечением неупругого рассеяния, что приводит к гораз-

до бо́лышим, в сравнении с мюонным каналом, систематическим погрешностям. Это не позволяет представить величину $\Gamma_{ee} \times \mathcal{B}_{ee} = 21.2 \pm 0.7 \pm 1.2$ эВ в качестве одного из значимых результатов данной работы. Тем не менее, если воспользоваться ею и также измеренным детектором КЕДР параметром $\Gamma_{ee} \times \mathcal{B}_{\tau\tau}$, можно получить электронную ширину $\psi(2S)$ -мезона без привлечения лептонной универсальности:

$$\Gamma_{ee} = 2.282 \pm 0.015 \pm 0.042$$
 кэВ.

Погрешности Γ_{ee} определяются погрешностями $\Gamma_{ee} \times \mathcal{B}_{\text{адроны}}$ как при использовании лептонной универсальности, так и без него. Сравнение результата с другими измерениями показано на рис. 4.

Рис. 4. Сравнение измерений $\Gamma_{ee} \left[\psi(2{\rm S}) \right]$. Вертикальная полоса показывает современное среднее значение таблиц PDG. Результаты детектора КЕДР представлены как с использованием лептонной универсальности (л. у.), так и без него. Показаны полные и статистические (где возможно) погрешности.

В заключении приведены основные результаты работы:

- 1. Разработано программное обеспечение мюонной системы детектора КЕДР, включающее процедуры калибровки и определения статусов каналов системы, а также моделирование и реконструкцию событий в системе.
- 2. Обеспечена работа мюонной системы детектора КЕДР на протяжении более десяти экспериментальных сезонов.

- 3. Введена в эксплуатацию торцевая часть мюонной системы.
- 4. Достигнуты ожидаемые продольное координатное разрешение и эффективность регистрации мюонной системы.
- 5. Проведено наиболее актуальное измерение произведения электронной ширины и вероятности распада в пару мюонов для $\psi(2S)$:

$$\Gamma_{ee} \times \mathcal{B}_{\mu\mu} = 19.3 \pm 0.3 \pm 0.5 \text{ sB}.$$

6. С лучшей на данный момент точностью получена электронная ширина $\psi(2S)$ -мезона:

$$\Gamma_{ee}|_{\pi. y.} = 2.279 \pm 0.015 \pm 0.042$$
 кэВ,
 $\Gamma_{ee} = 2.282 \pm 0.015 \pm 0.042$ кэВ,

как в предположении лептонной универсальности, так и без него.

В приложении А приведены графики эффективности суперблоков мюонной системы детектора КЕДР в одном из экспериментальных сезонов.

Приложение Б содержит результаты измерений параметра $\Gamma_{ee} \times \mathcal{B}_{ee}$ для $\psi(2S)$ -мезона и таблицу их систематических погрешностей.

Основные результаты диссертации опубликованы в следующих работах:

- 1. V. V. Anashin, ..., A. M.Sukharev et al. Results on $J/\psi,\,\psi(2S),\,\psi(3770)$ from KEDR. // Nucl. Phys. Proc. Suppl. - 2008. – Vol. 181-182. – P. 353–357.
- 2. V. M. Aulchenko, ..., A. M.Sukharev et al. Study of $\psi(2S) \rightarrow \mu^+ \mu^-$ Decay with KEDR Detector. // Int. J. Mod. Phys. Conf. Ser. - 2014. - Vol. 35. - P. 1460462.
- A. Sukharev Muon system of the KEDR detector. // Journal of Instrumentation. — 2014. — Vol. 9, no. 08. — P. C08026.
- V. V. Anashin, ..., A. M.Sukharev et al. The KEDR detector. // Physics of Particles and Nuclei. - 2013. - Vol. 44, no. 4. - P. 657-702.
- 5. V. V. Anashin, ..., A. M.Sukharev et al. Measurement of $\Gamma_{ee} \times \mathcal{B}_{\mu\mu}$ for $\psi(2S)$ meson. // Physics Letters B. – 2018. – Vol. 781. – P. 174–181.
- В. М. Аульченко, ..., А. М. Сухарев и др. Мюонная система детектора КЕДР. // Препринт ИЯФ 2000-48.

СУХАРЕВ Андрей Михайлович

Измерение произведения электронной ширины на вероятность распада в пару мюонов $\psi(\mathbf{2S})$ -мезона

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Сдано в набор 09.07.2018 г. Подписано в печать 10.07.2018 г. Формат 60 × 90 1/16. Объём 1,0 печ.л., 0,8 уч.-изд.л. Тираж 100 экз. Бесплатно. Заказ №6.

Обработано на IBM PC и отпечатано на ротапринте ИЯФ им. Г.И. Будкера СО РАН, Новосибирск, 630090, пр. академика Лаврентьева, 11.