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D.L.Shepelyansaky
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£30090, Novosibirsk 90, USSR

Abestractt

In this paper we consider some recent results of investi-
gations of stochastic motion in quantum dynamical systems. We
diseuss in detail the phenomenon of transient, or temporary
stochasticity in quantum mechanics. Results of numerical simu-
lation of this phenomenon are given. Estimates are made of
quentum effects in the quasiclassicel region. A simple classi-
cal model of quantum stochasticity is discussed.



1. Introduction

In paper /59/ the so-called "dynamical stochasticity™
ariping in classical mechanice under certain conditions was
congidered. The sbove term emphasizes that we are dealing
with a hpecifia cage of motion of a completely deterministic
(dynamical) system. The fact that the motion in this case
turna out to be exiremely irregular, complicated and unpredie-
table, ies determined exclusively the internal dynamics of the
gystem, and is not related to eny effect of external random
perturbations. This type of dynamical motion has been called
stochastic or chaotic, the terms whose vagueness reflects the
enormous variety of the different special cases of such moti-
Onge

The ever increasing interest in the study of stochastic
moticn is caused mainly ¥y two factors. First, in various
branches of physics, engineering and other sciences, more and
more particular problems arise whose solution requires a well
developed theory of stochastic motion. Secondly, this unusual
(nontriviel) regime of motion bullds a bridge between dynami-
cal and statistical laws of physicse, which were conpgidered
once as contradictory, and gives the possibllity of understan-
ding and deriving the latter from the former.

° Prom the view point of applications, stochastic motion
is & widegpread (and dangerous) instability of nonlinear os-
cillatione, which leade to diffusion in the phase space and
to other unpleasant consequences. An example is the loss of
charged particles in acceleratora/ 1/, plasma traps /2 , 3/,
or in the Earth's radiation belts /4/. 3till, sometimes such
stochastic inetability may also prove to be upeful, e.g.,
for the heating of a plasma by a high-frequency field (cf.,
for example, /5/) or for realizing stochastic acceleration of
charged particles (cf./6/ ).

Within the framework of applications of the theory of
stochasticity, the problems of main interest are the follo-
wing:



1. To determine the conditions for stochestic instablili-~
ty of a motion.

2. To find out the statisticel. properties of stochastic
motion, and priﬁarilr the rate of diffusion in the phase space
of the eystem. These are the problems that will mainly be die-

cugsed in this peper.

In regard to the more fundamental problem of the relation
between dynamicsl and statistical laws of physice, the most
macute” question is: can a strictly deterministlc motion (of a
dynamicel gystem) be at the same time a random one (in the in-
tuitive sense of the word)? Any detailed discussion of this
(partly philosophic) question goes beyond the range of thie
peper. We would however like to make some brief remarks, since
it seems to us important to help overcome vhe gtill exigting
paychological barrier that has been built up by the centuries—
-iong tradition of opposing the determinigtic to the random.
The development of contemporary ergodic theory, end also the
Kolomogorov algorithmic theory of complexity have recently
reached such a level that one can give a quite definite snswer
to the question put sbove, namely, there exist dynamical (com-
pletely determinigtic) systems, whose motion is in principle
indistinguishable from a *random® motiom, whatever “he precise
meaning that we attribute to the lattaritarm. Tha.Validity of
this "global"™ assertion is related to an interesting feature
of the motion of & random dynamical system: in the language of
symbolic dynamice, the set of its trajectories 1s complete,
i.e., contains all the trajectories. We shall come back to
this interesting question later in Sec. 4.2. A systematic and
relatively readable (for physicists!) presentation of this
circle of questions can be found, for example, in the reviews
/7=9/« A feirly realistic example of such random dynamicse is
the elastic collision of balls in billiards, s was shown in
the classic papers of Sinsi (c¢f./9/). Thus now the example of
a truly random procese is not the traditionsel coin, nor the
roulette wheel at Monte Carlo, but rather the balls of "Sport-
loto"™.

In ergodic theory such systems are termed Bermouilli sys-

tema; we shall call them gimply random. We recall that such
systems can be very simple; in particular, twd degrees of fre-
sdom are pufficient for random dynemice (cf., for example,
19/

¥e shall restrict ourselvea to treating Hemiltonian (non=-
disslipative) systems. Such gystems are gometimes called con- ;
servative, but this term seems to us migleading, since it gi=-
veg rige to & confuslon with the conservation of energy. Actu-
ally, the energy of & Hamiltonian system may not be conserved
if the Hamiltonlen depends explicitly on time; It is however
important that even in this case the phase denslity is conser-
ved (Liouville theorem). This significantly simplifies the
statistical analyeis of the stochastic motion in Hemiltonian

syatemp, gince they possses s simple and well known invariant
meagure.

Until recently it was supposed that inaluding dispipati-
on simplifies the dynamics, since it seemed that all the tra-
Jeetories then approech either stable equilibrium or a stable
periodic solution (limit cycle), which are the simplest exam-
ples of attractors in a dlssipative gystem. We now know that
this ie not always the case. The first example of a nontrivi-
al (stochastic) attractor was studied in the classic paper of
Lorenz f 10/« The nontriviality of the Lorenz attiractor is re-
latsd both to the fact that the motion is stochastic snd thet
its geometric structure in the dynamical space of the gystem
is highly singular (Centor structure). It should be noted
that such & structiure of a2 stochastic attractor is typical
for so-called Anosov (/11/) systems with dissipation, which
gre also Permouilli systems. One of the types of stochastic
attractor wae investigated in detail by Smale /12/. So, the
recent popularity of the term "sitreange attractor™ is surpri-
sing (strenge to whom?).

The fundamental difficulty of the theoretical enalysis
of a motion on e stochastic attractor is related to the fact
that one mugt beforshand find an inveriant measure, and it .
may prove to be highly singular in the original dynemical spa-
ce. We note, hewever, that in the case of an Anosov sysiem
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with a weak dissipation one can make epproximate use of the
gimple invarient measure corresponding to the eystem without
dissipation, for uxample; the phase density of a cloge Hamil-"
tonlian system. This follows from the fact that all Anosov Bys~
tems are structurally stable/11/. But then another difficulty
arisges, connected with the fact that in many cases of practi-
cal interest one has “to deal with more general systems, which,
in particulaer, are not atructurally stable. For puch systems
wesk dipsipation leads, as 2 rule, to a degeneration of the
gtochastic motion into a periodic one /13 /s True, this degene-
ration, disappears with increasing digeipation, but the inve-
rignt measure may then turn out to be quite complicated.

It should be mentioned that a diseipative system is not,
strictly apaaking, purely dynamicel, at least 1Lf we are dea-
ling with a real physical gystems In fact, the digsipation
degeribes (in a very simplified form) some stochastic process
at the molecular level, and is therefore necessgarily accompa=
nied by fluctuatione, i.e., by some random perturbation exter-
nal to the dynamicel system, which must algso generally be ta-
ken into account. An excellent review on dissipative stochae-
tieity can be found, for example in /14/.

Returning to Heamiltonian systems, we note that in certain
gimplest cases a complete and rigorous investigation of sto- '

chastic motion is possible on the basis of contemporary ergo=t

dic theory. It is, for example, the already mentioned Anosov
systems. However, such a class of dynamical sysiems turns out
to be rather limited from the application point of view. We
mention that recently some advances have been made toward
broadening the class of dynamical systems parmitting a rigoro-
ug mathematical analysis 115/«

The main contents of the present survey are some recent
results of the physical theory of stochasticity, which is ba-
ged on models, various spproximations and estimates, snd sup-
ported by numerical gimulation. We shall consider the behavi-
our of quantum systems that are gtochastic in the clagsical
1imit (Sec. 3). The importance of the latter problem from the

physical point of view is that quantum mechanics gives a mo-
re exect description of real systems. Sc the question arises:
to what extent the unusual properties of the stochastic moti-
on of & classical system persist in quantum theory? In prin-
ciple, the asnswer to thiafguestion has been known for s long
time (ef., for example, /43/), although it may sppear some-
what unexpected to somebody: the stochasticity is not possib-
le in quantum dynamice at all; more preéisely,'thn time evolu-
tion of the wave function (or the deneity matrix) of a closed
quantum system; bounded in phase space, is always slmosi-pe-
riodic, i.e.; its frequency spectrum is discrete. In clasei-
cal mechanics such a motion is regarded as just the'oppnaite
of stochasticity, for example, the motion of a completely in-
tegrable system. : :

In the present paper we attempt to resolve thia apparent
contrediction by using the conception of transient, or tempo-
ral stochaesticity. This approach is based on the introduction
of different time scales, so that the different statisticel
properties of classical dynamics manifest thamsairau over
sertain finite +time intervals of the quantum motion.

If we now apply this apprﬁaﬁh back to claauicﬁl mechg=
niecs, we arrive at the curious conclusion that here aleo, an
llmnaf-puriudia motion, for example, the motion of a complete-
ly integrable system, may, under definite conditions, imitate
8 stochastic process over a finite time interval. This sort
of imitation has sctually been known for a long time, and mo-
reover is the basic method for studying the statisticsal pro--
perties of macrosystems (in particular, for deriving kinetic
equations) in statistical physics. So far as we are aware,
such an approach was first taken by Bogolyubov /16/, who in-
vestigatad the statistical properties of a large number N
of uncoupled linear oscillators, and was completed, in a sen-
se, in peper / 25/, where the Bernmouilli propertliy (rendom-

ness) of the classical ideal gas was rigorouly proved, also
fﬂr "‘"H s

A new formulation of the problem, arising naturally in
classiesl mechanicis from the anelyeis of quantum dynamios,
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is the following: for a fixed (and not necegsarily large) num-
ber of degrees of freedom of a clessical completely integreble
system, to find the conditions snd the time scales for which’
imitation of stochastic motion occurs. In particular, such a
problem ariees in numerical simulation of classical stochasti-
city. Because of the discrete representation of numbers in &
computer, all the trajectories of any dynamical system are
then simply periodic. Bearing in mind the wide use of numeri-
cal simulation for investigating various dynamical systems,
estimates of the accuracy and the limits of such simulation
are extremely important. This circle of questions will be di s~
cugged in Sec. 4.

We taeke this opportunity express our alncere thanks to
G.Casati, J.Ford, J.M.Greene, S.A.EKheifets, J«A.Krommes,
Ya.GeSinai, V.V.Sokolov, J.L.Tennyson, F.Viveldli, G.M.Zaslave-
ky for stimulating discussions.

Despite the seeming paradox, one can now regard 1t as
rigorously proven that the motion of certain simple, complede-
ly deterministic systems in classicel mechanics leads to a
(1iterslly) random process. Moreover, one can apparently say
that the very concept of randommess is now most naturally de-
fined in terms of the stochastic motion of dynamical systems
of classical mechanics as & certain limiting case of a deter-
minigtic process.

We also understand the mechenism giving rise to- such an
extremely complex and diverse process, apsociated with etrong
local instability of the motion. In pariicular, we may congl-~
der thet such an instebility as if gradually "“discloses" in
time, the intricacy and peculiarity of each particular reali-
zation of the random process that was already imposed in the
exactly asslgned initial conditions of the classical motion
/33/. In this connection we should emphasize that the statis-
tical properties of the classical motion are not related to
the "practical indeterminscy of the initial conditions", as is

S

often pupposed, but even mgnifest themself in the individual
trajectory.

On the other hand, this same local instability itself
leads to a strong dependence of the dynamical picture of the
motion, not only on the initial conditions, but also on vari-
ous slight perturbations of the gystem, including the various
approximations both in each particular problem, as well as in
the whole scheme of the classical mechanics. An important
question ariges: to what extent do all these approximations
chenge the statistical properties of the classical dynamical
system? '

At first glance it may seem that this problem ig solved
by using the concept of structural stability of a dynamical
system. Indeed, many stochastic uyufama. for exemple, all Ano-
sov systems, are structurally stable, and consequently, even
though individual trejsctories of such systems are extremely
gengitive to small perturbations, the overall structure of
the motion and, in particular, ite statistical properties
change only insignificently. However, the mathematical theory
of structural staebility of dynamical asystems, desplte its
seeming generality, has its limitations even in the domain of
classical mechanices (cf« Secs 4.2 below)e Still more unclear
beforehend is the influence of quanium effects, which, small
in & sénge, are of an extremely fundamental nature. In other
words, the problem arises to study the gquantum mechanical be-
haviour of dynamical systems that are sftochastic in the clas-
gical limit.

A great deal of work has already been devoted to thie
problem. The possible approaches here are of all sortse; rough-
ly they can be divided into two main tremds. In the first the
authors start from the fundsmentsl distinetion between classi-
cel and quentum dynamics, aseociated-with the discreteness of
the energy (and frequency) spectrum of the quantum motien. We
shall discuise this problem in Sec. 3.1+ Om these grounds some
authors simply decline to consider the problem of quantum
stochasticity / 34/, Others take a more constructive puuitinui

.pnuuptin;. explicitly or implieitly, the above-mentioned fun-
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damental digtinction between classical and quantum dynamics,
they put the question differently (cf., for example, / 35=384
51, 56/): what are the peculiarities of the quantum dynamios
of those systeme that are stochastic in the classical 1imit?

The suthors of the second trend attempt, on the contrary,
to generalize all the properties and concepis of classical
stochasticity to quantum systems in obvious contradiction to
the philosophy of the first trend (cf., for example, /39-42/).
We ghould state, that there are serious physical argumente in
favor of this second trend, based on the correspondence prin-
ciple, according to which, for large quantum numbers, there
should be some sort of transition to e¢lassical mechanics, in-
cluding also the stochastic motion. These gemeral arguments
can be supplemented by invoking the well known Ehrenfest the-
orem, from which it follows that a sufficiently narrow quantum
packet moves slong & clessical trajectory, including the case
of a stochastic trajectory (cf. Sec. 3.3).

Apparently the first attempt at resolving the above cont-
radiction was that of Krylov /43/, who tried to generalize the
complementary principle to a relation between micro- and mac-
ro-descriptions of & quantum system. This interesting appro-
ach has as yet not been developed further. Below we shall con-
gsider another approach, based on the introduction of different
time scales of the quantum motion.

3e1e Almost-Periodicity of the Quantum Evolution.

We shall begin our discuseion with the problem of the
discreteness of quantum spectra, which essentially limits the
posaible statistical properties of a quantum motion and, in

particular, completely excludes stochasticity in the classical

senge of the word (see /59/). Apparently Krylov /43/ had been
the firset to call attention to this difficulty, end la-
ter on it was discussed also in other papers (cf., for example,
/144,45,34/) . Indeed, the discreteness of the spectrum implies
an almost-periodic time evolution of both the wave function of
the system and its density matrix (or Wigner functiom). In
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clagsical mechenics this type of motion is usually regarded as
the opposite limit to the stochastic case, and as characteris-
tic for a completely integrable system. We note that for con-
venience of comparison with quantum mechanics it is useful to
go over from the usual picture of the motion of the individual
claseical system along a trajectory to the evolution of some
function in the phase space of the system (for example, but
not necegsarily, the distribution function of an ensemble of
syetems) ncc&rding to the Liouville equation. The spectrum of
the latter can be either discrete (regular motion) or continu-
oues (stochasticity). :

In view of the importance of the spectral characteristics
of the motion, we shall iry to anawer the question of how ge-
neral the asgertion mbout discretenese of a quantum spectrum
really is. In go far as we are referring to the simplest quan-
tum problems, described by the Schroedinger -equation, discre-
teness of the spectrum is & rigorous mathematical result under
the additional condition of boundedness of the system in phase
epace (including boundedness in energy, i.e., for closed sys-
tems). The gpectrum of noncloesed systems where energy is not
conserved may be continuous (cf. Sec. 3+2)s We mention, howe-
ver, that just as in classical mechanice, a nonclosed system
is only a simplified model of some more complicated closed
arutam: Therefore the peculisrities of the dynamice of nonclo-
sed aystems are not of a principal importance.

A more important question ie about the spectrum of other
quantum equations, for example, those of quantum field theory
and its exlsting of future generalizations, including nonli-
near ones. Mey it not turn out that the Schroedinger equatiom,
which only approximately describes the mimplest quantum sys-
tems, is exceptional in this respect, and that some nonlinear
generalization of the field équations has already led or will
lead in the future to a continuous spectrum end classical sto=-
chasticity in quantum mechanics?

We should like to present hers some simple physical argu-
ments in favor of that the disoreteness of the spectrum of a

bounded quantum system is a fundsmental feature of gquantum me-
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chanics. Our arguments are based on one of the basic statisii-
cal properties of clasgical thn.ao-cnllad dynamices-mixing. On
the one hand this property directly leads to a diffusion of
the system in phase space and, on the other, is related to

the continuous spectrum of the motion, or of the Liouville
operator. Perhaps, we should mention here a delicate mathema-
tical point: a continuous spectrum is equivalent to a some-
what wesker statistical property, what is called weak mixing.
We shall, not enter into details here.

A continuous spectrum of the motion means that soma ape-
riodic process ia going on in the system, even though the mo-
tion itself is stationary. Such an asperiodic process is the
irrevergible relaxation of the distribution function to a
steady-state one (a constent). If we expand the initial dist-
ribution function within a bounded region, for example, in
Pourier series, the relaxation process meamns "disappearing"
all Pourier components but the constant. But since both clas-
gical end quantum mechanics are reversible, this "disappearing
can only be explained in that the nonzero wave vectors of
Fourier components are growing indefinitely (aperiodically),
i.e«, are "disappearing" st infinity. In classical mechanics
the wave vector of a distribution function is a purely kinema-
tic quentity, end there are no restrictions in principle on
its change. In contrast to this, in quentum mechanics the wa-
ve vector of the ?f function or of the density matrix is re-
lated to the momentum and consequently also to the energy of
the system. Thus for & closed quantum system the aperiodic
process described above is impossible, which results in a dig=-
erete spectrum of frequencies (and energies). This limitetion
peemg to be fundamentsl and not related to any specific quan-
tum equations. This last statement should be understood in
the gsense that, for the description of a quantum system only
those equations, linear or nonlinear, are suitable that auto-
matically guarsntee discreteneéss of the quantum spectrum.

Thus it seems to us that-ana of fundamental characteris-
tice of quantum dynamics ie the discreteness of quantum spec-
tra and, consequently, almoet-periodicity of the quantum evo-
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lution. But this means that, at least asymptotically in time
(t = #°), the stochastic motion of a quentum system is actu-
ally imposeible. The only statistical property, and the wea-
kest one, that can be present in this limit of guantum motion
is ergodicity (ef. /51, 56/, end also Sec. 3.4). There are
two basic problems associated with quantum ergodicity. The
firgt is the investigation of the distribution of quantum le-
vels { 35,36,57 ), and the second is the ergodic properties of
the eigenfunctions /51/.

On the other hand, for a quantum system that is stochas-
tic in the classicsel limit, a narrow wave packet does never=
theless move along the stochastic trajectory (Ehrenfest theo-
rem). True, as we know, the packets are spreading. But the
rate of spreading can be made arbitrary small if we go suffi-
ciently far into the quasiclaseical region. Thus, at least
over a certain period of time, the quantum motion will be
just as, stochastic, in particular random, as the classical
motion. This suggests the idea that to resolve the apparent
contradiction between discreteness of the quantum spectrum
and the correspondence principle one should introduce diffe-
rent time scales for the quantum motion. Actually we already
know two such scales. One of them is {27 and may be called
the discrete scale, over which there is fully manifested the
discreteness of the spectrum that 1s characteristic for quan-
tum systems. In the opposite limit t< 7T, which we shall call
the random scale, the quantum motion is close to the classl-
cal 1limit, provided of course we impose the additional rest-
riction on the quantum initial state whose wave function must
be s narrow packet. As we shall, only over thie time-scale
can the quantum system be stochastic or random.

Now our main problem is to clarify the following questi-
on: do the two limite T, and T; coincide (in order of mag-
nitude) and, if not, what is the charascter of the motion be-
tween them? This problem was studied in / 46/ by numerical si-
mulation of & eimple quantum gystem, though, it is true, not
in as clear a formulation as we can now give it. In the next
gection we give a brief description and analyeis of the re-
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sults of this work.

32« A Simple Model of "Quantum Stochasticity".

As the simplest model of a quantum syetem, in /46 / the
quantum analog of the standard mapping /59/ was chosen. This-
model was selected for the following reasons. Firet, its dy-
namics in the classical limit had already been studied in de-
tail / 18/. Secondly, many particular problems in classical
mechanics lead to the standard mapping. Finally, this model is
a nonclosed system (the mapping is physically equivalent to a
driving periodic perturbation), for which, in principle, a
continuoue spectrum is not excluded ss it is for a closed
gyatem.

The model considered is a rotator in an external field
with the Hamiltoniant

= 3 2 s
[ = - %.. %ﬁz + k cos8ocx) (3+241)

where 9 is the angle variahle,'a;-a paraqfter characterizing
the perturbation strength, Sst)= % §(¢-n7) is the perio-
dic delta function.

The corresponding classical problem has the Hamiltﬂniagz

Z -
H = j;i + k cos Sxtz) )

and because of the periodicity of the perturbation the moti-
on of the rotator cen be deseribed by the mapping:

- P‘E E_Sing

:9+TF

(3+2.3)
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o

which reduces to the standard mapping with parameter K =k T.
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Wé express the solution of the quentum problem in terms
of the eigenfunctions of the free rotator:

n=-0

ﬁalﬂg
y y '\T-E*; /"I'-. oot _t_.:_.__._,_._
(!V((é’x t) = L o AT __‘_?;y-_’ (3.2.4)

in the form of & mepping for the amplitudes A, oOVer & peri=-
od of the perturbation 46 3

/4., L Z F:““ A“" (3.2.5)

) Gapree T a e (E

where

jéfk,J is a Bessel function;

k = T‘Ej’}l, T'—’-'—tﬁ‘;
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$ T. Prom the properties of Bessel functions it follows
that one'kick " t {iteration) couples (to exponential ac-
curacy) appraximatelydzk levels, eo the sum in (3.2.5) msctual-
1y cnntaiﬁa about 2k terms, & fact which was also used in the
numerical eimulation of the model (3.2.1). '

The numergcal experiments showed that the motion of the
quantum system (3.2.1) has the following interesting feature.
For kT > 1 end k > 1, in the quantum system, as in the clas-
gical case, there is diffusion in momentum p at a rate

: 2
-DF___ Id'{-fi‘} :’Z%E-‘ 2o :gk— (3-2-5}
A
where
E=> 27/Al
T~ . (3.2.7)

is the average energy of the rotator. Yet, the diffusion rate
remainse close to the clapsical value only over a certaln time
interval t'. When t > t  the diffueion rate drope substanti-
ally (cf. Pig. 1), and the diffusion practically ceases at a
very large time. We shall call this phenomenon the diffusion
limitation. The time £ increasses with increasing k. Here ¢t
is integer and dimeneionless time measured in the number of

iterationa.

When t > t"the distribution over the levels, in norme-
lized coordinates X = nszzt, f (n) = |anle“_7i" ig also ra-
ther different from the classical distribution: f = e =X
(cf. Fige 2)« In computation we used various initial conditi-
ons: excitation only of the lowest level {n = 0, uniform dis-
tribution in € ); excitation up to the hundred loweat levels
with random amplitudes; a Gaussian distribution of width
10 o n £ 200 around the level n, = 0,500,1000 (the total
number of levels in the model reached 4001). No significant
dependence of the motion on initial conditions was observed.

- 16

Supplementary numerical experiments /47 / showed that for
a time t < t° the characteristics of the quantum motion were
close to classical. Thus, we compared the dependence of the
diffusion rate D, on the parameter kT (for the classical
system this question was studied in /18/)« The results of this
experiment showed a good agreement between these dependences
in the classical and guantum cases: for the quantum problem we
also observed oscillations of D, in parameter kT and with the
same period (cf. Fig. 3).

For kT < 1, k > 1 the change of the energy is bounded,
88 in the classical limit. The eame is true when k < 1, kT > 1,
which indicates the existence of a quantum stability border as
predicted in / 40/. In the case considered, the mechaniasm of
this quantum stebility is fairly understeble from (3.2.5). In
fact, for k << 1 gll the F are negligible except for r = 1s
This means that there are practicallr no trangitions between
the unperturbed levels. We may assume that the quantum stibili-
ty border corresponds roughly to the condition k¥ ~ 1.

There is still another special type of motion of this
system, which was discovered in 46 and called quantum reso-—
nence. It occurs for T = 47 m, where m is any integer. At ex-
act resonance the average energy of the rotator inéreaaes pro=-
portionally to t2, The same behaviour was discovered numerical-
ly also for somam fractionsl resonances T = 47 o/q, while for
the helf-integer resonance T = 2# the motion proved to be
strictly periodic.

A detalled study of quantum resonance was done in 48 .
It was showp that for any integers p,q, but p/q = /2, the
energy increases asymptotically in time as 2 for any k. This
means that in the resonance there is no guantum border of sta-
bility (k ~ 1). It is also important to note that there is no
claselcal border of stability (kT =~ 1) either, even though
the system may be deep inside the quasiclassical region.

The full set of quantum resonances is everywhere dense
(in T), while the quasienergy spectrum in the resonance proves
to be continuous. At the same time, it was shown in /48/ that
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for irrational values of T/ (whose measure is unity) the
effect of the resonances is unimportant and that therefore
the phenomenon of the diffusion limitation requires separate-
inv:stigatioﬁ. ;

The results of the investigations presented in thig Sec-
tion indicate an essential difference in the behaviour of the
quantum eystem as compared to classical at a sufficiently long
time (t > t"). Special numerical experiments showed that
thig time scale (t*) is much greater than the time for sprea-
ding of packets, which under the experimental conditions was
only one or two kicks. Thus the regults of the numerical si-
mulation indicate that the scales T. and T, introduced in
Sec. 3.1 are very different (T, < T;), and that the motion
when t =« T ig characterized by classical diffusion. We
shall still congider thie problem further below. Indirect
confirmation of the considerable difference between these
ecales is the absence of any indication as to the local insta-
bllity of the quantum motion, according to the results of / 46/

3+3« Quasiclassical Approximation.

The numerical experiments described in Sec. 3.2 showed
that in the quasiclassical region (k>> 1, T << 1, kT =const),
when kT > 1 at least over a certain time interval some sta-
tistical characteristics of the quantum motion are close to
classical. We shall ghow that this result can be obtained in
the classical approximation. To do this we use the femiliar
quagiclasgical representation for the wave function (ef., for
example, / 50!}:4 E : -

Vix,t)= Z 12178 exp(i S - i)

Ko (X,8)) + O(K™)
The sum over ¢ repregents the leading term of the quasiclas-
sical expsnsion, which as a rule is all that is considered by
mogt authors. The sum goes over gll classical trajectories
that reach the point x at the time 2" and satisfy the initi-
al conditions

(3e31)
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#

¢ ¢
Xo (X,T) =X, , PolXs)= > Xs ¢ (343.2)

[

=X

The initial wave function has the form

¥(X,,0) = ﬂ(xﬂj ex)p(f E%M)

thgﬁgﬁabéan of the classical trajectory isg f;f, e o

- 'F?J_'ap Ixa;;,f i Sp(x, ) ise thefaction elong the clas-
sical trajectory joining the points X, and X » while 4, is
the Morse index of the trajectory. The quantum corrections are
represented in (3.3.1) by the term U(k'1)- They are usually
small, although, as will be shown in Sec. 345, thelr magnitude
increases with time and at a large their contribution to {3.3.1)
becomes substantial.

For stochastic systems, because of local inetability of
the trajeotories, the number N of terms in the sum (3.3.1)
B
and the Jacobian Jo(x2)= 2X LX) ynireage exponentially with
time: N ~ exp(hz), f~exp(h? ), where h is the KS-entropy.

Stochasticity of the classigal system algo leads to eXpo~-
nentially rapid spreading of the quasiclassicel packet. For
the example of the model (3.2.3) (h= 1) we consider this
question in more detail, mince the spreading of the packet
determines the time scale T., introduced in Sec. 3ele, oOvVer
which the quantum motion can be completely random. To estima-
te this acale we note that the physical mesning of the lea-
ding term of the quasiclassical expansion (3.3.1) is simply
that the initial quentum state ¢, (X,)propagates along the
classical trajectories. Consequantly the spreading of the
quantum packet can be sstimated as the spreading of a beam of
classical trajectories (in doing this we can neglect interfe-
rence terms, as we ghall sltow later in this Jection). The ra-.

19



te of the packet spreading ig determined by the classical KS-
-entropy h of the system, but the total time of spreading tg
depends on the initiel dimensions of the packet: A &: in pha—
se and & Po in momentur (the gquantum number of the rotator).
We may assume that the packet has spread out cocmpletely when
ite final size a6 ~ 1 or when ap ~ 1/T = k/K, K = kT is
the classical stability parameter for the system (3.2.3). The
condition onap comes from the second equation in (3.2.3),
since, when A p°T 2. 1 the size 4@ Dbecomes 2 1 over one
period of the perturbation. Teking into account that from the
uncertainty relation, ﬁQ ‘Iépp while Aap,>21, we find 1:1:1%j
time for complete spreading of the packet in phase to be *f‘-gﬁ
bnlap.)/ h » end in momentum {;q"ffkﬁ(aﬂyﬁ Actually the
time for spreading of the packet will be uf tha or=-
der of the smaller of t.; t¥’. Prom the condition ti ~ to,

B g’
we find apo ~ng , corresponding to the largest

k
s ghé h/K) (3.3.3)

Por typical values of the model parameters (k = 40; K = 5)
the time '-ts ~ 1 in agreement with the results of the numeri-

cal experiments (Sec. 3.2).

The scale (3.3.3) ie generally very small and depends
weakly on the parameter of the quasiclassical approximation
K . Nevertheless, the condition for the applicability of
(3+3+1) is the smallness of the further terms in the expansi-
on (3.3.1) (0(x™1)) which leads to the time scale far in ex-
cess of % (cfe Secs 3¢5).

We see from (3.3.1) that the quasiclassical expansinn is
incorrect near degenerate stationary points, at which 2; (x)=
= 0. The wave function has a caustic at such points. If there
are g trajectories with caustics, then in the sum (3.3.1)
there still remain § - g quasiclassical terms (without sin-
gulapities). The number g, like N, increases exponentially on
time, but since the size of the caustic is finite and emall
(~ 11':",.;j cf./50/) and the caustice are distributed more or
less uniformly in @ , the quantity q ~ kZNi<< N. We also
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note that the height of the peak of the ¥ - function near
& caustic decreases exponentially with time ~ kVé exp(-ht)
as well as that of the quasiclassicel terms. From this, in
contrast to /38/, we arrive at the conclusion that the effect
of the caustics is at any time small and can be neglected.
Thieg result is confirmed by the numerical experiments carried
out in /47/.

Regarding the quantum corrections to the main quasiciaa-
sical term (3.3.1) as emall, we find the time dependence of
the rotator energy:

(3e344)

The maln contribution comes from the differentiastion of the
action in the exponent. Differentiation of the coefficient
and the phase shift‘cgive contributions that do not increase
with time and are of order of k™' as compared to the leading
term:

E) = LTt 3 ROIP 0D 133,

8d=1
cexplil $et0-%,x) = F(e-44))] (3+3.5)

¢
X x,0) P (X))

%‘53()!")
where p, (x) = —5x— 18 the classical momentu.m along the

£ 'th trajectory leading to the point x; (x,t) is the ini.
tial point of thie trajectory as a funr:tion of the final point
Xas

Let us estimate the contribution from interference terms
with E*f_{- They are Hint“' H2 in number, and the magnitude of
each term ig

25
R~ J_IJ dx expli(S(x) =L (X)) exp(-2ht )~ N ~*
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R R R

The integral appearing in R is a typical correlation runction;
decaying exponentislly in time because of the stochasticity of
the classical motion. Thus we have a sum of N, , random quan-
tities with amplitudes R ~ N~ 2, which is equal to = ing ~
~{WMiyR ~ M1 . This estimate is not applicable in the ab-
sence of stochasticity of the classical motion. However, the
interference terms can also be neglected in this case. This
follows from a universal estimate, valid both for stochastic
end for regular motions in the classical limit /49/. Thus the
interference terms with f.#\‘iin (3+3+5) can be neglected, and
there remains only the sum over [=f,, giving the classical va-
lue of the energy. 2

Thug the leading term of the quesiclassical approximation
(3+3+1) does not explain the observed diffusion limitation for
the quantum systems The latter apparently is related to guen-
tum corrections which, though small in the quasiclassical re-
gion, may nevertheleseg increape with time. This question will
be considered in Sece 3.5« As & preliminary, in the next sec-
tion we shall obtain some simple estimates of quantum effects
in the quasiclasasical region.

3+4¢ Graphic Picture of Transient Stochasticity.

A pogsible explanation of the diffusion limitation descri-

bed in Sec. 3.2, is that the quasienergy spectrum of this non-
cloged system, which could in prineiple be continuous, is ac-
tually discrete. This hypothesis ie confirmed to pome extent
by our direct numerical determination of the quasienergy spec-
trum in this model. The spectrum obtained clearly contains a
strong discrete component, although, of course, the results do
not permit us to guarantee the asbsence of any continuous com-
ponent. Let us assume, however, that the spectrum is purely
discrete with average spacing A Dbetween neighbouring lines.
From the uncertainty relation between frequency and time it
follows that the discreteness of the spectrum will manifest
itself only when t ;fﬁ, while for t =< -’,‘/4 the spectrum can be
regarded as quasicontinuous, i.e., the time evolution of the

-
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quantum state will be the same ss, or close to, that for a
continuous spectrum (cf. /58/). But a continuous spectrum of
the motion implies, in particular, mixing and diffusion. Thus
we may try to identify in order of magnitude the discrete
scale T/ , introduced in Sec. 3e1, with the diffusion time
scale t° for the quantum model (3.2.1):

F )
T, ~t* ~ 44 " ket)

Actually a similar idea was already put forwerd in /46/, but
there the quantity A was related to the unperturbed energy
8pé'gmum of the rotator. Actually A characterizes the discre-
ten.. ; the quasienergy spectrum which is built up in the gya-
tem under the action of the perturbation.

Since all the levels of the quasienergy are locuated with-
in a bounded intervel (2# in our case), 1/A~ Ny , where Ny
is the effective number of eigenfunctions of the perturbed
system that determine the evolution of the given initial sta-
te ‘n”é?, 0)« We point out that the total number of eigenﬁmuti-r
ons, snd consequently, also the total number of the quasiener-
&Y levels, is infinite (if we disregard the highly improbable
infinite degeneracy of a level). However, each particular
atate of the system can be effectively represented by some
finite -number of eigenfunctions Hy s

An upper bound for Ny can be estimated as follows. Ac-
cording to the numerical deta in Sec. 3.2 the diffusion drops
sharply when t > t'. Let us assume that the diffusion final-
ly stops completely. This mesns that the perturbation acting
on the free rotator, couples & finite number of unperturbed
states, namely the number of states that fall in the inter?al-
of the diffusion 4 p{t*} over the time t (in order of mag-
nitude). It is clear that this will also be the order of mag-
nitude of the maximal number of eigenfunctions representing
the state of the system within thip intervel A p. Whence

Mo = oPtlmekc S . (3e4.2)



Substituting this estimate in (3.4.1), we obtain:

' ed)
f#*'kz‘* DF

(3+44+3)

This estimate, apparently, does not contradict the numegical

»
experiment, according to which the average value <t /k“ >is
— GQD? {Gf. Sec. 316)-

The last estimate in (3.4.3) emphasizes the connectiion
of the statistical characteristics of the quantum motion (in
this case the diffusion scale t ) with stochasticity in the

efy o
classical limit, where the diffusion rete is D, = k /20

Comparing the estimate for g T, in (3.4.3) with that
for the scale of spreading t; ~ T, in (3.3.3), we see that
in the quasiclassical region (k >» 1) both sceles actually
have fairly different orders of magnitude, indeed (T, =< T, )
in agreement with the numerical results (Secs 3.2)« The ques-
tion to what extent thie conclusion is general for quantum
dynamics of course remains open.

A more serious question concerns the role of initial
conditions in this problem. Indeed, the very fact that the
diffusion rate drops with time shows that this rate, in gene-
ral, depends on the initial state of the system. On the other
hand, among the several hundred initiasl states that were ac-
tually used in the numerical experiments there was none with
an initiasl diffusion rate significantly less than the classi-
cal value. This shows that initisl states with a reduced dif-
fugion rate are extremely specific. One can reach the same
conclugion in a different way. The estimate (3.4.2) gives the
total number of states in the interval A p(t'}. The fact
that the observed value of the diffusion scale t' always cor-
responds more .or less to this estimate shows that for a wide
class of initial conditione most of the Hiy eigenfunctions
are actually excited. This means, in turn, that the eigenfunc-
tions have a property resembling ergodicity: The projections
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of almost any ¥ - vector on each of the eigenfunctions are

close in magnitude. It is clear that this cannot be true for
any quantum system. It is natural to associate this ergodici-
ty of the eigenfunctions with the stochastic motion in the

clasgical limit. This epproach was apparently first used in
51 (ef. also /56/).

These same considerations enable us to understand the
character and the peculiarities of the nondiffusing initial
states in the stochastic region (kT > 1). It is clear that
such states must be a superposition of a esmall number of ei-
genfunctions (in the limit just one eigenfunction). It then
also follows that such an initial state is a very especipl su-
perposition of a large number (~4pP(H"/~ k%) of states of the
free rotator.

Our picture of the transient stochasticity mey be che-
cked by changing the quantum model. In particular, we may po-
se the question whether one could choose such a quantum (non-
closed system) to eliminate the diffusion limitation (t*a-ﬂ*}.
It turns out that this is possible indeed! In order to under—
stand how one needs to change the original quantum model, we
call attention to the following peculiarity of the mechanism
of diffusion limitation. From a comparison of (3.4.1) and
(3¢4.2) it is clear that the limitation occurs because the
number of states in the diffusion intervael *bPﬁU“'kaq incre-
ages more slowly than the diffusion scale Tj~ t. So one natu-
relly gets the idea of making the perturbation paremeter k
variable, increasing with time in such a way that apft/would
increase faster than t. It is true that then the perturbation
of the rotator becomes aperiodic, end the concept of quasi-
energy strictly epeaking loses its meaning. However, we may
regard the model with variable k(t) as & simplified version
of a model with k(n), depending on the level number of the
free rotator which increases with time as the result of dif-
fusion. Such a situation is apparently typical for quantum
systems, and is related to the decrease in spacing between
energy levels with increasing quantum numbers (cf. Secs. 3.5
and 3.6).
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Suppose, for example,
kit)= Kk t" (3e4.4)

where o« 18 some constant. Then

o + 45
Apl) ~ ko t : (30445)

end we can make the assumption that when « >. 4/ the diffusion
continues unbounded. When 0 < « < J the diffusion scale algo
increases. From (3.4.5) and (3.4.1) we find analogously to
the above:

104 ~ot)
;‘ Fat kﬂ {3'4'6}

The results of preliminary computational experiments with
variable k(t), described below in Sec. 3.6, do indicate such
an effect, indeed.

Another more general and more rigorous method for esti-
mating the diffusion scale T4 1s to use the quasiclassical
approximation to calculate the time evolution of the quantum
state. Since the leading term of this approximation does not
explain the observed diffusion limitation (Sec. 3.3) and,
consequently, does not reflect the discreteness of the quan-
tum system, it is obvious that the effect we are interested
in is contained in the quantum corrections to the quasiclas-
sical approximation, to whose estimate we now turnm.

5« Quantum Effects in the Quasiclaseical Region. (

Using the results of Maslov /49,50/, we determine the
time scale over which the quasiclassical approximation is “X
applicable for quantum systems that are stochastic in the
classical limit. A detailed treatment of this problem ia gi=-
ven in /47 /s

Suppose that the classical system is described by the
Hemiltonien H = Hy(I) + ¢ V(I,6,% ), where T and & eare the
action and phase of the unperturbed problem, £ << 1. In thie
case 1t is sufficient for studying quantum corrections to ta-
ke the expansmn of H near the initial Iy up to the terms
(6I)% when Lo/t %1 the standard quantization /40, 52 / gives
the Hamiltonian:

Q :wf + a"fz +s [ V(I,,6,2)+

(3e541)
+4(Iv,60.0+ v,6)I)+ 1 Imai]
where o d'ﬂ 4 d
= ?flr.—r, b Z 7rilr.z
oW A%V ciiigede
Vo= o1, » Vo= TRilrn , T2 -Th 5p

: Pollowing /49, 50/, we get the
asymptotic quasiclasgicel expansion for the wave function
satiafying the Schrodinger equation with the Hamiltonian
(34541) eand the initial condition Y(8, z=0)= % (8)2xp(¢ fonJf"f.J:

W6, 2) = %: [ #exp( £ Set6,2) - F k).
’ ((z [Lll: ﬁfﬂ)”gfg:(@ r)j

where the summation in £ goes over all classical trajectori-
es arriving at the point # at time & and satisfying the
initial conditions:

_nt et B
Qafﬁst)*gn 3 Tl6:)= 06,

268, )
% = 5y, /5'.=5f

(3+5.2)

Go=f

Here gg{f? 2) is the action along the classical trajectory
joining & end & ; M, is the Morse index, while the opera-
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tor Eg is defined by

L 06y = ih J100 SUILIR(L ) U507 )+

F 1207 W 151501 4o 753

The sum over m in (3.5.2) is actually an expansion in powers
of h « The main quantum correction comes from the term wiih
m =1, i.e., from the expression (3.5.3). To the accuracy of
termg that do not increase with time, it ia gufficient, in
calculating the quantum correction to differentiate oni:.r the
Jacobian ]u’@ai « We define the quantum correction Elm by
the equations é;iﬁké}rﬁ‘fg. Then from (3.5.3) we find

15 15h f (HEV5 ‘E’ﬁ(%{;ﬁﬁ}f%% ] “ﬂﬂ%gwﬁf (3.5.4)

The last inequality is the condition for applicability of the
quasiclassical approximation. The integral over time in (3.5.4)
should be understood as the difference of the primitives at
the times T and 0. Since at an intermediate time }‘v_’ may wva-
nigh (at crossing a caustic), the result of the integration is
not sign-definite. Since }é*—-ﬁp{h),%mgﬁp(,ﬂ, 2) '3;%1"‘%3“)'
the correction 31 increases no faster than ¢ , and thus the

quasiclassical approximation ie applicable over the time scale
tp.’ci&'

Now let ue consider a speciagl form of the perturbation:

EVIT,0)9(?) , where § () has the form of kicks which act
over & time T,, and follow each other in an interval T(T > T,
Suppose that the change of the action by a kick is &4 I and
that the criterion for stochasticity K= Tal» 1 (18, 41, 53/
is satisfied. Splitting the integral in (3.5.4) into a sum of
integrals over the intervals T + T,» and assuming the terms in
the sum to be statistically independent because of the stochas-
ticity of the classical system, while ?{'Tf 1+ To4¢)~

THTELTI +K ) TL g rer). (14 Ko)
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(t)
we find that 51 increases on the average according to the

law

i i
2 igjﬂf) = i‘z Z {ﬁ}j-;*‘rm?;)

e (345.5)

Sk : Y
=T
where AL, (j) =I:'<de(JJ)>Jia the change in the action by a
kick, averaged over the random phase 8 . Since af~¢ , the
terme ¢ V, in (3.5.4) cen be neglected.

Let us calculate, as an example, the quantum correction
for the system (3.2.1), using (3.5.4). According to (3.2.2)
and (3+2.3) we get the expression for P(Z),6(?) within the
interval between successive kicks (h = 1):

Pf’f} = Py + kSEHQ{
B(t)= B, + Pt + kesing

(3.5.6)

where P, -94 are the values of the variasbles immediately befo-
re the last kick. From (3.2.3) we get the relation:

_;f)gf _(kT) tcost,, cosq . ..cosQe O YhT)

according to which we have

%ﬁ'éﬂz _%_gf « (4 + keeos,) + O(4/kT)
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Splitting mp the integral in (3.5.4) into a sum of integrals
from £ to £ + 1, we get:

'E) - k ] s
£t =4 £ (k2) stn*gf %
: {? (i:+—kecas§f}1

fa’z + 0(4/kT)

é;nﬂ

L ktcas@

——

< {1+ Krcoshi)?
After integrating we find the a:pressinn for

¢ = ’
Zt 3c08 ‘fi’; + 5¢ch ﬂq-

iz kcos® &S (3.5.7)

Becaupe of the stochasticity of the clasgsical trajectory, the
sum over ] increases as jﬁt and, consequently, on the average

e ® /

Thus, for a time

tet, ~ kK

(3+5.8)

(35.9)

the quantum corrections are small and the characteristics of
the quantum system agree. with the classical ones to the accu-
racy of 0 {k"1}- g

For t ~ t, the correction &, ~1 (the higher corrections
in + are also ~ 1) and the quasiclassical approximation beco-
mes completely inapplicable. Thus it is natural to expect that
for t >. t, the characteristics of the quantum problem, for
example, the energy of the rotator, will deviate significantly
from their classical velues. Conpequently, we can give an es-
timate for the time t , after which the diffusion limitation

begine as was observed in /46/:

(3+5.10)

't;*.m 'ﬁu e k 1

This estimate agrees with the estimate (3.4.3) obtained above
by a different method.

We note that in the system (3.2.1) the parameters of the
quasiclassical approximation k,T do not depend on the level
number n, and so hence the diffusion upward over the levels
does not improve the quasiclassical approximation. Yet, in ma-
ny systems this spproximation does improve with increasing n
(ef. below). We may therefore expect that with sufficiently
rapid diffusion the quantum corrections in such systems will
grow much more slowly thansin (3.2.1).

As an example we consider e system with the Hamiltoniam
(3.2+.1), in which k has a power dependence on the time:
k(t) = k, t* (cf. Sec. 3.4). As a rule k is an increasing func-
tion of the action k = k(I), snd consequenily of the time sin-
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ce under sptochasticity I grows with time.
Presented in the model

cal study. Nevertheless we must note that in systems with

k = k(I) the situation turns out to be more complicated (cf.

Sec. 3.6) and that therefore thie model should be
ly as a crude example.

The latter is just

When k,T> 1 the variable § after a few kicks already be-

comes random, and the average change in p per kick is

2 2 42 fga ™
< [apEI*> = k477 < sin"0(#)>= %

Whence, the diffusion law in energy ({dph = 0) iss
A+ 2

Ky £ + E(0)

E(Uz?{if_&{) (345+11)

The expression for 3_;_ is obtained in the same way as for

(3.5.7), but now with k = k(j). On the average f{lflincrea.ses
as

({-2.¢) (3+5.12)

1t follows from (3.5.12) that when a(‘b-f,{gthe correctione are
alwaye small, and the dependence of the energy on time is deg-
cribed by (3.5.11) for any time, which also agrees with the
conclueion drawn in Sec. 3.4. The valus o = 42 is a boundary
one. In this case the diffusion scale £, ~ eI k, ) When

0€ o < 44 the quasiclassical approximation ig valid for

g -

chosen which is also ugeful for numeri-

regarded on-

Lf1-4.)
T M[k: s ) (3+5.13)

and during thie time the energy grows according tu'the clas-
gical law. This last estimate differs from the estimate
(3.4.6) by a factor (1-2« ), which, however, is important on-
i fnrn{ﬁ%' -3} }L. -.;‘1 ";uﬂf

One can show that the relations 38, il ¥ -5%-« e
do hold also for a continuous classical system. Then the n‘e
grael in (3.2.4) can be gplit into a sum of integrale over ti-
me intervals df'*i/i-. , which are statistically independent,
and thue we find

i asAR b ok W e AR

For J = const, (3;5-14} gives &”%{Lt)%. Thus, f:r exa,::;
ple, if H=dl'+k2_cos(f+mRt+ ‘Pu,.y} , where Y. is ; g e
of random phases and M => 8 = (k¥)%R >4 » thgln 1L,~¢Q;

(cf. also /59/)and the diffusion scale 2,~ h/h ¥ ".

Thus, we managed to find out the conditions for applice-
L]

bility of the quasiclassicel approximation (3.3+1) to broad
clags of systems. At the same time the problem of the peculia-

rities of quantum dynemics for a large time requires further
inveetigationa.
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3+6. Other Models.

To check the theoretical predictions made in Secs, 3ed
and 3.5, we carried out a series of additional experiments / 47/
for the rotator model (3.2.1) with k = const and k(t) = ks t*
88 well as for the model of 8 nonlinear ogcillator under a
driving Perturbation, which was studied theoretically in 41 .

From the numerical data, we determined the time t" during
which the diffusion is closge to classical. We took for the v
lue of t* the moment in time starting from which the energy

of the quantum rotator differed by 25% from the energy in the
claseical limit. ;

B=-

To check the functional dependence (3+5.13), we calcula-
ted the quantity

g . [ (_Ef}i oot ]i/z
5" kf(4-Lot)

The experimental results for the average value <d> ¢+ the
root-mean-square deviation 6f end the ranges of the parame-
ters are given in Table 1. These results show that, in accor-
dance with the theoretical predictions, the time t" increases
sharply with increasing both k and o + Unfortunately a more
precise check of the functional dependence (3.5.13) could not
be made because of the 1imited number of levels of the model
and due to the gharp increase in computation time with the
growth of k end « . We were able to observe ¢leerly the diffu-
sion only for oc< 0.35 (cf. Fige. 4 and 5). It ig
important to note that, when «) 0.35, not only does the dif-
fusion law agrees with the classical one, but the distribution

function over system levels is clome to the claggical Gausel an
distribution.

Now let us coneider a nonlinear Oscillator acted upon by
8 driving perturbation, described by the Hamiltonian;

A P ”~ A o A+ Lo
H=e,n+ yn*+4,(a ”‘)Sf&) (34641)
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where n = @' ; and afare the creation and annihilation ope-

rators, with the commutator fa-,&"_fzi., Y is the nonlinearity;

f ie a perturbation parameter. When Eﬂ-,:l*] = 0, Eqge. (3.6;;',;
de:cri'haa a classical oscillator, while a and a become ¢

h
sical canonical variables, whose dynamics can be given by the
mapping:

-.It’w?ﬂ; 22 6.2)
i % é a- — 6?0 (3- 2

—

ig
here c=e,+2) 1L - I=l'ﬂ-."i£1=IH1?- The criterion for sto-
w F
chagticity has the form:

K:,zj’fﬁ Eﬁ*}i' (3.6.3)

end then/41/:

- _ T{6) =13 +§ff

1 P a.-? Z
~T )= S o LAt I £
(I ) ,;9 ; {3.&_-4}
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In the case of quantum system (3.6.1) it is convenient
to describe ite dynamice in terms of the amplitudes A

. of
the unperturbed states (cf. Sec. 3e2)s

LAH= (ton+hi¥n J/L‘f (3+6.5)

+ 9ollned A, 4 Yn A.,)éxc2)

where §p=-3?ﬁ? and n = I/4 is the level number in the unper-
turbed eystem.

The numerical experiments showed that qualitatively the
dynamics of the system (3.6.1) ig gimilar to (3.2.1)« A8 well
a8 for the quantum rotator, after a certain time t a limita-
tion of the diffusion in the quantities I and (I - I )2 pe-

ging. The valueg of t* for some paresmeters sre given in Tab-
1! 2a

Using (3.5.5) for 55‘4: No(n, is the initial level, f = 9

and the relation 4T=20,({Tcos@ » we find the rough estima-
»

te for ¢t :

o N, (3.6.8)

For a more accurate estimate we need to take account of
AI dependence on I. Therefore in the computation of £,

along the trajectory, using (3+545), we must take into account

that a clasasical particle, because of fluctuations, gets into
the region I < I , where §, increases congiderably faster.
Thus, for a check of (3.5.5) we consider the following classi-
cal model of the quantum system. We solved the classical equa-
tions of motion (3.6.2) for N, = 1000 particles, correspondimg
to the initial distribution of the quantum aystem (for example,
I1=1I,,0= ¢ < 27). Along the trajestory of each particle
the quantum correction (3.5.5) was computed (with al=g,T”),
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¢ le was
and when 3;” exceeded a certain 4, ~ 1, the partic

"frozen", i.e., ite action I, was held constant fr:mltheni:f.
The average action I was computed over ell N, partlc a:; :
cluding the "frozen" ones. The "freezing® of particlesn

i rregponds to the empiricel fact that, when
E 5¥%1{) tne alffusion rate
the quantum correctlons are large, (&5 # SR
drope sharply (we assumed that it drops to zero)s T : paical
1ity of representing a quantium motion as a beam of :Eiznce
trajectories arises from the smallness of the inter
terms when lEiml'f 1 (cf. Sece. 33).

The critical value & was determined f?om the cznﬁi:}:u
that the action I, calculated on the "fmzen*particte model,
be close to its quantum vaelue. It turned out th?t, yazariizg
this only parameter (cf. Table 2) over a gmall interv ;aris—
cen achieve a good agreement between the quantum ch;iac 52 L
ties and those of the "frozen particle™ model (cte Ti;E e tex
a wide range of the parameters n,, J, (cf« Table :;;t 2 plow
the validity of the estimate (3.5.5) and, Elﬂﬂ:h u.nium 2
the proposed classical model one can describe ¢ ex:eaa e S
namics of the system (3.6.1) over a time fer in.e

4. Discreteness of gxnamisal Space and Quan tum

Effectss

In the preceding sections we have found that, exnup:niur
some special cases, in a quanium system there can acﬁu:ich.iaﬂ
transient, or temporary atuch:szici:: :zatzzB:;:i:;;H: T

i n the basls

zuzzzﬁzaipziiizzft;gz :ay, however, approach this pr;hl:tmtzﬂ
a different way, and call attention to a still more fun .
tal and also well known peculiarity ;i gu::::t &$2:2123;ar131
ly the discreteness of the quantum phas é . S,

tion-angle variasbles this menifests itse
t:s:::::n::saZf tﬁg action varisbles (with arbitrary g:if:s}.
0f coursge, all the peculiarities of guantum dynamiii et
reduce to this dicreteness alone, yet we may pose ta q e
of its influence on the motion of the dynamical system.
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specifically, the gquestion may be formulated as follows: How
does the stochastic motion of a classical system change if the
action variables take only discrete values (with continuous
phasea}? Some results of a numerical investigation of thig
question are prepented in Sece 441+ To our great surprise, th
simple discretization of the action of a classgical ﬂynami;al )

At first glance this does seem étrange, since in the lan-
guage of computer mathematics diseretization of the action is
Just a rounding off that quantity, which ig usually regarded
88 & more or legs random computationsl error. It would there-
fore seem that the diffusion can only increase. In order to
;nderstand qualitatively the effect of diffusion limitation,
bet us imagine that we round off not only the action variables,
iuttalao the phases, i.e., all the dynamical variables. Then
netead of the continuous classical trajectory we would get a
seéquence of transitions on the finite lattice of rounded-off
values. Whatever the law for thege transitions, sooner or la-

' te '
T we get onto one of the previously ocecupied nodes of the

lattice, and then, because of the deterministic nature of the
:i;:a:;a:llt::e succeeding points will repeat exactly. But
s la:ti t all trajectories of any dynamical system on a
Fipaciggh diff::iar- periodic, which of course completely exclu-
ol :? a8 t=o . And now we recall that in numeri-
— = & dynamical system on a digital computer we
ays have just this situation - & finite number lattice in-
stead of the continuous dynemical space of the simulated sys-
tems It then follows, in particular, that numericsl simulation
can give only transient stochasticity. Teking account of the
large and ever increasing role of numerical experiments in th
investigation of various dynsmical syetems, we meet g gerio 'H
problem: o what extent is such simulation adequate for raa:n
Physical systema? Th;l Problem is discussed in Sec. 4.2.
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4.1. Clasgical Model of "Quantum Htochaaticitx'.

In this Section we shall present and discuss some results
of numerical eimulation concerning the impact of discreteness
of the phase on classical dynamics. As the simplest model of
such a "diserete dynamice™ we choose the mapping:

p=p o [Kksinx] (4e1+1)

X=x + Tp
where the square brackets demote taking the integer part. Wi-
thout that operation the system (4.1.1) would be equivalent
to the standard mapping with the parameter K - kT, whose pro-
perties were deseribed in /18/, /59/. Taking the integer part
in (4.1.1) lends to this system some resemblance to the quan-
tum standard mapping, namely the action p then runs only over
integer valueas (h = 1), while the parametervin (4.1.1), just
as for the quantum system (Sec. 3.2), characterizes the maxi-
mal number of"quanta™ given to the system by ome "kick" of
the driving perturbation. We note that the system (4.1.1) al-
80 has a stability border |kl< 1 (cf. Sec. 3.2), if the inte-
ger part for negative numbers is taken by the rule: [31:

=-[lp] (¥ < 0).

In Fig. 1 the circlee show the time dependence of the
energy of the system (4.1.1) averaged over 400 trajectories
with various initial conditions (p,» X,), where the distribu-
tion over phases X was taken to be uniform. One clearly
sees 8 significent difference from the continuous claseical
model. As & result one can draw the interesting coneclusion
that the dipcreteness, introduced for the momentum p, leads
to a significant limitation of diffusion, although the guan-
tum dynamice proves to be somewhat more stable than "discrete®
dynamics. A similar result was also obtained for the time de-
pendent k = kat“' (cfe Secs. 3.6 and Pigs. 4,5).

For comparison we also considered the classical discrete
model of & quantum nonlinear oscillator, whose motion is des-
eribed by tha'mapping (3.662)¢ Dipcreteness wae introduced as
in the previous case by taking the integer part of the change
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in the action as the result of a kick:

IT=T +[aTI]=I+ Lla+a®)y, rj,‘?}- (4.1.2)
Then, from the integer value of f, we recalculated the quanti-

ties a, a*, and computed the rotation which leaves the action
unchanged.

The results of the numerical experiments on thig digcre-
te - model ghowed in this case algo (cf. Pig. 6) a noticeable
limitation of the diffusion compared to the classical model.
It should be emphasized that this property appears to be com-
mon to all discrete models, and does not depend, in particu-
lar, on the choice of the initial distribution (P,s» x,) for
the pascket of trajectories. Thus, for example, instead of a
uniform digtribution in phase x +» We assigned a random digtri-
bution over the smame interval (0< x,< 27%)s But the re-

sulis remained about the pame (to within fluctuations). Simi-
larly, the result did not depend on the number N, of trajec-
torles over which we determined the average energy, so long
@8 N, was chogen sufficiently large (N, > 300).

4.2, Numerical Simulation of Dynamical Stochasticity.

In the preceding Section 4.1 it was shown that a simple
discretization of the action variable of a classical dynami-
cal system reproduces qualitatively the quantum effect of the
diffusion limitation of this eystem in the stochastic region.
In our opinion, this result ig of importance in two ways. In
' quantum mechanice it opens the peseibility of imitating cer-
tain quantum effects by means of "clasglcal® models, where
analysis of the motion as well as numerical simulation are
much simpler. On the other hand, the above result poses & ve-
ry serious question concerning the adequacy of numerical gi-

nulation of classical stochasticity. We proceed to a brief
digcussion of theme questions.

To be specific, we shall consider g two-dimensional map-
ping, for example, the standard mapping /18/, /59/ or its
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equivalent (3.2.3). Suppose that the number of the mantisaaan‘
digits in the computer is m. Then on a unit interval anrhzza
tity can have M = 2® different values, and a reg%on nftp o5
space with erea s in this example consists of all points.
maximum period of motion over thie region is obviously £
T - g M® iterations of the mapping. But for a "random wal

n33§ the lattice the average period of motion is much less:

<T> ~ M{s, since with increesing time of the motionn:iungb::E
trajectory, there is an incrﬁasing probability of ¢ ngt s
to one of its earlier points « In analogy to the arguments
Sec. 3.4 we can conclude that the quantity<T»> also datei?ines
the lergest time scale over which the spectrum of the mo onn-
can still be considered continuoue, and over which, cansaq:i
tly, the diffusion still goes on. As in quanium dgnami;e,di .
ig natural to call the regime of motion when t>2<T>1% ef__ti_
crete regime. Here the discreteness of the phase space © - :
dynamical system menifests itself to the full, and the 3: ez_
is periodic. The boundary of this interval for the two-dim

gional mapping can be writien as

Ty ~ MYs

For a typical computer this scale is quite large (M ;ﬂﬁ}
end can be empsily increased by many orders of magnitudg if we
go to double precision. Thus the disqrata.regima dnea‘nnt g:;
nerally present a serious threat to numerical aimulatlez;n
exception may be those specisl cases where for some i;: g B
is very small, i.e., the motlon actually proceeds wi EE =
very small portion of the phase plane. This could 114x4|.1:|;|1h:-.l.1,:E
example, if over some region the diffusion rate were.qd s
emall (¢f. /59/). In this case the actual area accupletioi
trajectory is 8 ~|abP|~ YDt, where t is the time of m: th;
Then: <T>~ M8~ (t * w DJ“;':;., t. The laat.inEquality tsi i
condition for the diffusion regime of motion. Tﬁ: ifs ; :he
on the time of motion now takes the form t £ M ™=D~ ih ol
region with low diffueion rate has a gize ~4 D, <« 1, e

(4e2.1)

since
* differs from the result of /54/,
itnuﬁseigiﬁzgg i;régig.wark that the discrete mapping was
onafto-ona, which generally is not the care.

41



dition for croseing 1t can bs written aa:
s ‘A [ _"-t:?"— C4o242)
™ A f&f'i?"'{" % 'v.':'*-..ﬂ'?
= e
The diffueion limitatian because of transition into the
discretie regime of motion Wae apperenily observed in eome nume-
rical experiments 35 23 (ef. also /59/,

My

The influence of discreteness of dynamical variables .
{("roundoff errors®) ig a characteristic example of a very small
perturbation that neverthelegs completely changea the dynamics
of the gystem after a sufficiently long time, even if the 8y B~
tem ie siructurally stable, esay an Ancsov éystem. The resson
why the general theorem on atructural stability is not appii-
cable here is related to the slngularity of the perturbation.

For the clasaical model of quantum stochasticity (4e1e1)
elmilar estimates cen be made as followe. Since the "ouantum
of momentum is equal to 1, the number of different values of
P over the time ¢t is eimply equal to the diffupional change

AP ~ kft' (ct. Sec. 3¢4). Although the phase x can have
any value, it also changes in "quanta® ~ p. Hence, the number
of different values of x over this game time can be egtimated
very roughly as J'ri#M.pj ~ %, where Ja X1~ |plt is the diffusio-
nal change in x during the time t. Then the scale of disperete-
ness is ‘T}~W~k’ifﬂaf » The last inequality just de-
termines the order of magnitude of the time within which the
diffusion occurs in the model {(4.1.1) t < kE, which agrees
with the estimates for the quantum sysiem is Secs 3.4 and 3.5.
One can similarly also obiain estimates for varying k().

A continuocue spectrum angd diffusion are important statis-
tical properties of g dynamical ayetenm. Therefore the diffusgi-
on regime (when t < 7 ) of quantum dynamics and of numerical
gimulation may be regarded as a particular (epecial) case of
etochastic motion. Thig is the more justified that in thig re-
gime not only an average diffueion, but algo fluetuations of
the diffusion distributed according to Gauss' law take place
(ef., for example, ;‘13,_ 46 / and Pig. 2), the latter being a
much more delicate statistical property. In probability theo-
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ry this property ie the content of the central.liyit theorem.
Yet, thig ig still not all. An even atronger statistical pro-
perty is the so-called Bernouilli property related to the ex-
ponential instability of cloge trajectories. It is just such
an ingtability that causes the dynamical system to behave like
a random one.

In numerical simulation, the time scale tsnve# which the-
re occurs an exponentiaml divergemce of close trajectories is
restricted by the minimal initial separation between trajecto-

ries ~M~', whence

PEIeRt: © s es A (402.3)

where h is the entropy of the dynamical system. For a typical
{good) computer the number of digites is m ~ 100 and cannot be
gignificantly increased. Thus the scale t. is inadmisasibly
gshort. In this connection the important question arises -

- which statistical properties are lost in numerical simulati-

on over a time t % 7

There is no queation that simulation over guch an inter-
val is noi completely adequate for a continuous system. For
example, we can follow a local instebility only for t < t,.
In celculating the KS-entropy this difficulty can be avoided
by the standard trick of averaging over many short segments of
different trajectories. But this is not the same thing'frnm
the point of view of statistical properties of the motion.

For example, one of the gimple consequences of the Bernou-
illi property of a dynamical aystgm is the completeness of its
symbolic trajectories (cfs /59/h Even if we take the/minimal
partition of the phase space into just two cella, the total
number of symbolic trajectariis over the time (number of
iterations) § would be N = 2", Bu; the maximum number of Fif-
ferent initial conditions is N,~ M, so that they can provide
the campietanesa only over an interval t!-vﬁuu ~ m. This scale
is of the same order as t. (4.2.3) and, in analog with quan-
tum dynamics, it can be taken as the scale of randomness of

the motion:
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(4.2.4)

Although for t > T.the total number of trajectories in
the computer is much less than the total number of symbolic
trajectories for the gimulated sysiem, it is still so large
(~H ~ 10%%1), that an obvious incompleteness of the simulati-
on is nearly unobservable. In this comnnection the question po-
sed above may be reformulated as follows: do we really lose

enything in simulation of stochasticity over the whole diffu-
gion interval ( t < 17

Similar queetions also arige in quantum dynamics, gince
the scale of randomness T,, which can be identified with the

scale of packet spreading t (3¢3.3), proves to be also rela-
tively short:

tn (k) |
T"' o (4+2.5%
h _

where k 1s the parameter of the quaeiclassical approximetion.
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Pig. 5a
Fig. 6.

Pigure Captions f

Dependence of mt;tor energy E on time for the system
(3:2.1) for k = 20; T = 0.25; % = 2000. The straight
line corresponde to classical diffusion; © = clagsi=-

cal model of quantum stochasticity (4.1.1), the wiggly

curve ie the numericel result for (3.2.1).

Distribution function over the unperturbed levels of
the system (3.2.1) in normslized ecoordinates (ef.
Sece 342)« The straight line corresponds to the clas-
sical distribution function; the wiggly line ig the
numerical result.

Dependence of ratio of experimental diffusion rate Dg
to the theoretical Dy = 1:2{2 on the fractional part
{4Ff + 0 - for the claseical system (3.2.2);

+ = for the quantum system (3.2.1) with k = 40. Num-
bers at some points are values of kT.

Dependence of rotator energy F on time for the eystem
(3¢2.1) for k(t) = k,t"; o = 0u1; k= 5; T = 13

t = 500. The solid curve corresponde to the classical
diffusion (3.5.11); the wiggly curve is the numerical
result; © =~ the claseical model of quantum stochasti-
city (4.1.1).

Beme a8 Fig. 8, for o = 0.35; k, = 5; T=1:t = 500

Dependence of action of a nonlineer ocseillator on time
for the system (3.6.1) with n = 15; do= 13 T = 1000;
JT = 1. The siraight line corresponds to classical
diffueion (3.6.4), the wiggly line is the numerical
result; + -~ the "frozen particle® model; © = the
classical model of quentum stochesticity (4.1.2).
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