

Зачем это изучать?

- ▶ Лептонная универсальность: в Стандартной модели связь лептонов с калибровочными бозонами не зависит от поколения, то есть с точки зрения слабого и электромагнитного взаимодействия, например, электрон неотличим от мюона и тау-лептона.
- ▶ Во всех наблюдавшихся процессах <u>лептонное</u> <u>число</u> в замкнутой системе <u>сохраняется</u>, но никто не знает почему...

Если найдем <u>нарушение</u> лептонной универсальности и/или лептонного числа, значит есть Новая физика! Например:

- > Seesaw
- Больше Хиггсов
- > SUSY
- > Лептокварк
- > Z'
- ▶ ...

План доклада

- ▶ Распады В_(s) мезонов
 - ➤ Belle & Belle II
 - > LHCb
- ▶Распады К мезонов
 - ➤ NA62
- ≻Распады Хиггса
 - > ATLAS
- ightharpoonup Распады au лептонов
 - ➤ Belle II
- ▶Распады мюонов
 - > MEG II

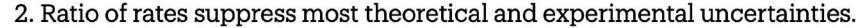
Распады $B_{(s)}$ мезонов

≻Belle II

- ightharpoons R(D^*)
- $ightharpoonup \mathsf{R}(D) \mathsf{R}(D^*)$
- ightharpoons R(X)

>LHCb

- $\triangleright B_s^0 \rightarrow \phi l^+ l^-$
- $\triangleright B^+ \rightarrow K^+ \pi^+ \pi^- I^+ I^-$
- $\triangleright B^+ \rightarrow K^+ I^+ I^-$
- $\triangleright B^0 \rightarrow K^{*0} \tau^+ e^-$

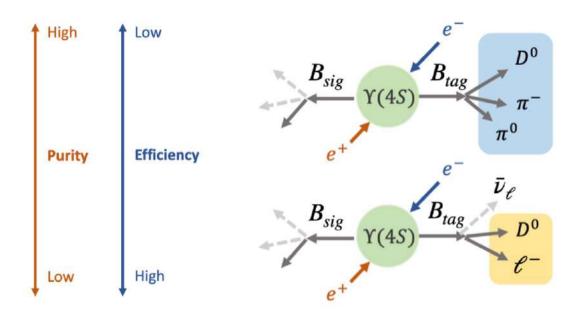



Lepton-flavour universality in semileptonic B decays

Motivation

- W boson couples equally to e, μ, τ in the SM \rightarrow Lepton Flavour Universality (LFU).
- Non-SM contributions (H^+ , LQ, SUSY...) can generally violate LFU.
- Different ways to investigate LFU with semileptonic B decays:
 - 1. Asymmetries in $B \to D^* \ell \nu$ angular distributions.

Persistent anomaly observed between τ and light lepton ratios, e.g. $R(D_{\tau/\ell}^{(*)}) = \frac{\mathscr{B}(B \to D^{(*)}\tau\nu)}{\mathscr{B}(B \to D^{(*)}\ell\nu)}$


Dealing with missing energy

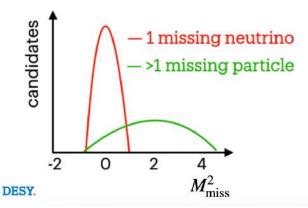
Reconstruction techniques

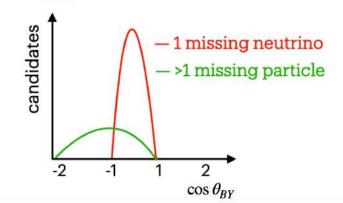
The measurements discussed in this talk are based on two different methods to deal with non-signal side B meson ($B_{\rm tag}$):

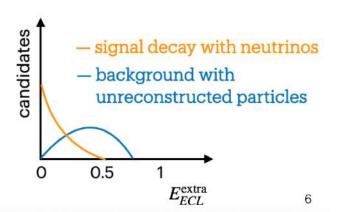
- 1. Hadronic tagging:
 - reconstruct B_{tag} by hadronic decay modes.
- 2. Semileptonic tagging:

reconstruct B_{tag} by semileptonic decay modes.

Reconstruction efficiency is $\mathcal{O}(0.1\%)$ and $\mathcal{O}(1\%)$ for the hadronic and semileptonic tagging, respectively.


Belle II


Dealing with missing energy


Fit variables

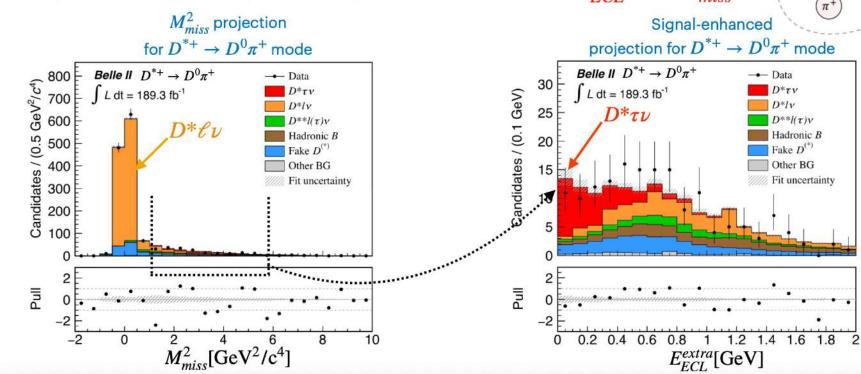
Fully reconstruct the partner B meson in hadronic/semileptonic decay modes. Match remaining particles with signal decay. Identify invisible particles using:

- 1. Missing mass of undetected particles $M_{miss}^2 = (p_{e^+e^-} p_{visible})^2$.
- 2. Use available kinematic constraint $\cos \theta_{BY} = \frac{2E_B^* E_Y^* m_B^2 m_Y^2}{2\left|p_B^*\right| \left|p_Y\right|^*}$ with $Y = D\mathcal{E}$ system.
- 3. Residual energy in the calorimeter E_{ECL}^{extra} .

Belle II

Signal side

Tag side


$R(D_{\tau/\ell}^*)$ with hadronic B tagging

Strategy

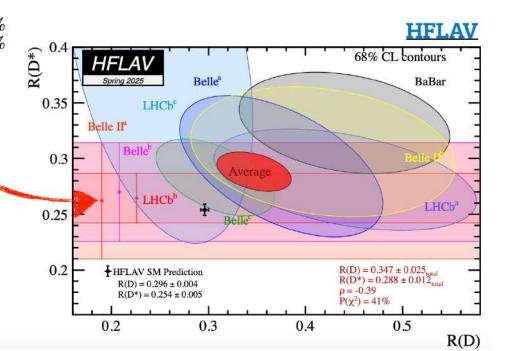
DESY.

• Measure $R(D^*_{\tau/\ell})$ by reconstructing $D^{*+} \to D^0 \pi^+, D^+ \pi^0$ and $D^{*0} \to D^0 \pi^0$. Identify lepton from $\tau \to \ell \bar{\nu} \nu$.

• Extract signal/normalisation yields using a 2D likelihood fit to E^{extra}_{ECL} and M^2_{miss} .

$R(D_{\tau/\ell}^*)$ with hadronic B tagging

Results

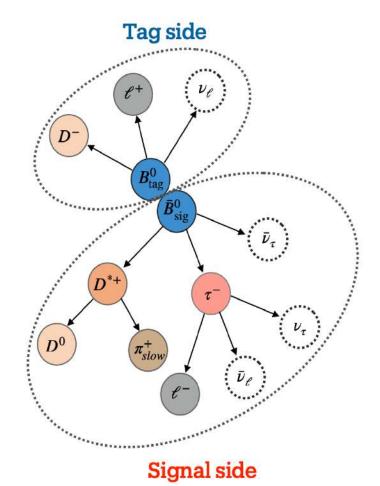

- Main challenge: validate modelling of background fit templates.
 Data-driven validation of background and signal model based on studies of control regions.
- Main sources of systematic unc.: PDF shapes: $^{+9.1\%}_{-8.3\%}$, MC statistics: $^{+7.5\%}_{-7.5\%}$, $\mathscr{B}(B \to D^{**}\ell\nu)$: $^{+4.8\%}_{-3.5\%}$
- Statistical uncertainty: experimental sample size: $^{+15.7\%}_{-14.7\%}$

$$R(D_{\tau/\ell}^*) = 0.262_{-0.039}^{+0.041} (stat)_{-0.032}^{+0.035} (syst)$$

Compatible with the previous measurements.

HFLAV 25:
$$R(D^*) = 0.288 \pm 0.012$$

Overall mean of all $R(D_{\tau/\ell}^*)$ measurements indicates a tension of 2.7σ with SM prediction.

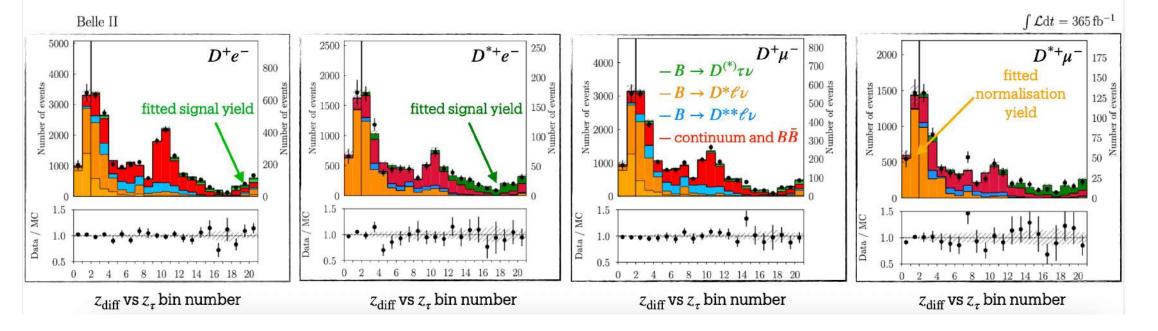

$R(D_{\tau/\ell}) - R(D_{\tau/\ell}^*)$ semileptonic B tagging

Reconstruction

- First $R(D^{(*)})$ Belle II measurement using semileptonic B tagging. Reconstruct $B_{\text{tag}} \to D\ell\nu_{\ell}$ and $B_{\text{tag}} \to D^*\ell\nu_{\ell}$.
- Reconstruct $B_{
 m sig}$ candidates in $D^+\ell^-$ and $D^{*+}\ell^-$ final states not associated with the $B_{
 m tag}$ candidate.
- Identify signal τ decays from $\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau$.
- D mesons reconstructed in multiple hadronic decays on both sides:
 Tag side: 26 decay modes

Signal side: 13 decay modes

• Require $\cos\theta_{BY}^{\mathrm{tag}} \in$ [-1.75, 1.1] and $\cos\theta_{BY}^{\mathrm{sig}} \in$ [-15,1.1].



arXiv.2504.11220 submitted to PRD

$R(D_{\tau/\ell}) - R(D_{\tau/\ell}^*)$ semileptonic B tagging Fit extraction

- Extract signal and normalisation yields using a 2D binned likelihood fit of z_{τ} and z_{diff} .
- The fit is performed over 4 separate channels: $D^+e^-, D^+\mu^-, D^{*+}e^-, D^{*+}\mu^-$.
- 10 fit parameters: 2 for the signal, 2 for the normalisation and 6 for the background.

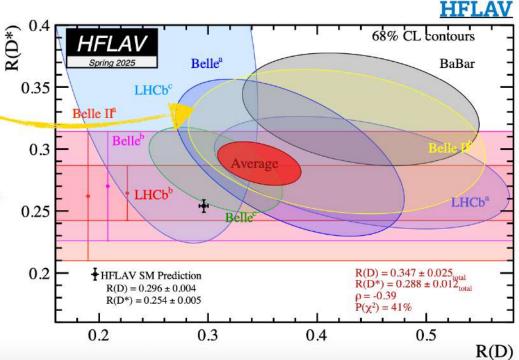
arXiv.2504.11220 submitted to PRD

$R(D_{\tau/\ell}) - R(D_{\tau/\ell}^*)$ semileptonic B tagging

Results

- Main sources of syst. unc. $\frac{R(D_{\tau/\ell}^*)}{R(D_{\tau/\ell})}$: MC statistics: $\frac{4.7\%}{8.0\%}$, $\mathscr{B}(B \to D^{**}\ell\nu)$: $\frac{0.1\%}{6.4\%}$, Muon eff. [misID]: $\frac{0.1\%}{5.1\%}$ [0.9%].
- Statistical uncertainty $\frac{R(D_{\tau/\ell}^*)}{R(D_{\tau/\ell})}$: experimental sample size: $\frac{11.0\%}{18.0\%}$.

$$R(D_{\tau/\ell}^{*+}) = 0.306 \pm 0.034(stat) \pm 0.018(syst)$$


$$R(D_{\tau/\ell}^+) = 0.418 \pm 0.074(stat) \pm 0.051(syst)$$

The tension between the LFU-sensitive quantities $R(D_{\tau/\ell}) - R(D_{\tau/\ell}^*)$ and SM predictions increases to 3.8σ .

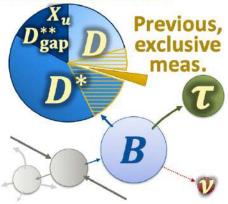
$$R(D_{e/u}^{*+}) = 1.08 \pm 0.04(stat) \pm 0.02(syst)$$

$$R(D_{e/u}^{*+}) = 1.07 \pm 0.05(stat) \pm 0.02(syst)$$

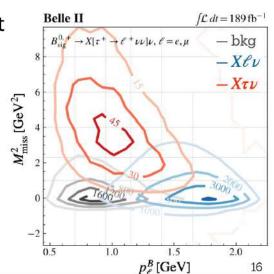
Consistent with the SM within $1.6\sigma - 1.2\sigma$ respectively.

$R(X_{\tau/\ell})$ with hadronic B tagging Strategy

- Measure $R(X_{\tau/\ell})$ by combining events with $B_{tag}+\ell$.


Remaining particles attributed to X.

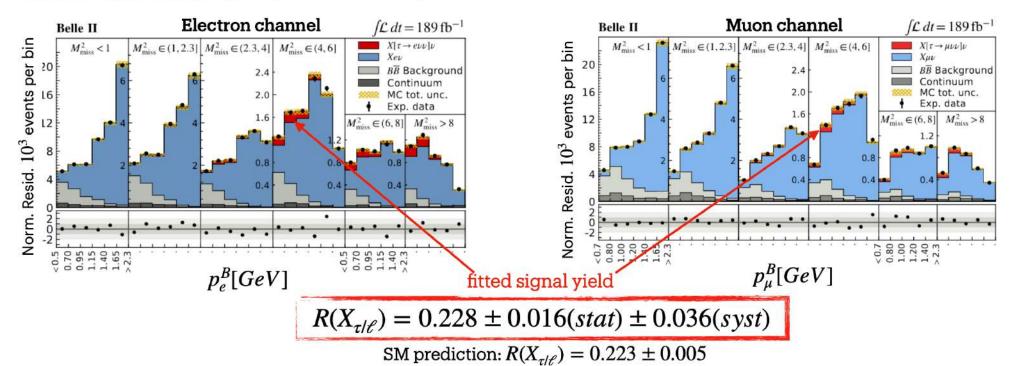
- Innovative and complementary measurement w.r.t. $R(D^{(*)})$ potentially more precise with different sources of systematics.
- Extract signal and normalisation yields using a simultaneous 2D likelihood fit to lepton momentum p_l^B (B rest frame) and M_{miss}^2 .


 $B \to X\tau\nu$ and $B \to X\ell\nu$ well separated in the 2D plane.

 Main challenge: modelling the X system. Corrections based on comparison of simulation with control regions.

Inclusive meas.

PRL 132, 211804

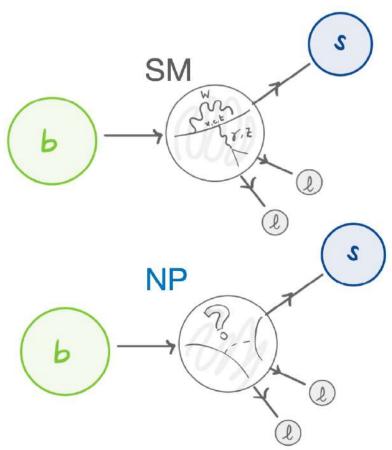


PRL 132, 211804

$R(X_{\tau/\ell})$ with hadronic B tagging Results

- Main sources of systematic unc.: $X_c\ell\nu$ M_X shape: 7.1%, $\mathscr{B}(B\to X\ell\nu)$:7.7%, $X_c\tau(\ell)\nu$ form factors: 7.8%
- Statistical uncertainty: experimental sample size: 7.1%

Compatible with SM and $R(D_{\sigma l\ell}^{(*)})$ measurements.

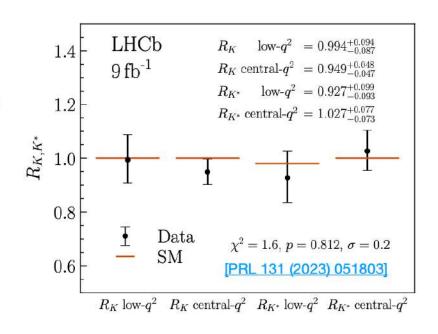

Probing cLFV and LFUV in $b \to s\ell\ell'$ transitions

Flavour changing neutral currents (FCNC) involving the third quark family are extremely interesting

NP probes since they are:

 Initiated by a b quark which is heavy (various final states accessed) and long lived (rel. easy to detect)

- Loop induced and CKM suppressed in the SM (BF of order $\sim 10^{-6} 10^{-7}$):
 - NP contributions of same size as SM could modify decay properties (e.g. enhancing/suppressing branching fractions)
 - Probe higher energy scales than direct searches (of order $1 \sim 100\,\text{TeV}$)



LFU probes: the R_H observables

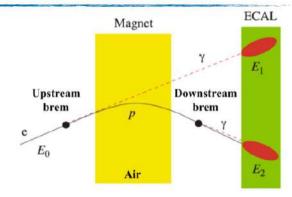
- SM distinguishes flavour only for mass effects, hadronic contributions are LFU
 - \rightarrow the value of R_{H_s} is predicted to be very close to 1 for μ/e ratios.

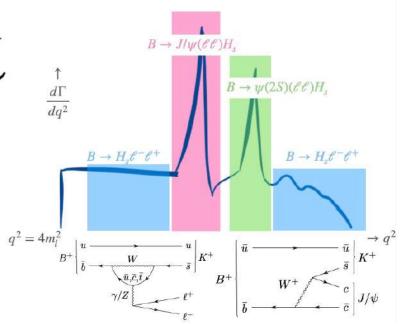
$$R_{H_s} = \begin{array}{c} \sqrt[q^2]{m_{\rm max}} & \frac{d\mathcal{B}(B \to H_s \mu^+ \mu^-)}{dq^2} dq^2 \\ \sqrt[q^2]{m_{\rm min}} & \frac{d\mathcal{B}(B \to H_s \mu^+ \mu^-)}{dq^2} dq^2 \\ \sqrt[q^2]{m_{\rm min}} & \frac{d\mathcal{B}(B \to H_s e^+ e^-)}{dq^2} dq^2 \end{array} \overset{[\text{EPJ C76 (2016) 8 440}]}{\underset{QED}{\text{ED}}}$$

- Recent results from LHCb are in agreement with SM predictions within uncertainties, no competitive measurement of LFU ratio from LHCb above charm resonances, until now.
- Important to keep testing LFU with $b \to s\ell\ell$ processes involving different spectator quarks to fully exploit collected dataset and reduce orthogonal systematics

Strategy for R_H measurements at LHCb

- Experimentally challenging as sensitive to μ/e detection differences (e.g. trigger strategy, PID) + different occupancy → tighter requirements for e
- Significant energy loss to bremsstrahlung photons from e, mitigated by recovery algorithm
 - \rightarrow Degraded mass resolution and reconstruction efficiency for e w.r.t. μ

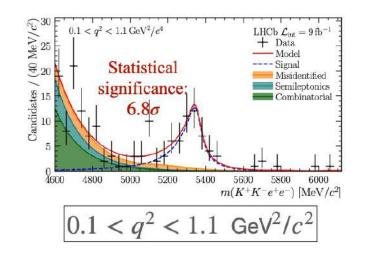

$$R_{H_s} = rac{N(H_s\mu\mu)}{N(H_see)} rac{arepsilon(H_see)}{arepsilon(H_s\mu\mu)} \left/ rac{N(H_sJ/\psi(\mu\mu))}{N(H_sJ/\psi(ee))} rac{arepsilon(H_sJ/\psi(ee))}{arepsilon(H_sJ/\psi(\mu\mu))} rac{arepsilon(H_sJ/\psi(ee))}{arepsilon(H_sJ/\psi(\mu\mu))}
ight.$$

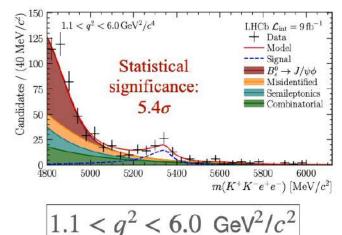

Efficiencies

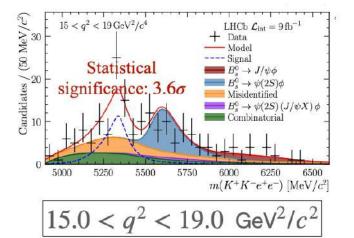
- Excellent control of efficiencies in simulation thanks to double ratio w.r.t. control channels
- Standard candles since these decays are known to be LFU within 0.4% [PDG]

Yields

- Obtained from maximum likelihood fits to the B invariant mass
- Use data-driven techniques to obtain robust and conservative estimate of background contamination


LFU ratio with $B_s^0 \to \phi \ell^+ \ell^-$ decays


[PRL 134 (2025) 12, 121803]

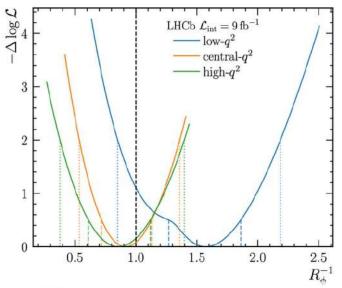

- First LFU test in B_s^0 decays:
 - Measurement performed in low, central and high q^2 regions
 - Background is significantly reduced thanks to narrow width of ϕ

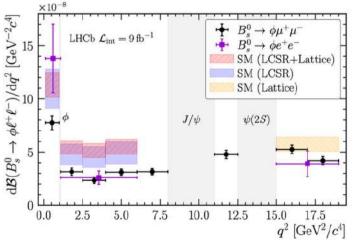
$$r_{J/\psi}^{\phi} = 0.997 \pm 0.013$$

 $r_{\psi(2S)}^{\phi} = 1.010 \pm 0.026$

• First LFU measurement at high q^2 : challenging backgrounds due to vicinity of phase-space endpoint and charmonium resonances leakages

LFU ratio with $B_s^0 \to \phi \ell^+ \ell^-$ decays




[PRL 134 (2025) 12, 121803]

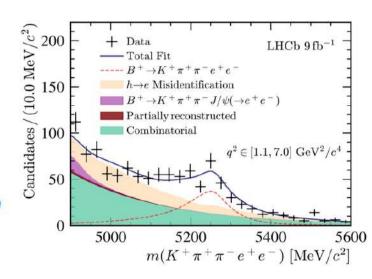
- First observation and measurement of BF of $B_s^0 o \phi e^+e^-$ decays
- Results are compatible with SM, uncertainty on R_ϕ^{-1} is statistically dominated, main contributions to systematic come from misidentified background estimate

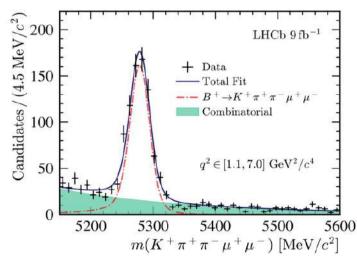
$q^2~[\mathrm{GeV^2\!/}c^4]$	R_ϕ^{-1}	$d\mathcal{B}(B_s^0 \to \phi e^+ e^-)/dq^2 \ [10^{-7} \text{GeV}^{-2}c^4]$
$0.1 < q^2 < 1.1$	$1.57^{+0.28}_{-0.25}\pm0.05$	$1.38 ~^{+0.25}_{-0.22} ~\pm 0.04 \pm 0.19 \pm 0.06$
	$0.91^{+0.20}_{-0.19} \pm 0.05$	$0.26 \pm 0.06 \pm 0.01 \pm 0.01 \pm 0.01$
$15.0 < q^2 < 19.0$	$0.85^{+0.24}_{-0.23}\pm0.10$	$0.39 \pm 0.11 \pm 0.04 \pm 0.02 \pm 0.02$

• The differential BF $B_s^0 o \phi e^+ e^-$ is obtained by combining R_ϕ^{-1} with $dB(B_s^0 o \phi \mu^+ \mu^-)/dq^2/B(B_s^0 o J/\psi \phi)$ [PRL 127 (2021) 151801] and $B(B_s^0 o J/\psi \phi)$ [PDG]

[PRL 134 (2025) 18, 181803]

LFU ratio with $B^+ \to K^+ \pi^+ \pi^- \ell^+ \ell^-$ decays

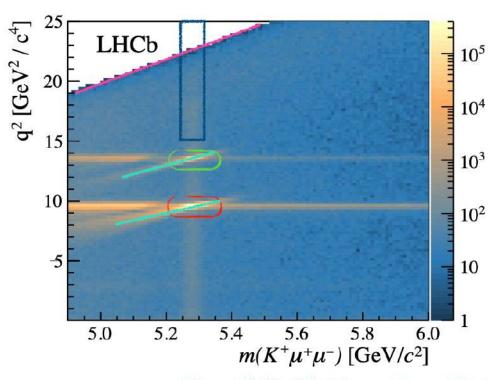

- · First LFU test in these decays:
 - Measurement in central- q^2 : $1.1 < q^2 < 7.0 ~{\rm GeV}^2/c^2$, inclusive in $1.1 < m(K\pi\pi) < 2.4 ~{\rm GeV}/c$

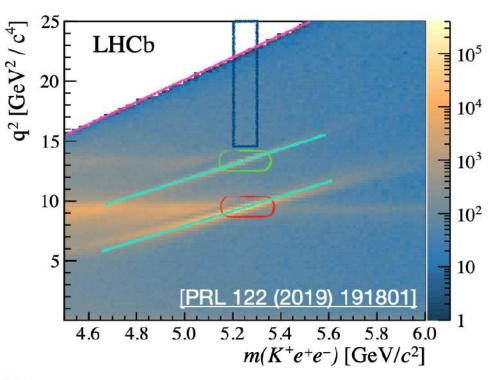

$$r_{J/\psi}^{K\pi\pi} = 1.033 \pm 0.017$$

 $r_{\psi(2S)}^{K\pi\pi} = 1.040 \pm 0.030$

• First observation of $B^+ \to K^+ \pi^+ \pi^- e^+ e^-$ decay, $> 10\sigma$

$$R_{K\pi\pi}^{-1} = 1.31_{-0.17}^{+0.18} \text{ (stat) } ^{+0.12}_{-0.09} \text{ (syst)}$$

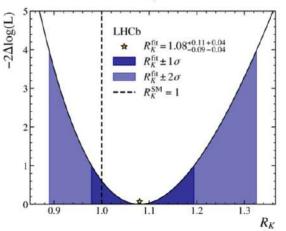

- Result is compatible with SM
- Still dominated by statistical uncertainty
- Main systematics contributions come from mis-ID background shape and contamination estimate



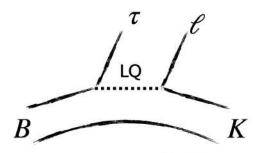
LFU ratio with $B^+ \to K^+ \ell^+ \ell^-$: challenges at high q^2

- Peaking structures: $B^+ \to K^+ J/\psi(\ell^+\ell^-)$ and $B^+ \to K^+ \psi(2S)(\ell^+\ell^-)$ (resonant decay modes)
- Vertical band: $B^+ \to K^+ \ell^+ \ell^-$ (rare decay mode) in high q^2 region
- Radiative tails + incorrectly-added bremsstrahlung \rightarrow most prominent background at high q^2 is $B^+ \rightarrow K^+ \psi(2S)(\ell^+ \ell^-)$ leakage
- White triangle: kinematically inaccessible → pink line: phase space cutoff

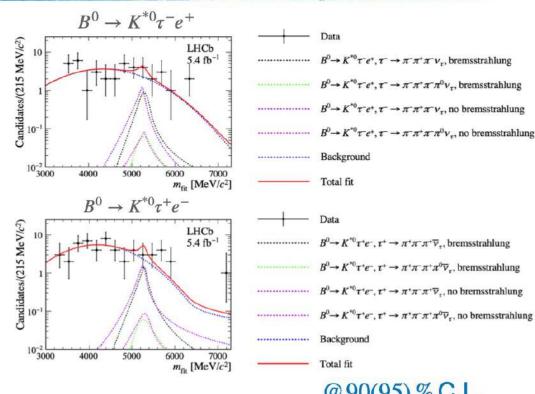
[arXiv:2505.03483]


LFU ratio with $B^+ \to K^+ \ell^+ \ell^-$ decays at high q^2

• Most precise measurement of LFU ratio R_K at at high q^2 :


$$R_K(q^2 > 14.3 \text{ GeV}^2/c^4) = 1.08^{+0.11}_{-0.09}{}^{+0.04}_{-0.09}$$

- Uncertainty is statistically dominated, systematic uncertainty driven by the partially reconstructed and misidentified backgrounds
- Leakages from charmonia resonances are excluded from systematic uncertainties, otherwise hard to evaluate


LFV searches in $B^0 \to K^{*0} \tau^{\pm} e^{\mp}$

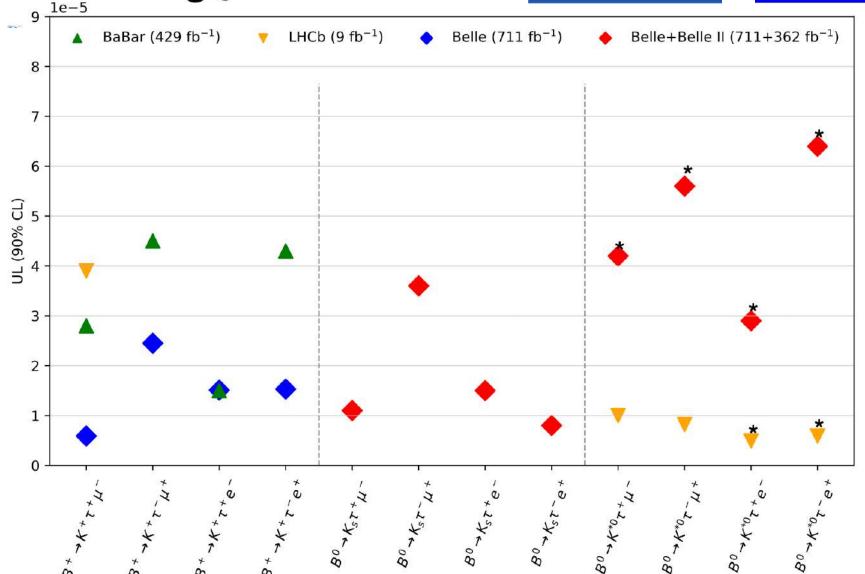
[arXiv:2506.15347]

- LFV has been observed in neutral leptons through neutrino oscillations
 - For charged leptons however, SM predicts that LFV is beyond current experimental sensitivity
 - Search for LFV violation helps constraining NP models that predict it
- Reconstructed B mass is refitted via a decay chain fit with kinematic constraints to correct for the missing ν momentum
- $B^0 \to D^-(K\pi\pi)D_s^+(KK\pi)$ used as normalisation + corrections to simulated efficiencies
- Most stringent limits on $b \rightarrow s\tau e$ are obtained:

@90(95) % C.L.

$$\mathcal{B}(B^0 \to K^{*0} \tau^- e^+) < 5.9 \ (7.1) \times 10^{-6}$$

$$\mathcal{B}(B^0 \to K^{*0} \tau^+ e^-) < 4.9 (5.9) \times 10^{-6}$$


 $B \to K^{(*)} \mathcal{I}$

Распады К мезонов

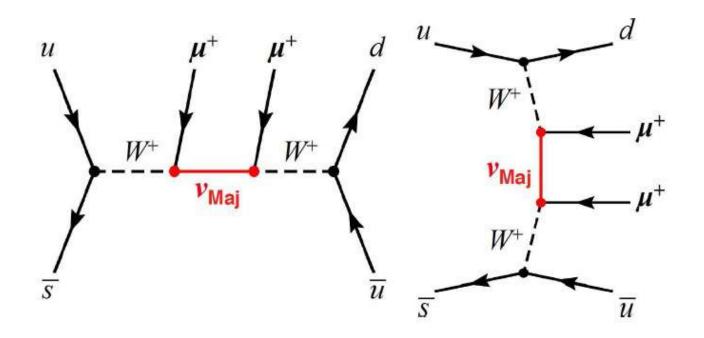
≻NA62

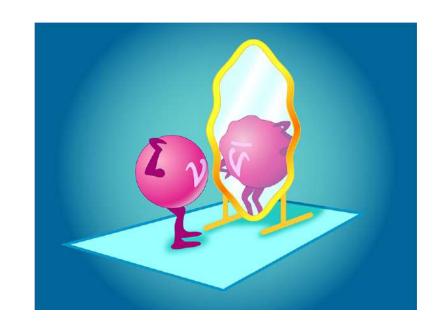
$$\triangleright K^+ \rightarrow \pi^- I^+ I^+$$

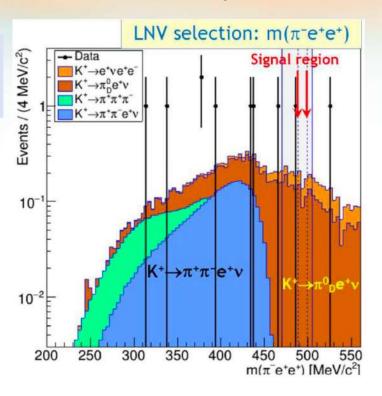
$$>K^+ \rightarrow \pi \mu e$$

$$\triangleright K^+ \rightarrow \pi^- \pi^0 e^+ e^+$$

$$\triangleright K^+ \rightarrow \mu \nu e^+ e^+$$


$$>K^+ \rightarrow \pi^0 \pi \mu e$$





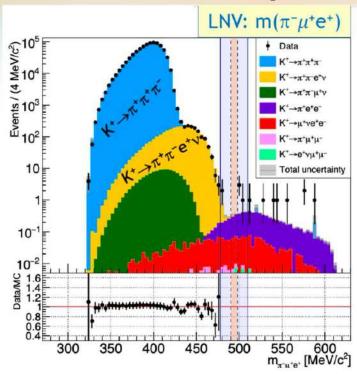

$K^{+} \rightarrow \pi^{-} |_{+} |_{+}$

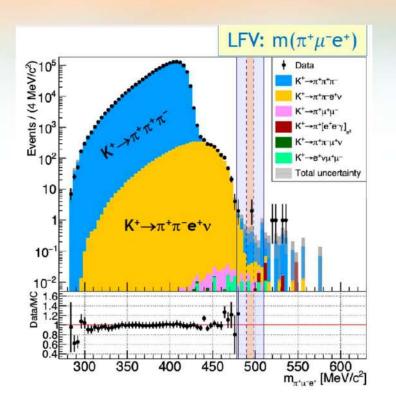
Data:

- Run 1 (2016-2018) for K→πee
- 25% Run 1 (2017) for K→πμμ

PLB830 (2022) 137172 PLB797 (2019) 134794

mode	Expected bkg	N(observed)	UL(BR) @ 90% CL
$K^+ \rightarrow \pi^- e^+ e^+$	0.43(9)	0	5.3*10 ⁻¹¹
$K^+ \rightarrow \pi^- \mu^+ \mu^+$	0.91(41)	1	4.2*10 ⁻¹¹



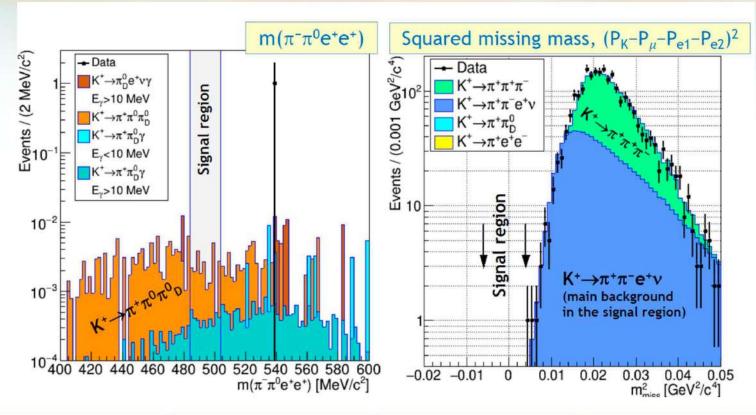

$K^+ \rightarrow \pi \mu e$

Data:

• Run 1 (2017-2018)

PRL 127 (2021) 131802

mode	Expected bkg	N(observed)	UL(BR) @ 90% CL
$K^+ \rightarrow \pi^- \mu^+ e^+$	1.07(20)	0	4.2*10 ⁻¹¹
$K^+ \rightarrow \pi^+ \mu^- e^+$	0.92(34)	2	6.6*10 ⁻¹¹
$\pi^0 \rightarrow \mu^- e^+$			3.2*10 ⁻¹⁰



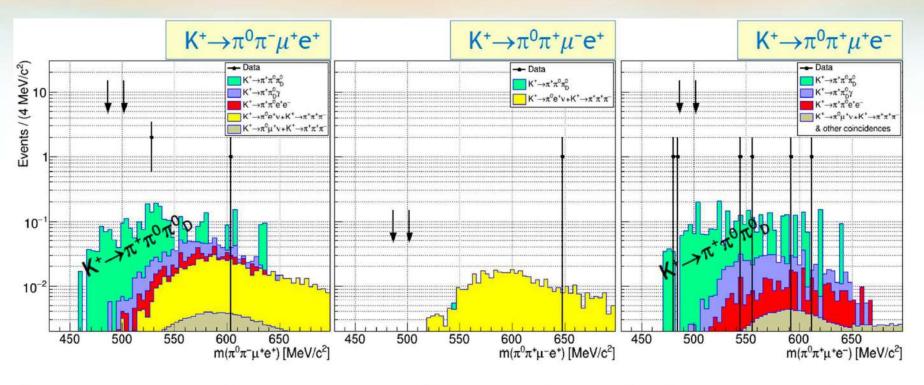
$K^+ \rightarrow \pi^- \pi^0 e^+ e^+$ and $K^+ \rightarrow \mu^- \nu e^+ e^+$

Data:

Run 1 (2016-2018)

PLB 830 (2022) 137172 PLB 838 (2023) 137679

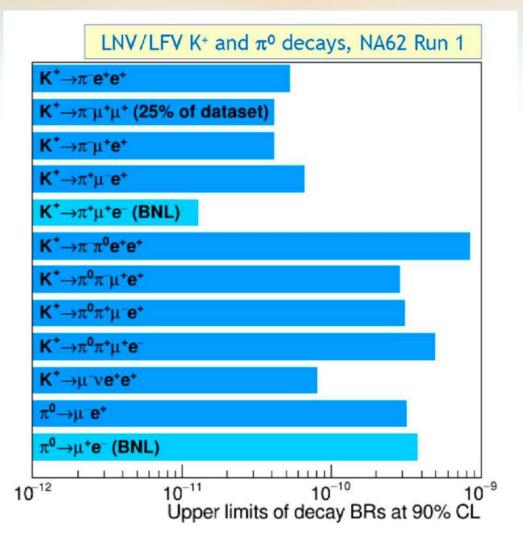
mode	Expected bkg	N(observed)	UL(BR) @ 90% CL
$K^+ \rightarrow \pi^- \pi^0 e^+ e^+$	0.044(20)	0	8.5*10 ⁻¹⁰
$K^+ \rightarrow \mu^- \nu e^+ e^+$	0.26(4)	0	8.1*10 ⁻¹¹



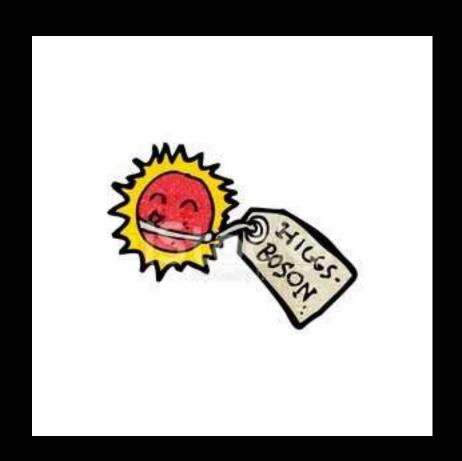
Search for $K^+ \rightarrow \pi^0 \pi e \mu$

Data:

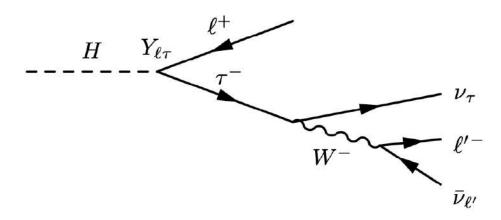
Run 1 (2016-2018)

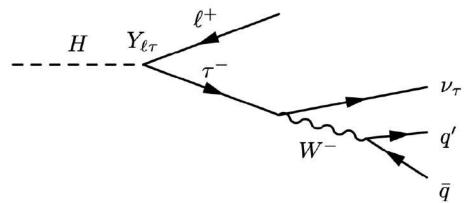

PLB 859 (2024) 139122

Mode	Expected bkg	N(observed)	UL(BR) @ 90%CL
$\mathrm{K}^{\scriptscriptstyle +} \rightarrow \pi^0 \ \pi^{\scriptscriptstyle -} \ \mu^{\scriptscriptstyle +} \ \mathrm{e}^{\scriptscriptstyle +}$	0.33(7)	0	2.9*10 ⁻¹⁰
$\mathrm{K}^{\scriptscriptstyle +} \boldsymbol{\rightarrow} \pi^{\scriptscriptstyle 0} \pi^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \mathrm{e}^{\scriptscriptstyle +}$	0.004(3)	0	3.1*10 ⁻¹⁰
$\mathrm{K}^{\scriptscriptstyle +} \rightarrow \pi^0 \ \pi^{\scriptscriptstyle +} \ \mu^{\scriptscriptstyle +} \ \mathrm{e}^{\scriptscriptstyle -}$	0.29(7)	0	5.0*10 ⁻¹⁰

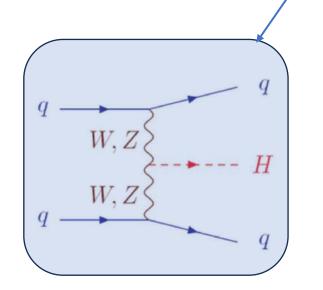


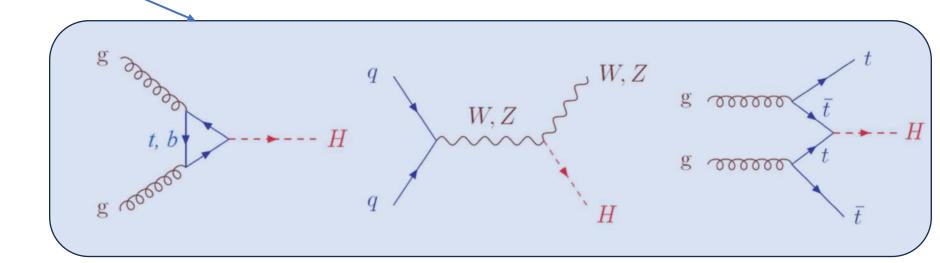
LFV/LNV decays @ NA62: state of the art


Распады Хиггса


>ATLAS $> H \rightarrow \tau \mu$ $> H \rightarrow \tau e$

ATLAS

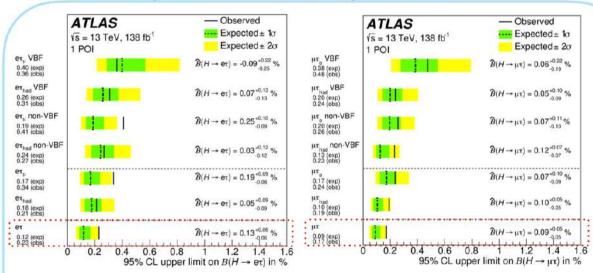

Status with Run 2 data for Higgs LFV decay


Two independent searches: $H\rightarrow e\tau$ and $H\rightarrow \mu\tau$

Two categories: VBF and Non-VBF

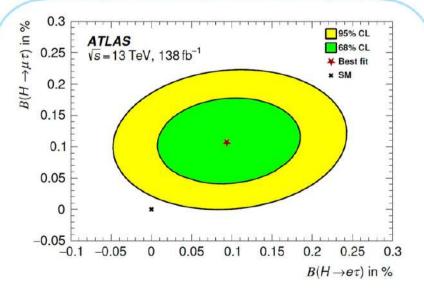
Two independent background methods:

- MC-template (for leptonic and hadronic decays)
- Symmetry method (for leptonic decays)



ATLAS

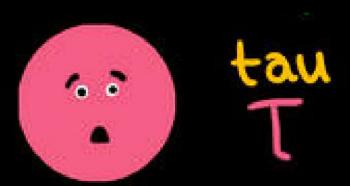
Higgs LFV decay: ATLAS Run2 results


1 POI: Independent fits in eτ and μτ channels

- Combination of the three analysis approach with a 1 POI fit setup:
 - Observed limits are above expected ones for both signals.
 - ▶ 2.2 σ excess seen for $\mathcal{B}(H\rightarrow e\tau)$ and 1.9 σ for $\mathcal{B}(H\rightarrow \mu\tau)$.
- 1 POI setup also used to extract branching ratio difference with Symmetry analysis:

$$\mathcal{B}(H \rightarrow \mu\tau) - \mathcal{B}(H \rightarrow e\tau) = (0.25 \pm 0.10)\%$$

2 POI: Simultaneous fit of H→eτ and H→μτ

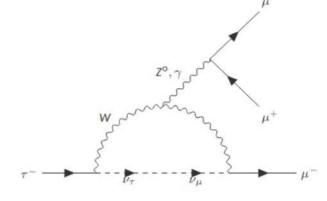


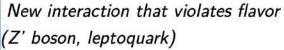
Observed limits are above expected ones, in line with 1 POI fits.

- 1.6 σ excess seen for $\mathcal{B}(H\rightarrow e\tau)$ and 2.4 σ for $\mathcal{B}(H\rightarrow \mu\tau)$.
- A slight upward deviation.
- Global compatibility with SM within 2.1σ.

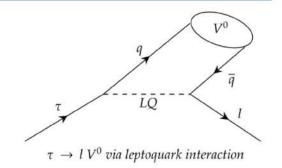
Распады au лептонов

► Belle / Belle II


Lepton flavor violation

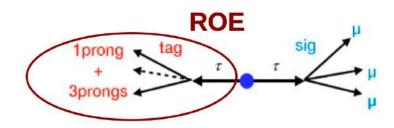

 Lepton Flavor Violation (LFV) in charged lepton decays is allowed via weak charged currents and neutrino oscillation, but immeasurably small

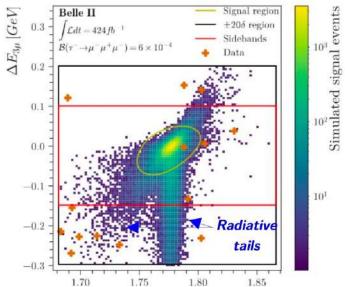
$$BR(\ell_1 \to \ell_2 \gamma)_{SM} \propto \left(\frac{\delta m_{\nu}^2}{m_W^2}\right)^2 \sim 10^{-54} \text{-} 10^{-49}$$


- → observation of LFV decays would be *per se* a proof of non-SM physics!
- Hints of lepton-flavor universality violation and deviation from SM predictions in rare B decays (B anomalies in $b \to c N$, τ Vs light leptons)
- Various new physics models predict LFV at observable rates

	Physics Models	$\mathscr{B}(\tau^- \to \mu^- \mu^+ \mu^-)$
010	SM	10-55
073010	SM + Seesaw	10 ⁻¹⁰
.77.	SUSY + Higgs	10-8
PRD.	SUSY + SO(10)	10 ⁻¹⁰
	Non-universal Z'	10-8

→ Special role of the third family


Belle II


Search for $\tau^+ \rightarrow \mu^+ \mu^- \mu^+$

JHEP09(2024)062

- Motivated by new Z', charged Higgs models [1]
- Reconstruct signal in inclusive untagged approach \rightarrow new at Belle II [2]
- Reject $\ell^+\ell^-(\gamma)$ and $\ell^+\ell^-\ell^+\ell^-$ processes with data driven selections + Boosted Decision Tree (BDT) classifier to suppress qq background exploiting signal and Rest Of Event (ROE) properties \to final signal **efficiency above 20%** (\sim 3 x Belle)

• Extract signal by Poisson counting in elliptical signal region in $\Delta E_{3\mu} = E_{3\mu} - \sqrt{(s)/2}$ and $M_{3\mu}$ plane

 $M_{3\mu} \left[GeV/c^2 \right]$

$$\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) = \frac{N_{\text{obs}} - N_{\text{exp}}}{\mathcal{L} \times 2\sigma_{\tau\tau} \times \varepsilon_{3\mu}}$$

- One event observed in 424 fb⁻¹ (expected 0.5 from data-driven estimate)
- Compute 90% CL upper limit with CLs method:

$$\mathsf{B}^{\text{\tiny UL}}(\tau\to\mu\mu\mu)=1.9\times10^{\text{\tiny -8}}$$

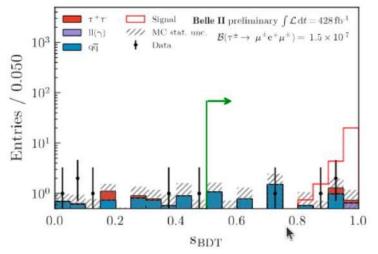
World's best

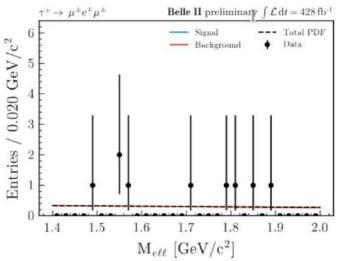
Experiment (Luminosity [fb ⁻¹])	ℬ ₉₀ ^{UL} (τ→μμμ) [x 10 ⁻⁸]
Belle (782) ^a	2.1
CMS (131) b	2.9
LHCb (3) °	4.6
Belle II (424)	1.9

[a] Phys. Lett. B 687 (2010) 139, [b] arXiv:2312.02371, [c] JHEP02(2015)121

[1] PRD.77.073010 [2] ArXiv: 2305.04759

Belle II



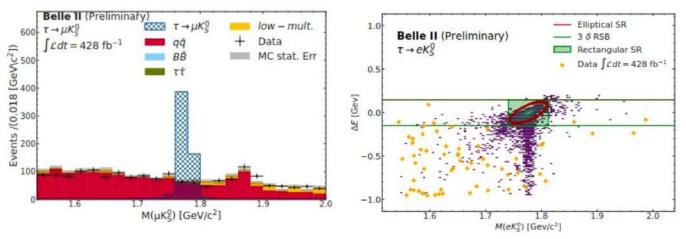

Extending the search to $\tau^- \to \mathrm{e}^\pm \ell^\mp \ell'^-$

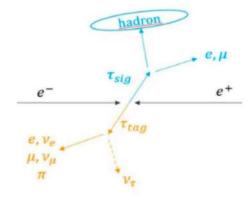
- Inclusive tagging applied, add 5 modes differentiating via lepton ID selectors
- Higher background contamination from $\ell^+\ell^-(\gamma)$ and $\ell^+\ell^-\ell^+\ell^-$ processes known to be mismodeled in simulation \to data-driven BDT classifier
 - background training sample selected away from the signal region and rely on signal kinematics from simulation $\rightarrow \epsilon_{\rm sig} \simeq 15-24$ %
- Improve sensitivity extracting the signal from unbinned max likelihood fits to $M_{\text{e}tt}$ distributions \rightarrow use sidebands to extrapolate expected background yields
- No significant excess in 428 fb⁻¹ \to observed upper limits computed with CLs method are between 1.3-2.5 x 10⁻⁸

Most stringent to date for four modes ★

	$N_{ m exp}$	$N_{ m obs}$	C_{bg}	$\mathcal{B} \times 10^{-8}$	$\mathcal{B}_{\mathrm{exp}}^{UL} \times 10^{-8}$	$\mathcal{B}_{\mathrm{obs}}^{UL} \times 10^{-8}$
$e^{-}e^{+}e^{-}$	$6.1^{+4.3}_{-2.9}$	5	$0.52^{+2.64}_{-2.60}$ $-0.40^{+1.67}_{-1.68}$	0	2.7	2.5
$e^-e^+\mu^-$	$12.1^{+5.7}_{-4.3}$	12	$-0.40^{+1.67}_{-1.68}$	0	2.1	1.6
$e^-\mu^+e^-$	$10.5^{+5.3}_{-4.3}$	17	$-2.90^{+1.48}_{-1.54}$	0	1.7	1.6
$\mu^{-}\mu^{+}e^{-}$	$20.7^{+6.6}_{-5.5}$	18	$-2.50^{+1.45}$	$0.48^{+0.90}_{-0.48}$	1.6	2.4
$\mu^-e^+\mu^-$	$7.5^{+4.5}_{-3.2}$	9	$-0.34^{+1.93}_{-1.94}$	0	1.4	1.3

Belle + Belle II





arxiv:2504.15745
Accepted for
publication in JHEP

Search for $\tau^- \rightarrow \ell^- K_{S^0} (\ell = e, \mu)$

- It can constrain new physics models with leptoquark operators [1]
- First LFV search on the combined data set Belle (980 fb⁻¹) + Belle II (428 fb⁻¹) \rightarrow 1408 fb⁻¹
- Reconstruct in one-prong tag approach, use lepton ID to distinguish signal channels and tag sides, Ks candidate from two charged pions
- Data-driven selections against $\ell^+\ell^-(\gamma)$ and $\ell^+\ell^-\ell^+\ell^-$ processes + BDT trained on input features from tagside, event and signal K_S^0 properties to suppress $ee \to q\bar{q} \to \epsilon_{sig} > 10\%$
- Signal yield from Poisson counting in elliptical signal region (SR) in M_{IKS} , $\Delta E = (E_{IKS} E_{beam})$
- Expected background extrapolated in SR from exponential fits to Miks sideband

Better performance in the electron channel due better particle ID

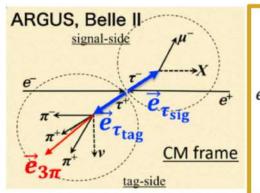
 No significant event found, set 90% CL world's best upper limits:

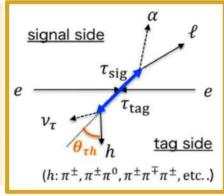
$$BF^{UL}(\tau \rightarrow e(\mu) K^{0}_{S}) < 0.8 (1.2) \times 10^{-8}$$

Between 3.2(1.9) times more stringent than Belle [2], 671 fb⁻¹

[1] EPJ.C.10052-010-1482-4 [2] Phys.Lett.B, Vol. 692, 1 (2010)

Belle




Invisible scalar boson in T decays

- T decays to new LFV bosons (e.g., ALPs) predicted in many models [1]
- Search for the process $e^+e^- \to \tau_{sig} (\to l\alpha) \tau_{tag} (\to n\pi \nu)$, with l=e or l= μ

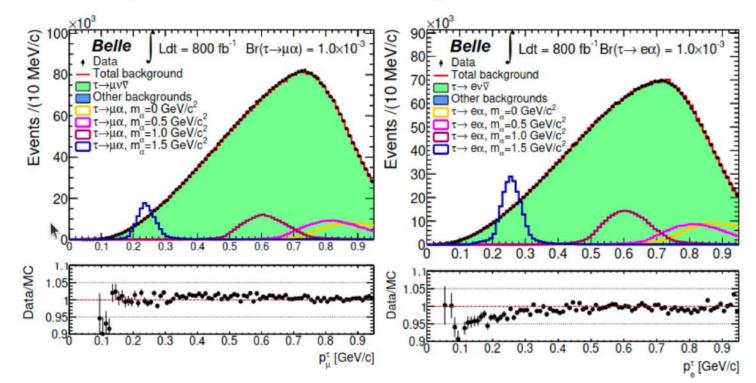
Belle II (63 fb ⁻¹): PRL 130 (2023) 181803 New at Belle: arxiv:2503.22195v2

- Approximate $\mathbf{T}_{\mathrm{sig}}$ pseudo-rest frame (ARGUS method [2]) as $\mathsf{E}_{\mathrm{sig}} \sim \sqrt{\mathsf{s}/2}$ and $\hat{p}_{\mathrm{sig}} \approx -\vec{p}_{\tau_{\mathrm{tag}}}/|\vec{p}_{\tau_{\mathrm{tag}}}|$
- Two-body decay: search a bump in the lepton momentum spectrum over irreducible background from $au_{\text{SM}} o ext{IVV}$

- **NEW** at Belle (800 fb ⁻¹): enhance efficiency adding one-prong decays on the tag-side
- Improve estimate of au_{sig} direction by reconstructing opening angle between au_{sig} and the hadronic system, $heta_{ au h}$

$$\theta_{\tau h} = \arccos \left(\frac{|\vec{p}_{\tau_{\rm tag}}^{\text{ c.m.}}|^2 + |\vec{p}_{h_{\rm tag}}^{\text{ c.m.}}|^2 - (\sqrt{s}/2 - E_{h_{\rm tag}}^{\text{ c.m.}})^2}{2|\vec{p}_{\tau_{\rm tag}}^{\text{ c.m.}}||\vec{p}_{h_{\rm tag}}^{\text{ c.m.}}|} \right)$$

Belle



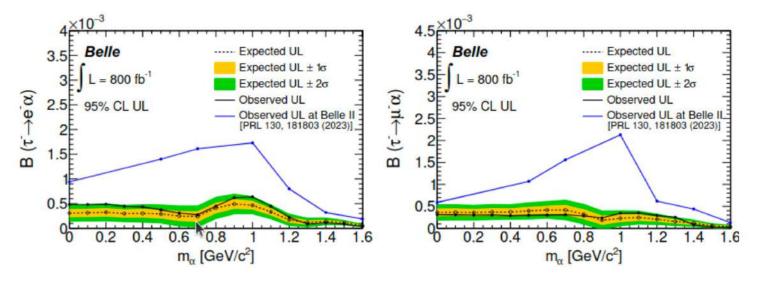
arxiv:2503.22195v2

NEW!

Invisible boson in T decays at Belle

- Require the τ_{sig} aligned with the hadronic system ($|\theta_{\tau h}| < 4$) improves the signal lepton momentum p_{ℓ} resolutions \rightarrow better sensitivity in the final fits
- Selections independent from the α mass: ε_{sig} ranges in [0.3 1.5]%
 - $^-$ validated on control samples in data and simulation using $\tau\!\to\!\pi\,\pi^0\nu$ events

Belle

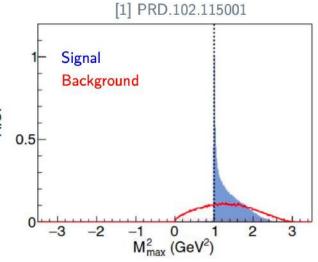


arxiv:2503.22195v2

NEW!

Invisible boson at Belle: results

• No significant excess found in 736 x 10⁶ au pairs o set 95% CL upper limits on BF($au_{sig} o$ Ilpha)

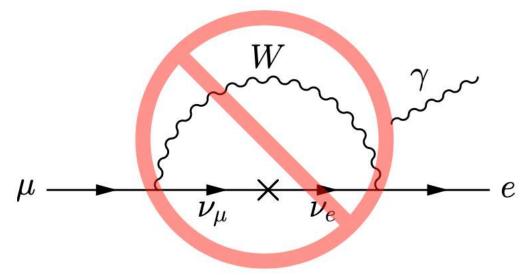

Between 0.4-6.4 (0.2-3.5) \times 10⁻⁴ for electron(muon) channels

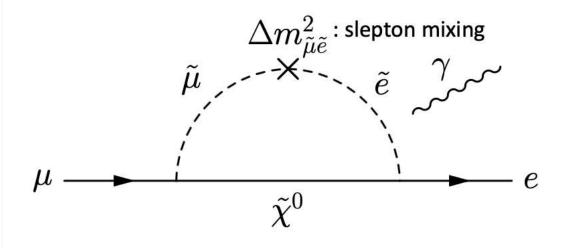
 \rightarrow most stringent to date

TEASER: new method at Belle II, exploiting $1 \times 1 \tau$ pairs topology and new kinematic variables [1]

 \rightarrow sensitive to the α mass at the lower/upper bounds of the distributions, improves signal/background discrimination

Распады мюона

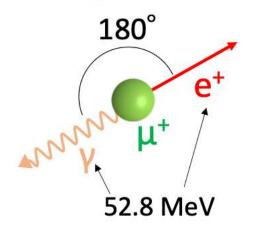

>MEG II $\rightarrow \mu \rightarrow e \gamma$


Why $\mu \rightarrow e\gamma$ search?

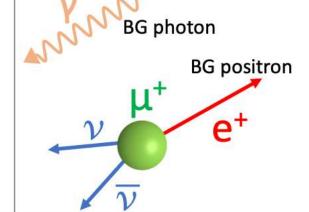
- No SM process for $\mu \rightarrow e \gamma$
 - Even with ν -oscillation, Br($\mu \rightarrow e \gamma$) $< 10^{-54}$
- → Evidence of new physics if discovered

 10^{-54} : Too small for experiments

- BSM expectation for $\mu \rightarrow e \gamma$
 - E.g. SUSY in O(10 TeV): $Br(\mu \to e \gamma) \sim 10^{-14} 10^{-12}$
- → Within experimental reach


 $10^{-14} - 10^{-12}$: In experimental reach

How to detect $\mu \rightarrow e\gamma$?

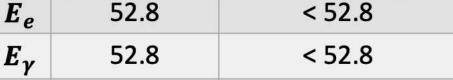

<u>Signal</u>

2-body kinematics

Main background

Accidental coincidence

RMD background


Radiative muon decay ($\mu \rightarrow e\nu\nu\gamma$) \rightarrow Minor (effectively 10^{-16})

What determines sensitivity?

$$N_{sig} \propto R_{\mu} \times \text{Br}(\mu \rightarrow e\gamma) \times \text{efficiency}$$

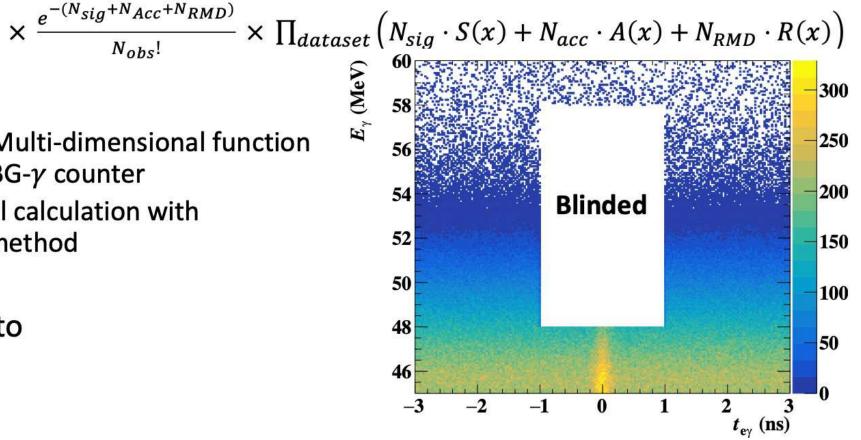
$$N_{BG} \propto R_{\mu}^2 \sigma_t \sigma_{\Theta}^2 \sigma_{E_e} \sigma_{E_{\gamma}}^2$$

Resolution

Different kinematics

 Θ_{ev} 180° No correlation

- High efficiency & high rate
- Continuous muon beam
- High resolution

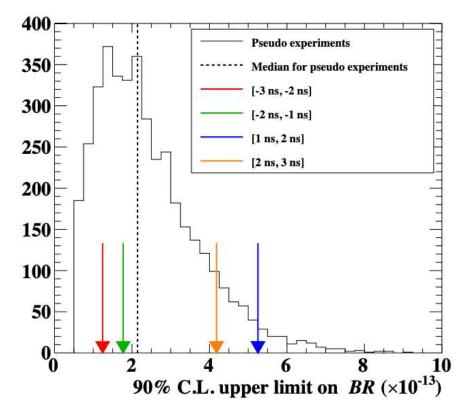


Analysis strategy

• Extended un-binned likelihood fit to estimate N_{sig}

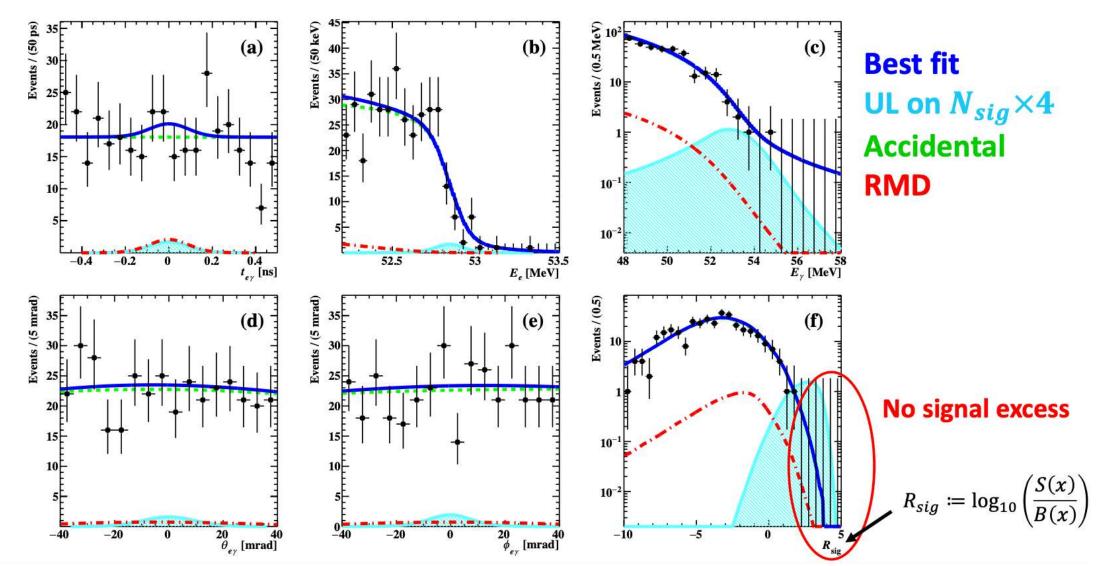
$$L(N_{sig}, N_{Acc}, N_{RMD}, x_{syst}) = C(N_{Acc}, N_{RMD}, x_{syst})$$
 — Constraints on nuisance parameters

- S(x), A(x), B(x): Multi-dimensional function of energy, time & BG- γ counter
- Confidence interval calculation with Feldman-Cousins method
- Blinding according to
 - Time difference
 - Photon energy



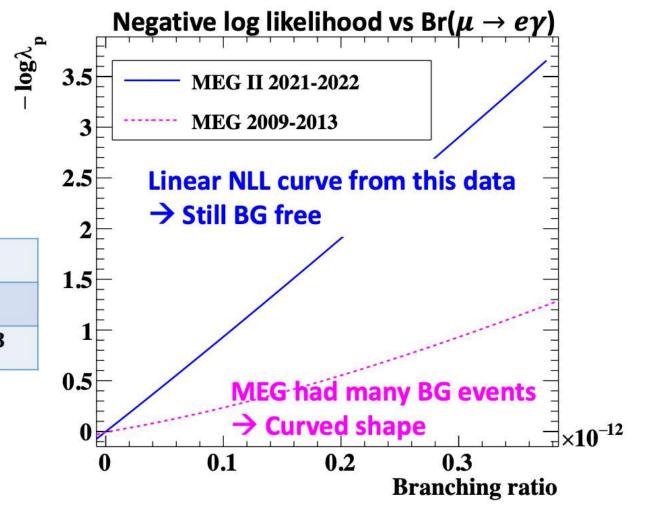
Sensitivity of this search

- Measured # of muons: $k = (1.34 \pm 0.07) \times 10^{13}$
 - Number of effectively measured muons
 - Evaluation by background positron counting in dedicated dataset
 - → Automatic incorporation of positron efficiency & beam rate fluctuation

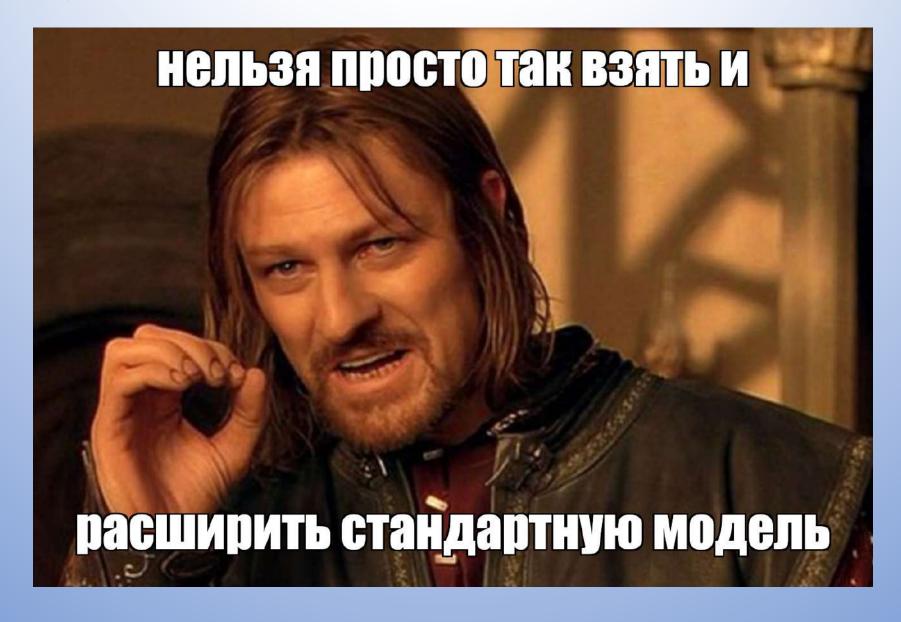

- Sensitivity to Br($\mu \rightarrow e\gamma$): 2.2×10⁻¹³
 - Defined as median UL of simulations with BG-only hypothesis

 $Br(\mu \rightarrow e\gamma) =$

Data vs Fit



New limit:


 $Br(\mu \rightarrow e\gamma) < 1.5 \times 10^{-13}$

Summary of numbers in this analysis

# of muons	1.34×10^{13}
Sensitivity	2.2×10 ⁻¹³
Limit	$Br(\mu \to e\gamma) < 1.5 \times 10^{-13}$

Выводы

