

Канал СИ на ЦКП «СКИФ» «Диагностика в высокоэнергетическом рентгеновском диапазоне»

Константин Купер, ИЯФ СО РАН, проектный офис ЦКП «СКИФ».

k.e.kuper@inp.nsk.su

Новосибирск, 22.03.2019

Схема канала СИ «Диагностика в высокоэнергетическом рентгеновском диапазоне»

Схема расположения канала СИ «Диагностика в высокоэнергетическом рентгеновском диапазоне» в зале ЦКП «СКИФ»

Научные задачи которые планируется решать на станции

• Блок задач 1. Исследование геологических образцов

• Блок задач 2. Исследование уникальных археологических и палеонтологических находок

• Блок задач 3. Исследование новых композитных материалов

• Блок задач 4. Биомедицинские и ветеринарные технологии.

Вигглер с полем 4.5 Тл, периодом 53 мм ,28 периодов

Схема расположения теплонагруженных элементов станции

Расчет тепловой нагрузки на алмазные фильтры

Распределение деформаций и температуры при суммарной тепловой нагрузке 6 кВт

Двух-кристальный Лауэ монохроматор работающий в диапазоне от 25 до 150 кэВ

Расчет параметров кристаллов для Лауэ монохроматора

$$\frac{2}{\rho} = \frac{\cos(\chi \mp \theta B)}{s} - \frac{\cos(\chi \pm \theta B)}{f}$$
$$\frac{\Delta E}{E} = \cot\theta B \sqrt{\Delta \theta^2 + \omega_0^2 + (\sigma_s/s)^2}$$

χ - Угол рабочей кристаллической плоскости к поверхности кристалла *θB* – Угол Брэгга

- *р Радиус изгиба кристалла*
- s Расстояние до источника
- $f-\Phi$ окусное расстояние монохроматора
- Е Энергия фотонов монохроматического излучения
- *w*₀ Ширина кривой отражения кристалла
- $\sigma_{\!s}-$ размер источника
- $\varDelta heta$ диапазон изменения угла падения излучения вдоль кристалла

Параметры излучения при максимальной монохроматизации СИ

 $\Delta E/E = 7.05/30000 = 2.35E-4$

INTERNAL LIMITS

--GOOD ONLY INTENS = TOT RAYS =

Horizontal: 1: X [user unit] Vertical: 3: Z [user unit] HistoHorizE#Hk

LOST = GOOD =

HistoVertFWHM

2000 4000 6000 800

531.29 100000 49475

26.757975

2.5564521

D=50M $\Delta Z=25.5 mm$ *∆X*=268 mm

D = 10 M

 $\Delta Z=9 mm$

Параметры излучения при максимальном потоке монохроматического излучения на расстоянии 105 м от источника (50 м от монохроматора)

∆E/E=2.15E-3

 $D=50 m \Delta Z=140 \text{ мкм}$

Оптимизация параметров кристаллов для Лауэ монохроматора

Задача:

Иметь приемлемые потоки на уровне 10¹³ фотонов/сек/мм² на энергии 25 кэВ и 150 кэВ

Варьируемые параметры:

- 1. Толщина кристалла (влияет на 💩 ширину кривой отражения кристалла)
- 2. Угол рабочей кристаллической плоскости к поверхности кристалла (х)
- 3. Радиус изгиба кристалла (р)

Предварительные результаты: 1. h1= 1.8 mm, h2=1.6 mm 2. y=22°

2.
$$\chi^{-22}$$

3. $\rho = -35$, + 75 M

Секция «Фазово-контрастной радиографии»

Сравнение фазово-контрастная и обычной радиографии

M J Kitchen, R A Lewis, N Yagi et al The British Journal of Radiology 2005

Пример фазово-контрастной радиографии с временным разрешением

Charlene S. Stahr, Chaminda R. Samarage et al. Scientific reports 2018

Peak expansion

Пример фазово-контрастной радиографии с временным разрешением

Regine Gradl, Martin Dierolf, Benedikt Günther et al. Scientific reports 2018

Станция «Фазово-контрастной радиографии» (Инфраструктура для содержания и обследования лабораторных животных)

Примеры исследований с использованием фазово-контрастной радиографии

Пример радиографии с временным разрешением на уровне 1 мсек.

Динамика процесса взаимодействия порошка Инвара с лазерным излучением.

Chu Lun Alex Leung, Sebastian Marussi, Robert C. Atwood, et al. Nature Communications, 2018

Динамика процесса плавления железа во время электродуговой сварки.

Lee Aucott, Hongbiao Dong, Wajira Mirihanage, et al., Nature Communications, 2018

Секция «Исследования материалов при высоких давлениях и температуре»

Прогноз сейсмических аномалий вокруг погружающихся в мантию

Исследование вязкости расплавов методом падающей сферы

Бронежилеты и защитные шлемы из керамики на основе карбида бора (справа) и микроструктура спекаемых изделий (слева).

литосферных плит.

Секция «Рентгеновской микроскопии и томографии»

Доля углепластиковых композиционных материалов, используемых в авиастроении (слева), структура полимера, наполненного упрочняющими наночастицами (справа).

Исследование структуры композитных материалов

Секция «Рентгеновской микроскопии и томографии»

Рентгенофлуоресцентный

анализ

Метод функции радиального

распределения

Спасибо за внимание!

Организации заинтересованные и участвующие в проекте канала СИ «Диагностика в высокоэнергетическом рентгеновском диапазоне»

