# Сверхпроводящие вигглеры и ондуляторы для СКИФ

# Шкаруба В.А.

ИЯФ СО РАН, Новосибирск



- **Основные устройства генерации СИ сверхпроводящие вигглеры и ондуляторы;**
- □ Сверхпроводимость большие поля при минимальном периоде (чем на постоянных магнитах) и больше полюсов для увеличения интенсивности. І ∝ N (вигглер) и І ∝ N<sup>2</sup> (ондулятор);
- Позволяет получать характеристики излучения на «малых» накопителях (~3ГэВ) как на ~6ГэВ;
- В вигглере угол отклонения траектории на каждом полюсе намного больше угла естественного расхождения пучка 1/у и спектр излучения непрерывный;
- В ондуляторе эти углы сравнимы, наблюдается интерференция излучения из всех полюсов и энергия излучения перераспределяется по гармоникам с высокой интенсивностью;
- **Условием** же появления интерференции является высокая точность изготовления магнитной структуры ондулятора;
- **Критерием** этого является величина **фазовой ошибки**, которая должна быть **менее 3 градусов**.

# Основные параметры сверхпроводящих ВИГГЛЕРОВ первой очереди СКИФ:

|                        |       | Магнитное | Период, | Число    | Межполюсн    | Вертикальная              | Мощность       |
|------------------------|-------|-----------|---------|----------|--------------|---------------------------|----------------|
|                        |       | поле, Тл  | MM      | периодов | ый зазор, мм | апертура для<br>пучка, мм | излучения, кВт |
| Вигглер<br>станция 1-5 | СКИФ, | 4.5       | 48      | 18       | 7            | 5                         | 39             |
| Вигглер<br>станция 1-3 | СКИ⊉, | 2.7       | 27      | 74       | 7            | 5                         | 33             |

# Сверхпроводящий вигглер с периодом 48 мм и полем 4.5 Тл для станции 1-5 «Диагностика в вы сокоэнергетическом рентгеновском диапазоне»

- Вигглеры. Жёсткость квантов (ε<sub>c</sub> αB) + широкий угол (>>1/γ). Если нужна широкая область засветки и жёсткий рентген (до ~150 кэВ). Материаловедение, геологии биомедицина;
- Расплата нужно вырезать из широкого спектра узкий диапазон, остальную мощность отсекать; Ограничение по мощности - разрушение алмазных окон и рентгеновской оптики канала вывода;
- **Оптимизировано под высокое поле (4.5 Тл )**, т.к. основной нагрев поглощение мягкой части спектра;
- □ Изготовлен и испытан в жидком гелии полноразмерный 40-полюсный магнит; Получено поле ~4.6 Тл (февраль 2023).



### Сверхпроводящий вигглер с периодом 27 мм и полем 2.7 Тл для станции 1-3 «Быстропротекающие процессы»

- □ Для «рентгеновского кино» в условиях импульсных ударных нагрузок (взрыв) с временами от пс до мс (1 сгусток 1 «кадр») максимальное количество фотонов/сгусток в диапазоне 20 кэВ 70 кэВ;
- □ Вигглер, т.к. ондулятор с высокими гармониками до ~70 кэВ сегодня технически недоступен;
- □ Так же есть ограничение по мощности ~30 кВт;
- Параметры (уровень поля 2.7 Тл период 27 мм) рекордные. Ближайший 119-полюсный с полем 2.1 Тл и периодом 30 мм, установленный на накопителе ALBA;
- П Испытан короткий прототип в жидком гелии (2 марта 2023). Получено поле 3.06Tл.

| Параметры                              | Вигглер 1-3 |
|----------------------------------------|-------------|
| Номинальное магнитное поле, Тл         | 2.7         |
| Период вигглера, мм                    | 27          |
| Межполюсный зазор, мм                  | 7           |
| Вертикальная апертура для пучка, мм    | 5           |
| Горизонтальная апертура для пучка, мм  | 40          |
| Число периодов                         | 74          |
| Число основных полюсов                 | 148         |
| Число полюсов $\frac{3}{4}$            | 2           |
| Число полюсов $\frac{1}{4}$            | 2           |
| Магнитная длина, мм                    | ~2000       |
| Длина между фланцами                   | ~2700       |
| Ток в обмотке, А                       | 820         |
| Мощность излучения (B=2.7 Тл, I=0.4 А, | 33.1        |
| Е=З Гэв), кВт                          |             |
| Горизонтальный угол излучения, мрад    | + 1 2       |



Сборка короткого прототипа для испытания в жидком гелии



Спектрально-угловое распределение потока фотонов

Power angle distribution (E=3GeV, I=0.4A)

Угловое распределение мощности излучения





График тренировки прототипа вигглера 1-3

4/14

- Критерием качества ондулятора, является величина фазовой ошибки, характеризующая отличие магнитного поля реального устройства от идеального синусоидального поля, которая должна быть < 3 градусов;</p>
- □ На современных источниках СИ (СКИФ), имеющих малый эмиттанс и энергетический разброс, близких к дифракционному пределу, большая величина фазовой ошибки ограничивать яркость излучения на высоких гармониках и не использовать возможности накопителя;
- □ Для обеспечения ФО < 3 градусов разброс геометрических размеров обмоток и неточности их установки в каркасе магнита < 10 20 мкм.

### Основные параметры сверхпроводящих ОНДУЛЯТОРОВ первой очереди СКИФ:

| Вид вставного устройства, | Магнитное | Период, | Число    | Горизонтальный угол | Мощность       |
|---------------------------|-----------|---------|----------|---------------------|----------------|
| номер станции             | поле, Тл  | MM      | периодов | излучения, мрад     | излучения, кВт |
| Ондулятор, станция 1-1    | 1.25      | 15.6    | 128      | ± 0.32              | 7.66           |
| «Микрофокус»              |           |         |          |                     |                |
| Ондулятор, станция 1-2    | 1.25      | 15.6    | 128      | ± 0.32              | 7.66           |
| «Структурная иагностика»  |           |         |          |                     |                |
| Ондулятор, станция 1-4    | 1.6       | 18      | 111      | ± 0.46              | 11.75          |
| «EXAFS-спектроскопия»     |           |         |          |                     |                |

Сверхпроводящие ондуляторы с периодом 15.6 мм и полем 1.25 Тл для Станции 1-1 «Микрофокус» и станции 1-2 «Структурная диагностика»

Был создан полноразмерный прототип с полем 1.2 Тл с зазором 8 мм, проведён цикл испытаний и магнитных измерений;

**Конструкция с** чередующимися нейтральными и активными полюсами

| Параметры                                        | Ондуляторы<br>1-1и1-2 |
|--------------------------------------------------|-----------------------|
| Номинальное магнитное поле, Тл                   | 1.25                  |
| Период вигглера, мм                              | 15.6                  |
| Межполюсный зазор, мм                            | 7                     |
| Вертикальная апертура для пучка, мм              | 5                     |
| Горизонтальная апертура для пучка, мм            | 40                    |
| Число периодов                                   | 128                   |
| Магнитная длина, мм                              | ~2000                 |
| Длина между фланцами                             | ~2700                 |
| Ток в обмотке, А                                 | ~440                  |
| Мощность излучения (B=1.25 T, I=0.4 A, E=3 ГэВ), | 7.66                  |
| кВт                                              |                       |
| Горизонтальный угол излучения, мрад              | ± 0.32                |
| Среднеквадратичная фазовая ошибка, град          | <3                    |
| Максимальное значение параметра отклонения       | K ~1.89               |





Конструкция ондулятора с нейтральными и активными полюсами

period



Внешний вид криостата ондулятора в процессе магнитных измерений



Сверхпроводящие катушки установлены в магнит ондулятора



Магнитная система сверхпроводящего ондулятора в сборе





#### с периодом 15.6 мм и полем 1.25 Тл для Сверхпроводящие ондуляторы Станции 1-1 «Микрофокус» и станции 1-2 «Структурная диагностика»

- □ Требуемая **величина поля** 1.2 Тл в стационарном режиме не получена (**только 1.15 Тл**). При этом при быстром подъёме достигается поле 1.26 Тл(!).
- Возможная причина перегрев сварных контактов до 5 К при долговременной работе с током ~450 A(без тока температура магнита 3.7 К). Магнит «сухой», охлаждение только через теплопроводность.
- □ Обнаружен эффект «пульсации температуры» на контактах между катушками с частотой раз в 4 6 секунд, которые начинаются с порогового тока ~260 А и приводят к росту температуры и последующему срыву сверхпроводимости. При снижении тока - пульсации пропадают. Предположение: скачки магнитного потока внутри соединений сверхпроводящих проводов. Предложенное решение - дополнительное принудительное охлаждение контактов тепловым перехватом Результат: уровень температур на контакте снизился до 4.3 К, что обеспечило стабильную работу на поле 1.22 Тл



- **Э Уменьшение магнитного зазора с 8 до 7 мм** на ондуляторах СКИФ повысит уровень поля до 1.25 Тл при тех же токах в обмотках.
- **У**меньшение зазора ухудшает режим охлаждения вакуумной камеры при нагреве СИ и токами изображения (не хватает сечения).
- Предложено использовать полностью медную камеру, методом экструзии (была комбинированная экструдированный алюминий и медные вставки) (Германия).

АД31

• Формовка эллипса из медной трубы и пайка тепловодов



7/14

7 **м**м

Cu-OFE

## Сверхпроводящий ондулятор с периодом 15.6 мм и полем 1.2 Тл

- Предпринятые шаги по улучшению технологии намотки катушек не дали гарантированного качества . Фазовая ошибка > 3 (на основе магнитных измерений датчиком Холла);
- □ Использование корректирующих токов (~ 24 участка из 10 полюсов каждый) 12 в верхней и 12 в нижней половине) вводятся в криостат через комбинированные вводы из ВТСП ленты и медных проводов.
- **С**тратегия подбора корректирующих токов:
- **Коррекция величины поля** вдоль всего ондулятора изменяя поля в расположенных друг напротив друга группах полюсов навстречу друг другу, - выравнивается общий уровень магнитного поля вдоль всего ондулятора.
- Коррекция орбиты электронного пучка с помощью тех же групп полюсов, то теперь создавали поля направленные в одну сторону таким образом, чтобы минимизировать среднеквадратичное отклонение орбиты на каждом полюсе.



Дополнительные токи в группах полюсов нижней (красный квадрат) и верхней (синий квадрат) половинках магнита. Группы состоят из 10 полюсов (12 групп в нижней и 12 групп в верхней половинках). Количество источников питания 24. Максимальный ток коррекции 5А. Основной ток ~500 А.



Pole number

Дополнительное поле вдоль ондулятора после подключения токов коррекции величины поля.







- Предложен алгоритм коррекции фазовой ошибки, при котором токи коррекции являются суперпозицией токов, отдельно корректирующих величину поля и орбиту.
- Такой подход позволяет получать требуемую фазовую ошибку даже с катушками не самого хорошего качества намотки.
- Была решена техническая проблема ввода большого количества корректирующих токов (~ 20 источников по 3-5 А) без дополнительного нагрева магнита через комбинированные вводы из ВТСП ленты и медных проводов.



Распределение локальной фазовой ошибки с включённой коррекцией



Зависимость локальной и интегральной фазовой ошибки для рабочего диапазона магнитных полей ондулятора



3.03.23, Научная сессия ИЯ⊈ СО РАН

## Сверхпроводящие ондуляторы с периодом 18 мм и полем 1.6 Тл для Станции 1-4 «EXAFS-спектроскопия»

Конструкция аналогична;

🗆 Запуск этого ондулятора - апрель 2024.

| Параметры                                  |        |
|--------------------------------------------|--------|
| Номинальное магнитное поле, Тл             | 1.6    |
| Период вигглера, мм                        | 18     |
| Межполюсный зазор, мм                      | 7      |
| Вертикальная апертура для пучка, мм        | 5      |
| Горизонтальная апертура для пучка, мм      | 40     |
| Число периодов                             | 111    |
| Магнитная длина, мм                        | ~2000  |
| Длина между фланцами                       | ~2700  |
| Ток в обмотке, А                           | ~440   |
| Мощность излучения (В=1.25 Т, І=0.4 А, Е=3 | 11.75  |
| GeV), кВт                                  |        |
| Горизонтальный угол излучения, мрад        | ± 0.46 |
| Среднеквадратичная фазовая ошибка, град    | <3     |
| Максимальное значение параметра            | K ~2.7 |
| отклонения                                 |        |



Спектральный поток фотонов при изменении поля в ондуляторе от нуля до максимального рабочего поля



Зависимость энергий фотонов для разных гармоник излучения от параметра отклонения К





Поток фотонов для разных гармоник излучения в зависимости от параметра отклонения К



10/14

Криогенная система сверхпроводящих вставных устройств

SRDK 415

SRDK 4085

- С Криостат с косвенным охлаждением, расход гелия нулевой. Охлаждение жидким гелием, циркулирующим по каналам внутри магнита. Гелий охлаждается в сосуде вне магнита.
- Предварительное охлаждение от 60К ступени через азотные тепловые трубки сифонного типа. Тепловой мост размыкается после 64 К (замерзание азота).
- □ Остаточное **давление** в **гелиевом сосуде** 0.5 бар, температура магнита ~ 3.5 К.
- Может работать автономно в течение нескольких лет внутри биозащиты.

| Параметры                                | Величина | SRDK 415                                                            |
|------------------------------------------|----------|---------------------------------------------------------------------|
| Межполюсный зазор, мм                    | 7        |                                                                     |
| Вертикальная апертура для<br>пучка, мм   | 5        | 1 силовая<br>тууби, для протока жидового годия                      |
| Горизонтальная апертура для<br>пучка, мм | 40       | анныхологичнохолиноколинонолиноколиноколино<br>магият Вакуункая кам |
| Магнитная длина, мм                      | ~2000    | Bawaanadi seme                                                      |
| Длина между фланцами                     | ~2700    | SRDK 40852 S                                                        |
| Высота от пола, мм                       | 1200     | Принцип работы криостата<br>с косвенным охлаждением                 |



|                              | Наружны<br>й экран<br>(60 К), Вт | Внутренний<br>экран (20<br>К), Вт | Гелиевый сосуд<br>(4 К), Вт |                       |
|------------------------------|----------------------------------|-----------------------------------|-----------------------------|-----------------------|
| Тепловое излучение           | 8                                | 0.05                              | 0.0002                      |                       |
| Центральная горловина        | 2.5                              | 0.3                               | 0.06                        |                       |
| Сильфоны вакуумной камеры    | 5.3                              | 0.25                              | 0.04                        |                       |
| Система подвесок             | 0.5                              | 0.1                               | 0.01                        |                       |
| Токовводы (теплопроводность) | 50                               | 0                                 | 0.3                         |                       |
| Нагрев токовводов током      | 50                               | 0                                 | 0.3                         |                       |
| Измерительные провода        | 5                                | 0.1                               | 0.01                        |                       |
| Лайнер                       | 10                               | 10                                | 0.2                         |                       |
| Общий приток                 | 131.3                            | 10.8                              | 0.92                        |                       |
| Охлаждающая мощность         | 180                              | 15                                | 3                           |                       |
| криокулеров                  | (при 50                          | (при 20 К)                        | (при 4.2 К)                 | 2700                  |
|                              | К)                               |                                   |                             | Конструкция криостата |



3.03.23, Научная сессия ИЯФ СО РАН



11/14

# Степень готовности систем сверхпроводящих вставных устройств:

| Наружный корпус                                     | Готовность в 2023            | 0.22    |
|-----------------------------------------------------|------------------------------|---------|
| Медные экраны                                       | Готовность в 2023            | A A A A |
| Блоки токовводов                                    | Готовность в 2023            |         |
| Гелиевый сосуд                                      | Готовность в 2023            |         |
| Газоотовод                                          | Готовность в 2023            |         |
| Подставки                                           | Готовность в 2023            |         |
| Медные вакуумные камеры                             | Импортозамещение -           |         |
| <del>Wieland (Германия)</del>                       | изготовление в ИЯФ 2023      |         |
| Металл (медь и нержавейка)                          | Все закуплено. На складе ЭП. |         |
| Алюминиевые плиты АД31                              | Все закуплено. На складе ЭП. |         |
| Криокулеры <del>Sumitomo</del>                      | Все закуплено                |         |
| Pride Cryogenics (Китай)                            |                              |         |
| Источники питания <del>DANFYSIK (400 A, 12 B)</del> | Импортозамещение -           |         |
|                                                     | изготовление в ИЯФ 2023      |         |
| Источники питания корректоров фазовой               | Все закуплено. На складе в   |         |
| ошибки ондуляторов <del>ТDK Lambda</del> (Китай)    | лаборатории.                 |         |
|                                                     |                              |         |



# Изготовление сверхпроводящих обмоток

□ Создано параллельно (кроме участка на территории криогенной станции) ещё 2 участка для намотки (На территории ЭП-1 - уже запущен, В 10 здании - потребуется ещё 1-2 месяца),



Участок намотки сверхпроводящих катушек на территории Криогенной станции (существует с 90-х годов )



Участок намотки сверхпроводящих катушек на территории **10 здания**. Планируется запуск в эксплуатацию в **марте 2023** 



Участок намотки сверхпроводящих катушек на территории ЭП-1.



Внешний вид намоточного станка, переоборудованного из токарного. Навесное оборудование, приводы, автоматизация и система контроля закоротки разработаны силами лаборатории 8-2





# Список публикаций Лаб 8-2 за 2022-2023 годы:

- 1. В.А.Шкаруба, А.В.Брагин, А.А.Волков, А.И.Ерохин, А.В.Зорин, Ф.П.Казанцев, П.В.Каноник, Н.А.Мезенцев, А.Н.Сафронов, А.А.Седов, О.А.Тарасенко, С.В.Хрущев, В.М.Цуканов. *Сверхпроводящий ондулятор с периодом 15.6 мм и полем 1.2 Тл.* ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ, том 87, № 5, 2023, стр.623-630.
- 2. В.М.Цуканов, С.В.Хрущев, А.А.Волков, А.В.Зорин, П.В.Каноник, Н.А.Мезенцев, В.А.Шкаруба. Магнитные измерения сверхпроводящего ондулятора датчиками холла. ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ, том 87, № 5, 2023, стр.662-666.
- 3. С.В.Хрущев, В.М.Цуканов, В.А.Шкаруба, Н.А.Мезенцев, А.Н.Сафронов. Криогенная система сверхпроводящего ондулятора, основанная на косвенном охлаждении. ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ, том 87, № 5, 2023, стр.656-661.
- 4. П.В.Каноник, В.А.Шкаруба, А.А.Волков, А.И.Ерохин, А.В.Зорин, Ф.П.Казанцев, Н.А.Мезенцев, О.А.Тарасенко, С.В.Хрущев, В.М.Цуканов. *Коррекция фазовых ошибок сверхпроводящего ондулятора*. ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ, том 87, № 5, 2023, стр.636-641.
- 5. А.В.Зорин, Н.А.Мезенцев, В.А.Шкаруба, В.М.Цуканов, А.А.Волков, О.А.Тарасенко, П.В.Каноник, Ф.П.Казанцев. *Методы минимизации магнитных интегралов в сверхпроводящих вставных устройствах.* ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ, том 87, № 5, 2023, стр.631-635.

# Спасибо за внимание!

3.03.23, Научная сессия ИЯФ СО РАН



14/14