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Abstract

The Hamiltonian structure of a) differential equations
integrable by means of an arbitrary-order linear spectral prob-
lem under reductions to classical Lie algebras BH’ CN’ DN and
also of b) equations associated with the matrix analog of the
linear Zakharov-Shabat linear problem is analysed.
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INTRODUCTION

The Hamiltonian interpretation of the differential equa-
tions integrable by the inverse scattering method has been
discussed in many papers, beginning with the papers of Gardner,
7akharov end Faddeev (Refs. /1,2/; see review /3/). It has been
demonstrated in /2/ that en infinite series of equations of the
seme Hemiltonien structure is connected with the Korteweg-de
Vries equation (to be precise, with the aggociated linear
spectral problem). This observation has been developed and ge-
nerelised in Ref. /4/: in the framework of the AKNS-method /5/
it turns out to be possible to analyse, with the same standpo-
int, the Hamiltonian structure of all equations integrable by
the Zakharov-Shabat linear spectral problem. Another approach
to Hamiltonian integrable equations has been developed in the
papers of Gel'fand and Diki] (see, eege /6,T7/)e

Recently, the AKNS-method has been extended to the matrix
linear spectral problem of arbitrary order /8=12/+ Among the
corresponding integrable equations there are, in particular,
the generalizations of the sine-Gordon equation to any classi-
cal Lie groups In the general position, all equations of this
class, as was shown in /8,11,12/, are Hamiltonian onese.

What we wish to consider in the present paper is the natu-
ral group reductions of the general equations integrable by a
linear spectrel problem of arbitrary order, i.e. the reductions
connected with "imbedding" of potentials into one of the classi-
cal Lie algebras By, Cys Dy It is shown that these reduced
equations (particularly, generalizaiions of the sine-Gordon
equation to the So(M,€) and Sp(2v,€) (N = 1,2,3,...)) groups
ere Hamiltonian ones. The Poisson brackets are given. The Ha-
miltonian structure of a class of equations integrable by the
matrix generalization of the 7akharov-Shabat linear problem is
analised. And also, some reductions of these equations are
consideredes

The paper is arranged as follows. The general form of the
integrable equations and their group reductions are examined in
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the second section. The Hamiltonian structure of the reduced

equations is discussed in the third section. The fourth section

is devoted to the Hamiltonian structure of equations integrsable
by the matrix Zaskharov-Shabat linear problem.

II. General form of integrable equations and group
reductions

We shall consider differential equations integrable by the
linear spectral problem

O - (MY + (PEHY . (20
00X

where X is the spectral parameter ()\é LN A ig the cong-
tant matrix of order N and the "potentials" P(x +) are the
matrices N x N. The general integrable equations are of the
following form /12/:

' A
Q—%—%—’:ﬂ . 'LE 'QJ.F(A)(UA,"‘-) [ Hd,P(’X:*)] e

where Qi(r\,{)}_,,,Q“(/\;{) are the arbitrary meromorphic func-
tions, f=dimg, -1 ,gocay is the zero component of the Fitting
decomposition of the algebra gf (N,tlf) with respect to A
([Aigow}_-()) « Matrices H.(,&:i,...,r“l form the basis of
the subalgebra Qo) » Por arbitrary Beg((N,l[') , Bo(a) and
E)F(AJ denote the projections B onto 9,00“ and g;(g) sy Iregpec-
tively ( 9_‘:“.) is the direct sum of non-zero root subspaces in
the Fitting decomposition QG[N,@) with respect to A). Opera-
tor LY is of the form

A T . (
P = e <[Pl + < [P, [ay [Py, 241 ]

Equation (2.2) is written in the gauge F%UO=:O « A sense of

this gauge is that the purely gauge (nondynamical) degrees of
freedom are excluded from.P(Ift) /12/ «

(2.2)

In what follows we restrict ourselves to the case of a
diagonal matrix A. If all elements of A are different, then

go(g) is a set of all diagonal matrices and rp.=N-:L « In this
case, when all N -AN components of P(x;t) (P = Periny) are Tl
dependent, equation (2.2) is an equation on the algebra 8€(Nh()
(to be more precise, oOn gf(NHC)F) in the general position. In
the general position, equations of the type (2.2) are Hamiltoni-
an ones with the Poisson bracket /8,11,12/:

{1]‘_‘} =+§dx{“ (E% LA, 2—3—]) (243)

Generally speaking, under the reductions of general equations
the Hamiltonian structure varies (for N = 2 see /4/). For the
reduction problem see, €¢gey /13,14/.

Now, consider the natural group reductions for general
equations (2.2), i.e. the reductions associated with transition
from the algebra _gE(N, d:) to one of tl'%e classical Lie algebras
Ays Bys Cys Dy- The reduction ge(N,CJ-rse(N,c) keeps Eqe. (2.2) in
the general position. With the purpose of describing the remai-
ning three nontrivial reductions, the choice of a definite mat-
rix realization of the algebras BN’ Cys Dy seems to be necegsary.
In our paper we follow Ref. /15/, and namely:

1) We identify the algebra B, (¥24) with the algebra
30(2n+4,€) of quadratic matrices P of order 2¥+4 for

which - A
Pes -~ NP (244)

'005*)

where ’35 = (:i 2 and & is the quadratic matrix of order N,

all elements of which are zero ones except for those placed at
the by-side diagonal and equal to unity. The symbol T means the

matrix transposition.

2) The algebra Cpy (N 24) is identified with the algebra
sp(lN,Q‘) of quadratic matrices P such that

eGP .

0 S
where 'jc: ~ & 0) s
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3) The algebra Dy (M 22) is identified with the algebra.
20(2~7,€) of quadratic matrices P for which

PT_'—._ j’bpljﬁsi : gﬁ’(:‘;). —_

Such a realization of the algebras BN’ CN’ QN is suitable
for our purposes, since it enables us to consider all three
algebras simultaneously. The snecific feature of each algebra
will manifest itself only in an order of the matrices P and
" (the odd order for By and the even order for C; and D) and

{ - ¥ [
algo in the form of the matrix 'J('\Jajjc‘/j@), In all three cases,
the Cartan subalgebras consist of diagonal matrices with the
basis

| - : 5 y
’{Hd,d= i)r--')N ) HG("'E:(&{_EjN'{_,i_‘{‘QHi_LD{ j‘
where ( E"Q;& = %,{1 8}& k“ﬂ?’ - .‘L’ij..

»

t=4.... 2N (2w v d)
1t 1s easy to be convinced, following /12/, that equations
(242) admit reductions to the algebras 'SO(ZN*i,(),sp[ZN,Q) '

and SQ(ZN,() described above, if (Y: > il (At)H )
- FALAS ol

R e . N (27)
Yo » MR L Y

that is
N
A= 2 QuH, (2.8)
Y - %1 -Qu_(/\,*)H,{
where {th: 11,_,‘N} are the bases oi the Carten subalgebras
~f the algebras SO(ZN-ir:L)Q‘],,&P(ZN.,E).,QO{ZN,{'] 3 Qgy...,Q,y are

any 1"1mzbers;_§)_i(ﬁj{)_:“_, —O-N{A)ﬂ are arbitrary functions A . In

[ | L3
.Y & e {_'ﬂ{;}
d L &5 LS R e e L ]

!jni \VT (e, t; A} T = \V (x,t; M | (2.9)

For the trangition matr-ix of the lineur ssectral problem (2.1

under the reductions to the wlgzchras ‘SOIZH'i-i,f)]SP(Zdef) , and

30(2N1C) s respectively, we have
et LS SO INE). (2.10)

-4 _
In a particular case QJ.‘ Wy N , where ng*(ol'-'- e N) are
arbitrary numbers, equations (2.2) may be written down as fol-
lowss

Bt AL e it
o (u s )F -* [ A,Ul Yu—j = () (2:11)

s .
where \( = Eﬁw,LH.L § UT (T,'U A_" U (Tj*) G

Equations (2.11) represent a generalization of the sine-
Gordon equation to the groups So(N,c).'gp(zu,(‘)— u € SO(N,(‘) ’

or U € Sp(’ZN,C). (For the generalizations of the sine-Gordon
equation to the groups Su (~) and gO(N) see Refs. /16-18,11/).

One emphasizes that if all elements of the matrices (A
(Y , and { P are real, i.e. all Q4 and S).a, in (2.8) are
purely imaginary, equations (2.2) admit additional reductions
to the algebras 30(2nv+4,R) 8P(2N,R),%0(2V,R) . In particular,
we have the generalization (2.11) of the sine-Gordon equation
to the groups SO(E”*-&.,UZ)}gP(?N,R) » and SO(ZH}ER) .

1ile The Hamiltonian structure of equations under
the reductions to the algebras

Pye Oy Dy

Let us present a few formulas (see /12/) which will be
required in the followinge. We denote the fundamental matrices-
solutions (2.1) F}—=>expiMx F~ —= expiAAx by F*(x,4:))
and F'(T,’c 3 ?\) (assuming that PO, 4)—— 0 ) and the trensition
matrix F*(x,4;\) = F'(’x,{;)\)SU\;E) by l?aﬂ:{) « For two matrices
P(ix,t) and Pr(r,{) and the corresponding S (A,t), F+(Iff§}\) E
and 3'()\}+)1F”(x,+;)\) we have the relation

o ¥ - S_Sadx . o

1t is asgssumed that




dj;{;\,{% = LYW, 301 ] (3.2)

where H? 1s any element of the Cartan subalgebra containing A.
It follows from (3.1) that

VA
o i | (F) ),
xém{(bp 12 O 04T H, PP ;0 =0 o
0+ d=4d J
o,
Where Hg, gl- sV Ais the bams of the Cartan subalgebra, Y..,
Z Qa{(}\’t} and q:'(mj 4 b i)“g (F*)kn + Then the
follow1ng relatlon holds
S (n) (en) *¥ (n) ’ .
‘ :m = )\[ A CPHMF\ 4 FD(’K’{)? q){}m(*m}] (3e4)
where
P T
b 1. £2+5)
L ®=-i o~ [Pyt (TP, [dy [Plye), w]om; 1,
And, :I::a.nalll:;r{n taking into account the equality j)_ )« g::’i =
j :;-(A') (Wheretﬂ}‘l‘ﬂ“ y - wﬁﬁ) and proceeding, in (3.3), from

the operator e the Opera’cor L adgo:z.nt to L with resgspect
to the bilinear form gaxw (@ () ap(x , we obtain equations (2.2%

In the general case, the Hamlltonlan structure of equations
(2.2) is proved, basing on the following relation resulting from
(3-1)3

-i-&')

e iN)a
8 S;, (A\t) ==t gdxg 30, (x 0P (x ¢0) (346)

=02
— e
where Pyo =(F~ U—* kn and also on the equality /12/

14 () -t N
Pl = A[A, P T« [ P (w) Px,d] D

o(A)
(i) '
where &CP:;(M( ))me = Si.e gm'm,
In the Hamiltonian interpretation of equations (2.2) in the
general case the fact ig significant that all ng (x,4) are in-

98]

dependent dynamical variables. Under the reductions of the
general equations (2.2) we have certain relations between the
variables PKE (X]‘i'). In our case of the reductions to the alge-
bras BH’ CN’ DN’ they are of the form

P3N (3.8)

Following the standard procedure, it is neceassary to resolve
these constraints, i.e. to introduce the sget Q('x,-t) of inde-
pendent dynamical variables. One can parametrize the set of

matrices P(x,t) satisfying relations (3.8) by various ways. We

introduce independent dynamical variables as follows. Let us
represent P(X,4) in the form

P= 6 « 84N (3+9)

where Q(Xi#) is the left-triangular matrix, i.e. the matrix
all elements of which placed below the by-side diagonal are
equal to zero. It is not hard to convince oneself, using the

‘expressions for the matrices P(x,t) satisfying (3.8) (see Ref.

/15/, chapter VIII, B 13) that all elements of the matrix &(Tft)
are independent and that formula (3.9) gives the general form
of the matrices p('xrl—) belonging to the algebras BN’ Cys Dy
The number of the elements () coincides with the dimensionality
of the corresponding algebra and is equal to N{(2N+ 1) for
30(2n+4,€) s N(2N+4) for 3p(2V, @) and ¥ (2N-1) for %0(2WN,¢).

It is necessary to emphasize the fact that for the
orthogonal algebras 80 (N, &) the elements of the matrix Q(X,4)
placed on the by-side diagonal are equal to zeroe.

Let us denote the operation of projection onto the left-
triangular matrices by symbol ¥ ; in particular Q= QV .

Now, convert equation (2.2) to such a form in which the
latter contains independent variables (. only. Let us start
with equation (3.3). Following from the definition (3.9) and
using the properties of the matrix trace (:.n particular +r (Qx) =
=tr (&% )), we'get, from (3.3) ( Fa=NV ¥

* We would like to recall that our gauge is Pom= O, 1.0,
P'DE C“CISP - 0 .
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T‘J\T*P{(b L; [H.;. Q]Q (A) )H(F)(x t: )\)} 0 (3.10)

L i -‘4. 5
where %l“) CP(“) a (Pl“)’j « From (3+4) and (3.5) we find
-#-G(F) P

X ATAX®T+ [P, gdﬂ[P(yl X1 1+ X1, Gan
0X

Applying the operation V to (3.11), we get

P x “” i qd" (3.12)
where (P: o~ N Q. )
-L(a)'x '%Xv [P'X]+(U [Px]j)w

(3.13)

+ LM, (dy q Ply), Xy (§)]p- Ti[p(’?)wxv('a‘)]bj )] :

As a result, equation (3+10) may be written down in the follo-
wing form:

-l--i'(F)
f=0. Gaw

Sd ““"Ot LZﬂ[HuL Q('I]]_Q.L(L(e)m ))xp

F:Lnally, coming, in (3.14), from the operator L(a) to the ope-
rator L(Q) adjoint to L:(&) with respect to the bilinear

form gc\ﬂr (Q(x)x(x;) , we get

de{l’ j’f(ﬂ( - “L; _O.,L(L(m,\'t [Hul Q])} [ 3+49)

-0

where &P- Q- /3‘1 QT/\J)

S Y . < [ ~-2
wa o 3 : [ijjv ('j [P,',fj_rf]),, : (3.16)

il Q(x))idg (CP(), X ()], Y [P (4109) T

Equation (3.15) is fulfilled, if

10

2R o
5;6'_ . LEQ’(F(LTGM’{)[H:(?Q] =0, (3 1T)

Equation (3+17) is the form of Eqs. (2.2) containing the variab-
les Q(x,t) only. Note that equation (3.17) may be derived fram
equation (2.2) directly, applying the operation ¥V .

Our next step is to show that equations of the form (3.17)
are Hamiltonian ones. For this purpose, let us use relations
(3.6) and (3.7)e¢ It follows from them that

S 3w =i gdx{r (SQ-{““’) (3418)
and

o e oy () 3 ()
L(G]x( )=_>\[A1x( ]+[q>i£n(-oo)1a(.,c,{‘)]. (3¢19)

Let us introduce a quantity | d(rt-t.} )ﬂ
: 2N (H )
(MNa(ztiN), o = § Dl r,( (wa) (3.20)
nsd nn .

For the algebra %0(2W+4, €) » n takes the values 1,2,¢4.,
2N + 1. It follows from (3.18) (Sm-r-d;aag) that

[ (xt30\) = ¢ b tr (Hafn S5 () (3.21)
0 Q-
and from (3.19) that

(L tULATL] <L 0]

Expanding the left- and right-hand parts of (3.22) in the
agsymptotic series of }\'i s We get

(3.22)

L% [He, @t = (O™ [A AL Y (x,00]  Go2)
(m=14,2,3...)

11
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where ﬂd(oc.ﬂc;)\) = Z.)\ ﬂ(m( x,t) « From (3.21) we find

m-

W o2

[-lt )(x-t) : 8 ’Qr(ch(m) ) (3.24)
8 G

where &Agg(r,?\) ZX’”C(“" gnd. C¥ itwn D315 25609) 8T

the integrals of motion of equations (2.2) and (3+17), respec-

tively /12/.

It follows from relatlons (3.23) and (3.24) that equation
(3.17) with S2.(At) = ZUJ ) A% ( @5 ere any numbers) is
of the form

8’31'
:%%- f B, - 3 - (3425)
where
o0 wA ’ 4 -6
0o B Biwd e e (1 ™) - T

It is easy to see that equation (3.25) may be written in
the Hamiltonian form

P
— = { P}
0t
with the Hamiltonian (3.26) and the Poisson bracket

(1@ %@} - (dzer (2 % =18

The Hamiltonian strucjure of equations (3.17) with singu-
lar functions 191 At = ;iwi (€) (N + Aow) ™ is proved in
a similar way. The Hamiltonian of such an equation is equal to

$.3 5 0k (Hatusalh) G

A=4 mz=Ad ( 4’)‘ .b)\ i oA

and the Poigson bracket is given by formula (3.27).

(3.27)

In particular, equations (3.17) with 'S),g-wd )\mi (where
(). are constantg) which are equivalent to generalizations
of (2¢11) of the sine-Gordon equations to the groups SO(N C)

g

and SP(ZN df) are Hamiltonian ones. The Hamiltonian is equal
to H=ztv (YeuSa(0) ema Q= (u*W) .

The Hamiltonian structure of_equations of the type (2.2)
under the reduction to the algebra %0(nN, C) has also been
examined in Ref. /11/. The basis has been chosen in such a way
that Pr=-P . The associated Poisson bracket greatly distingu-
ishes from (3.27): its kernel contains the operator of the
covariant derivative type. This difference is due to a diffe-
rent choice of the coordinates in a phase space.

In conclusion, it is worth noting that just az in the
general case /11,12/, under the reductions to the slgebras
40(N,¢),%p (2n, ¢ ) an infinite series of fimplectic structures
corresponds to equations (3.17). The Poisson b: ackets are
obtained by introducing into the kernel of the bracket (3.27)

any degrees of the operator |7,, (for the hierarchy of the
Poigson brackets at N = 2 see /19/).

IV. HAMILTONIAN STRUCTURE OF EQUATIONS INTE-
GRABLE BY A MATRIX GENERALIZATION OF THE
ZAKHAROV-SHABAT LINEAR PROBLEM

Let us turn now to the linear problem (2.1) of order 2N
with the matrix A= (%_—I where I is the unit matrix of order N.
In the gauge Poay= 0 the linear problem (2.1) is reduced to

_9_*_-.-.;?\(10)\?+E OQ(T}“)L\J

IR 0-T R(x,4) 0 (4.1)

where" Q(x#) R(x,4) are the quadratic matrices of the N-th
order, 0 is the zero matrix of order N. The problem (4.1) is
the matrix analog of the well known Zakharov-Shabat linear
spectral problem (N = 1).

The equations integrable by means of (4.1) are characteri-
zed, in the general case, by 2N2 - 1 arbitrery functions /12/.

Among them there are equations of the form

" In Section 3 the matrix @ means another quantity,

12




P . + &
= 2: D (LK 4)AP =0

(4.2)

where P= (%%) . .D_U\;t) is the arbitrary meromorphic
function and ;

p
B e e ,wdgl_P(g)fP(y)A'ﬂ.
Since in our case [P, CPF_]F =0 s the general operator L-:.,
reduces to (4¢3). Equations (4.2) are matrix analogs of the

equations examined in Refs. /4,5/+. At D ()\):-Zkzwe have the
gystem of matrix equations:

V- MR

WS e % TOTQ =20
Dt !

1
%% +:00*)c21 EERER 2.

Under the reduction R==% Q+ we obtain the matrix analog of
the Schrodinger nonlinear equation (NLS). If.Q(M: l{ )\3 s equa-
tions (4.2) are of the form

3 Q
By 8 Sw—R&+3QR——;—=O
o X X
N . S 00 22 =0
2t X3 +3'w:M +3RQ X y

Under the reductions V=oLQ and R=4 we obtain the matrix
analoges of the modified Korteweg-de Vries equations (mKdV) and
the Korteweg~-de Vries (KdV) equation, respectively. At

;Q()\)m N’i and R=-Q we have the matrix analog of the
sine-Gordon equation. It is worth mentioning that the matrix
analogs of NLS, KdV, mKdV have been considered in Refs. /13,20/.

Let us come now to the Hamiltonian structure of equations
of the form (4.2). It is clear that in the general position
they are Hamiltonian ones and the Poigson bracket is given by
formula (2.3). In variables @ and R this bracket is of the

14

form i

{1,"&(} = Z-Sd'r{r(

g 5@ £@ &R

ST 5% _ 81 84 ) b s

¥ :
Under the reduction R'—‘-“-'- Q the bracket (4.4) is conserved.

A nontrivial modification of the simplectic structure
appears under the reductions R=d@® (o is an arbitrary non-
zero number) which take place at any odd functions.Q 0\) e 1N=-
deed, it is easy to see that if R=d & , then the bracket (4.4)
becomes degenerated (i.ee {Lu}(q.w.ﬁo for any I and ¥ ). So, one

' must project the equations (4.2) onto the submanifold of the
independent dynamical variables Q(’I,H e Then, it is necegsary
to investigate the Hemiltonian structure of these reduced equa-

tionse.
Let us transform equations (4.2) as follows.

Tt is not hard to convince oneself that not only (3.4) but
also the following relation holds -

~ ¥y p T 44 (i G
(U AAFD ]+ 4[Pat), Bip b+ i () ] (409

F(A F(A)

L®P=-i ’-.‘-:;f{- - [P Pl 5 [Plrg) i‘i‘d[P(}"{”q}(H)]"‘“‘] :

4 iz‘ [p(oc&),_gdta[ P40, @) Tom 1 .

& ~

The operator L' adjoint tol is equal to

~

L® = F%% +[ Pfx,t) ,q’] F(A) + *7_‘ L P(Txﬂ,_i&% LP(yt) ¥ ('3)—](9&\] i3
7, "'5‘ [ P(r,’c):-gd% L), P ) 1 om )

i.&-ri:* = - L e

- For T,*' , we have, instead of (3.7),

Pem= Fln) o

‘ o (¢ o (in 2 (in
T-'-i-"‘* (tﬂ‘-'X[A‘é(‘h']* _i__ [CP (in) (~00) + q)o(m: (+m)) P(’I,‘l')]_ (4.6)

Integrable equations are of the form (2.2) with meking the

%
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. + e
substitution L'— L* ., 1t is obvious that equations (2+2)

with operators [:' and ’U+ and with th . +00 X .
e X i L.l . e same _Q,,{ coincide = ; ir&h) (‘d{@z{ } :.3 -] g i[&(i),gd '[Q(H) ']___,}i_.
. partvicular, equation (4.2) may be written Y Y 2 LU, (O gl 2 AN )
down in the form x ~o3
L. ; s :
-;.{- - 2t ﬂ (L A)‘[‘)AP = () (4.7) end [,-1.4.. }‘E.,‘fh denote here and below the anticommutator and
commutator, respectively. Substituting X from (4.9) into
where . @ x (4.10), we have -
9 g L ++ e
+ _— - . " —— i i {3 2 (4'1‘3)
Li® = 7 a3 A+ 3 LP@, dylrey), Py AT] Ly P = V&
» + 0
-
2 [ P(T)l S,d%[ P('H) )CP (’3) Aj —J . , where
Th ' % i
e t:ans}l:tiof+from the operator L, (U) to the skew-symmetric L. (8) U[J = - —;  + o 7Y \%‘!
operator (L ) and, correspondingly, to equation (4.7) is
necessary for the Hamiltonian interpretation of equation (4.2) Further, let us trensform the first term in (4.8) into the form
under the reduction R=o (A i containing Y , instead of ’Kf o Let us introduce the matrix
y b e
Now, let us rewrite equations (4.7) in the form containing wud‘) . e _
R only end also show that these equations are Hamiltonian Fb«—lg» = - D W e 19
onese. Tt . a8 400
r f 3 i j i
From equation (3.3) we get (Pg= (; q);)) Bearing in mind that *Exh&ﬁf X‘} =“‘_§£‘r{r { WX )
v fIR AQ ++ i using (4.10) and (4.11), and also assuming that yy (X®)=0 , we
de‘h‘ ;O-I K - 2 &‘D‘(M ‘{J } =9 (4.8) transform (4.8) into the form “
£ T [ wi (x) W ‘ )h( } ¢ e  (4e13)
1 ul F 1
where Y= @, - 1@, =%y +d®_ gdx’tlf‘i W (x) ¥ (x)- Q (x,4)w (Ligy £ Y (x 5
| 4 & a4 -
We have to find an operator L such that LY =A\I/ « To do where W (A?) = % IWRENE
+ +4

this, present the equations which are satisfied by QJ and x .

From (4.5) we obtain From (4.13) we get

++ -+ 4 jr e % e YR " [ (
| (D, YV = AL thns { docte f ¥ (x0) (W () - @ (Lig ) RIx,4)) § =0 (4+14)
| +4 +4 -0
f i @- g ix o
\ K tP | (4+10) where L;ﬂ is“;uhe operator adjoint to L@ with respect to the
where o ~ - bilinear form \dxtv (@)Y (x) ) . It is equal to
Ve ooy =
D= o - ylem, Jylary; 1,7, +$ (aw, (dylaey -1, 7, * L=~ 48,9 —
- 00 F ®

* The equations examined in the fore z ge an '
going section and Refs. /11,12/ . :
o s i e L’Llf 11 4
may also be written in the form containing the operator L+ . Ry (et 38 St d
' W (2, 8)- w (L 1) Qlx,t) =0
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Taking into account (4.12), we find

\OQ(K}-E) = %-— (D( (Q)}+) Q(x e ‘ (4—-16)
ot

Equation (4.16) is a form of equation (4.7) (at K=o ) which
containg the independent dynamical variables Q only.

We shall attempt now to prove the Hamiltonian character of
equations (4+16)« From (3.6) we have

‘f@“)(l- T b Sie ~ (4a17)
{ 0 Qi(xt) -
Making use of the analogs of equation (4.5) for CP(:) y WE
obtain i ( , : _,z(hn\
IN % g L{
D 2 R i =2AZAM-—-—- 4 O
+E£ w S““ n=d Smn (4.18)
2N - (wn) (ww)
Eﬁ_z A““-Z—-—- o :)\ z Ah\n """"\V '“'
nzAd Sniﬂ “
Hence,
L N0t A) = NROED = 248 R (08 g
AN ~(nw)
x4t A
where [1(x 53 \)‘-"- EiA““ %{i‘)—l and from (” 17)
3

006N = U 55 6n tr (Al So(A)) . (4+20)

- -4
Writing (4.19) in the form (2 ?\)irl('x,-%;)u): (}3- L*m) R(x+) and
expanding the left- and right-hand parts in asymptotic series of
}\"L sy we get

(2n4 )
(L(G)) G(T,'t‘) = 1%— (1 ('I]a&) (4.21)
where (1(xt) M- X‘“ - (x,¢) :
From equalitles (4 20) and (4.21) we have
Su e Ao ) e (4.22)
u-tm) WY ( )
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As a result, equation (4.16) with any entire function
W (AY) = Z (0, ()\1)"‘ ie written as followa:

o d ¥

- = ( (4¢23)
ot 8(11'

where

° - ; i
= ?_ e {\‘Acuw \\

(4+24
‘".Zd- wis i )

There is no difficulty in seeing that equations (4.23) may be
rcpregsented in the Hamiltonian form Bf {11 qfk with the
Hamiltonian “H (4.°1) and ioisson bracket
-+ 02
S 7 B > X
1\ ’}f - C{T{fr( — ) —— (4425)
(T@,#@}= } 50y - Sl .
One can examine equations (4.10) with singular functions of

the form

¥ . % el
w(A) = Mz:iwm(.xz')\om) (4.26)

where Ww (M = 1,2,¢es) are arbitrary numbers. In snalogous way
it follows from (4¢19) and (4.20) that

'D"“"'i i n (x,&, \)

£ <3 i 5 A
( L(Q].—X ) Q(I +\ e J.L)‘ Wi 214 k ; (4.27)

Using (4.27) and (4.20), equations (4.16) with W (A') of the type
(4.26) may be represented in the form

: w4
(M- § Qy \ U\i)md A }G:)\%m

These equationg are Hamiltonian ones with resvect to the Poisson
bracket (4.25) with the Hamiltonian

s w3 Ur A&ASE(M)\’)
A’I‘.

(4429)

H = Z - 24 (-1 b(k’*)“"" A

qu




R

In particular, the Hamiltonian of the matrix generalization of
the sine-Gordon equation (W= NZ #=-4 ) is equal to H =
=+ 2 tr (Al SL(0) .

Thus, we have shown that equations of the form (4.2) which
are integrable by the spectral problem (4.1) are Hamiltonian
ones in the general position and also under the reductions

=*Q',R=48 . Note that the kernel of the Poisson bracket
(4.25) contains the integro-differential operator P_ .

With N = 1, Qirﬁ) is the numerical function, operator
D= %%E and in the case ®«=-4A formulas (4.15-4.29) are con-
verted to the corresponding formulas of Ref. /4/.

Just as in the case N = 1 /19/, an infinite series of
simplectic structures corresponds to the equation (4.7).

In conclusion, we would like to mention that the Hamiltoni-

an struc%&ie of equations integrable by the matrix spectral

‘problem =335 +q(xtly = N> ¢ | which is equivalent to (4.1) under

the reduction B=¢q , R=1¢ , has been examined in Ref. /21/.
The authors are indebted to Dr. P.P.Kulish who has paid their
attention to the latter paper.
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