

ДЕТЕКТОР СНД состояние и планы

(лаб. 3-1, 3-2, 3-12)

М.Н. Ачасов

НАУЧНАЯ СЕССИЯ ИЯФ 4 февраля 2021 г.

СНД в 2020 г. КМД-3 СНД

 2020 г: набор данных в области энергии выше 1 ГэВ (с.ц.м.)

 Скорость набора данных в 2017 г:
 50 пб⁻¹/год.

 Скорость набора данных в 2018 г:
 90 пб⁻¹/год.

 Скорость набора данных в 2019 г:
 70 пб⁻¹/год.

 Скорость набора данных в 2020 г:
 50 пб⁻¹/год.

 Окорость набора данных в 2020 г:
 100 пб⁻¹/год.

Развитие электроники и системы сбора данных СНД.

Анализ данных 2010 – 2019 гг: 280 пб⁻¹.

Распределение интегральной светимости по энергии в системе центра масс.

Физические задачи эксперимента 2020 г. :

•Измерение сечений $e^+e^- \rightarrow NN$, адроны.

Сферический нейтральный детектор (СНД).

1-вакуумная камера, 2-трековая система, 3-черенковские счётчики, 4-кристаллы NaI(Tl), 5-вакуумные фототриоды, 6железный поглотитель, 7-пропорциональные трубки, 9сцинтилляционные счётчики, 10-соленоиды ВЭПП-2000.

Новая электроника.

В 2020 году выполнены работы с прототипом сетевые платы с ПЛИС со встроенным процессором для оцифровки сигналов с проволочек дрейфовой камеры (период оцифровки ≈5 нс). По итогам работ принято решение изготовить платы на всю систему к концу 2021 года.

Система сбора данных СНД.

2020 г. Сетевые платы составили 60%. Остальные платы попрежнему читаются через ПВВ по общей шине. В 2022г сетевые платы должны составить 100%.

Вычислительная ферма

Анализ данных СНД.

Физическая программа эксперимента: • Измерение сечений процессов е⁺е⁻ → *адроны*. Измерение сечений и электромагнитных формфакторов, исследование динамики многоадронных процессов.

- Изучение векторных мезонов р, ω, ф и их возбуждённых состояний р', р", ω', ω", ф', ... Параметры мезонов определяются путём подгонки измеренных сечений теоретическими моделями.
- Двухфотонная физика $e^+e^- \rightarrow e^+e^- + адроны$.
- Рождение С-чётных резонансов: $e^+e^- \rightarrow S, P, A, T$.

Поиск процесса $e^+e^- \rightarrow f_1$ (1285).

Измерялась относительная вероятность распада $f_1(1285) \rightarrow e^+e^$ посредством поиска обратного процесса $e^+e^- \rightarrow f_1(1285)$. Теоретический расчёт на основе модели ДВМ: $Br(f_1 \rightarrow e^+e^-) = (3,5 \pm 1,8) \times 10^{-9}$.

Эксперимент 2010 – 2012 и 2017 гг, $\sqrt{s} = 1,2 - 1,4$ ГэВ, IL=15 пб⁻¹. Отбирались события e⁺e⁻ \rightarrow ηπ[°]π[°] \rightarrow 6γ. Эффективность отборов 1%. В пике f_1 (1285) (IL=3,4 пб⁻¹) отобрано 2 события (ожидаемый фон 0,25 событий), вне пика 0 событий (ожидаемый фон 0,9 событий) Измерена величина: $Br(f_1 \rightarrow e^+e^-) = (5,1 \pm {}^{3,7}_{2,7}) \times 10^{-9}$. Значимость 2,5σ. Опубликовано в Phys. Lett. B800 (2020) 135074.

Процесс $e^+e^- \rightarrow \pi^+\pi^-$.

Процесс $e^+e^- \rightarrow \pi^+\pi^-\pi^\circ$ в области энергии $\sqrt{s} > 1$ ГэВ.

Сечение процесса $e^+e^- \rightarrow \pi^+\pi^-\pi^\circ$ измерено в области энергии $\sqrt{s} = 1,05-2$ ГэВ, IL=34пб⁻¹, систематическая ошибка – 4,4%. Основной вклад $\omega(1420)$ и $\omega(1650)$.

Динамика $e^+e^- \rightarrow \pi^+\pi^-\pi^\circ$ была изучена в области энергии $\sqrt{s} > 1,15$ ГэВ, IL=28пб⁻¹ посредством анализа распределений по импульсам и инвариантной массе заряженных пионов. Рассмотрены промежуточные состояния: $e^+e^- \rightarrow \rho(770)\pi$, $\rho(1450)\pi, \omega\pi^\circ$ ($\rho\pi$: $\rho^+\pi^-$, $\rho^-\pi^+$, $\rho^\circ\pi^\circ$).

Определены сечения $e^+e^- \rightarrow \rho(770)\pi$, $\rho(1450)\pi$, $\omega\pi^\circ$. В распаде $\omega(1420) \rightarrow \pi^+\pi^-\pi^\circ$ доминирует механизм $\omega(1420) \rightarrow \rho(770)\pi$, <u>неожиданно обнаружено</u>, что в распаде

 $\omega(1650) \rightarrow \pi^+ \pi^- \pi^\circ$ существенную роль играет механизм $\omega(1650) \rightarrow \rho(1450) \pi$.

Опубликовано Eur.Phys.J. C80 (2020) по.10, 993.

Процесс $e^+e^- \rightarrow K^+K^-\pi^\circ$.

Процесс $e^+e^- \to K^+K^-\pi^\circ$ изучен в области энергии $\sqrt{s} = 1,27-2$ ГэВ, IL=26пб⁻¹. Отдельно измерены сечения $e^+e^- \to K^{*\pm}K^{\pm} \to K^+K^-\pi^\circ$ и $e^+e^- \to \phi\pi^\circ \to K^+K^-\pi^\circ$.

В сечение $e^+e^- \rightarrow K^{*+}K^+ \rightarrow K^+K^-\pi^\circ$ основной вклад даёт резонанс $\phi(1680)$. Подгонка сечения $e^+e^- \rightarrow \phi\pi^\circ \rightarrow K^+K^-\pi^\circ$ (совместно с данными *BaBar*) с учётом вкладов $\rho(1450)$ и $\rho(1700)$ резонансов не описывает точки в области $\sqrt{s} = 1,58 \ \Gamma \Rightarrow B$. Лучшее описание даёт модель с двумя резонансами $\rho(1700)$ и неизвестным резонансом с $m=1585\pm15 \ M \Rightarrow B$ и $\Gamma=75\pm30 \ M \Rightarrow B$. Достоверность неизвестного резонанса 3σ .

Опубликовано Eur.Phys.J. C80 (2020) по.12, 1139.

Процесс $e^+e^- \rightarrow \eta \pi^{\circ} \gamma$ в области энергии $\sqrt{s} > 1$ ГэВ.

Процесс $e^+e^- \rightarrow \eta \pi^\circ \gamma$ изучен в области энергии $\sqrt{s} = 1,05-2$ ГэВ, IL=95пб⁻¹. В $e^+e^- \rightarrow \eta \pi^\circ \gamma$ дают вклад реакции: $e^+e^- \rightarrow \omega \eta$ (основной), $e^+e^- \rightarrow \omega \eta$ (основной), Возможен вклад радиационных распадов $e^+e^- \rightarrow V', V'' \rightarrow a_0(980)\gamma, a_0(1450)\gamma, a_2(1320)\gamma$.

Для описания сечения процесса $e^+e^- \rightarrow \omega \eta \rightarrow \eta \pi^{\circ} \gamma$ необходимо учесть резонансы $\omega(1420)$ и V''(1680). Процесс $e^+e^- \rightarrow \eta \pi^{\circ} \gamma$ не описывается только реакциями типа $e^+e^- \rightarrow VP$ с достоверностью 5,6 σ . Обнаружен радиационный процесс $e^+e^- \rightarrow a_0(1450)\gamma$. Опубликовано Eur.Phys.J. C80 (2020) по.11, 1008.

Процесс $e^+e^- \rightarrow \eta'\gamma$ в области энергии $\sqrt{s} > 1$ ГэВ.

Процесс е⁺е⁻→η΄γ изучен в области энергии √s =1,15–2,05 ГэВ, IL=87пб⁻¹. Рассмотрены два типа событий:

 $e^+e^- \rightarrow \eta$ $\gamma \rightarrow \eta \pi^{\circ} \pi^{\circ} \gamma \rightarrow \gamma \gamma \pi^{\circ} \pi^{\circ} \gamma \rightarrow 7 \gamma$ и $e^+e^- \rightarrow \eta$ $\gamma \rightarrow \eta \pi^{\circ} \pi^{\circ} \gamma \rightarrow 5 \pi^{\circ} \gamma \rightarrow 11 \gamma$.

Распределения по массе фотона отдачи для обоих типов событий согласуются с ожидаемым фоном. Установлены верхние пределы σ_{экс}на сечение е⁺e⁻→η´γ.

Ожидаемое сечение $e^+e^- \rightarrow \eta' \gamma \sigma_{reop}$ расчитано с использованием сечения $e^+e^- \rightarrow \eta \gamma$, ранее измеренного СНД [*Phys. Rev. D90. 0322002(2014*)].

1	Распреления	ПО	массе	фотона	отлаци
	испределении		macce	q orona	

$\sqrt{\mathbf{s}}$, МэВ	N _{экс}	N _{фон}	٤,%	σ _{экс} , пб	σ _{теор} , пб
1150 – 1390	1	0,5±0,2	0,75	<28	15
1390 – 1690	0	2,2±1,1	0,96	<12	30
1690 – 2000	6	6,9±0,8	0,60	<12	10

Опубликовано ЯФ Т.83, №5 (2020) 427-432.

Заключение.

- В 2020 г СНД набрал **50 пб**⁻¹ в области энергии выше **1 ГэВ**.
- Продолжается поэтапная модернизация электроники и системы сбора данных.
- Продолжается обработка данных, набранных в 2010–2019 гг.
- Опубликовано 6 статей, сделано 4 доклада на международных конференциях.
- Грантов РФФИ 5.