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Abestract

Selected topics in the theory of dynamical chaos in Hamil-
tonian systems are discussged, including the nature and mecha-
nism of the cheos aa well as its peculiar statisticael proper-
ties in presence of the chaos border with & critical scale-
~inveriant structure. As an exemple, iwo simple models descri-
bed by two-dimensional meppings are considered. '

Ts Introduction

The dymnamical chaos, or intrinsic stochasticity, means
the rendom (irregular) motion of a completely deterministic
(dynamical) system which is free of any noise, either external
or internal. The discovery and explanation of those controver-
sial processes has been one of the most fundamental recent
achievements in the classical mechanics. The dynamical chaos
should not be confused with the motions described by the so-
~called stochastic equations which represent just the effect
df noise upon a dynamical system. Sometimes dynemical chaos
may be useful, e.g., for particle heating by an electromegnetic
wave in plasma (see, e.g., /1/ for review). However, in most
cages it is harmful as it means a global instability of motion,
€:8e, the collisionless leakage of particles out of a magnetic
trap /2/.

The account of dynemical chasos is most important in simp-
le systems with just a few degrees of freedom. For example, a
gingle particle in magnetic trap has only three degrees of
freedom or even two, in an axisymmetric magnetic field. Ano-
ther important example is the geometry of msgnetic field itself
whose lines can be considered as trajectories of certain dyna-
mical asystem. For all those systems one cannot simply introdu-
ce gome statistical assumptions, e.g., ergodicity, as is usu-
ally done in the statisticel mechanics, Instead, it is necesss-~
ry to study the dynamice of a particular system, and to find
dut if its motion is regular or chaotic. This depends on the
gystem parameters as well as on the initial conditions of its
motion. In a conventional mirror trap, for example, a domain
of chaotic motion doee always exist near the adiasbatic loss
cone, expanding the latter (Fig. 1). For a harmonic magnetic
shape, and for a sufficiently small particle velocity 77 the
chaos border is given by the relation /2/
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Here A¢§5 is the pitch-angle width of the chaotic layer,
Fe the gyrocenter radius, &/, the gyrofrequency (all in the
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micplane), fl the mirrcer ratio, and 2L is the distance hetween
mirrors.

Generally, the statistical properties of cheotic mction
are not as simple as in standard statistical hypotheses or in
gtochastic equations, e.g.; the usunlly assumed exponential
correlation decay. The complexity of dynamical chaos is rela=-
ted, particularly, to the chaos border in phase space whose
vicinity has an intricate hierarchical structure including do-
mains ¢f hoth chaotic as well as regular motions. In the above
example of a magnetic mirrcr trap it results, particularly, in
a nonexponential relaxation (leakage) of particlea. It is qui-
te likely that just this effect had been observed in the expe-
riments by Varma and coworkers which were reported at the Con-
ference in Nagoya /3/, and alsc were discussed then in Rosen-
bluth's summary. An example of that relexation (after Ref. /4/)
is depicted in Fig. 2. The authors interpreted it in terms of
the sum of exponentials with different characteristic times

¢~ . However, rescaled as a log-log plut the data fit also
Lalfly well a power law dependence. Below we are going to ex-
plein why the latter dependence is to be expected (Sect. 6).

2. The Nature of Dynamical Chaos

Since the time of Poincare it appeared intuitively clear
that irregular dynamical motion is explained by itg gstrong
(exponential) local instability. However, the progress in the
modern ergodic theory has led to a paradoxical conclusion that
such an instability by itself does not imply almost any sta-
tistical properties of the motion. Particularly, the correla-
tion not only decays nonexponentially, in general, but maey
even not decay to zero at all if the motion spectrum possesses
a discrete component. Of course, the'exponential instability
of chaotic motion does imply some continous ccmpohent in the
specirum unlike regular (quasiperiodic) motion whose spectrum
is purely discrete,

The above controversy is resolved in the new, algorithmic
theory of dynamical systems on the basis of the exactly for-
mulated mathematically (and perfectly reasonable from the phy-
sical viewpoint) concept of random dynamical trajectory (see

/5,6/ and an elementary presentation in Ref. /7/). The princi=-
pal point here is the mlgorithmic independence of any suffici- |
ently long segments on such & trajectory. It means impossihili-
ty, in any way, to calculate (predict) a single segment from
the observation even s£l1l1 the rest together. In other words,

the information JTE/ contained in a random trajectory (as re-
corded to any finite accuracy & , of course) grows in vropor-
tion to its length: '

T
ﬁm Jé? S e
£t

where the KS-entropy
L5 TR B
=2, S (2.2}

describes the mean rate of the local exponentiel instability,
and -A-mex = ﬂ-i— 50 € SO Note that mean informetion flow (2.1)
does not depend on the accuracy £ . Indeed, decrease in £ imp-
1iea an incrﬂase of the algorithmic correlat1nn tine

S }l’ {ZHEIJ. Hence, :"(f*/],-’ fE] ~ [€né] s e

An important corollary of these simple considerations is
the existence of a continuous transition between deterministic
and random behavior of a chaotic trajectory. The transition is
described by the randomness parameter /8/:

- LIt/ I£/
W)= —— - A
,?,( / 2s] = (2.3)

A tempfrary, or transient, determinism ( Q‘i*:.f & o Ey
gets over eventually to the aaymptotlc randomness {.ﬁ o (O

jEl > 25 ).

On the other hand, the quasiperiodic (regular) motion is
cheracterized by a linear in time (weak) instability (see, e.g.,
Ref. /10,9/). Hence, for a regular trajectory J(&)~ Funltl .
Since j'(rf')/ff-.""?ﬂ as 7 > £ ov , the prediction of any tra=-
jectory segment is possible from the observation of a neighbc-
ring segment with a comparable 1ength‘}.

e The opposite conclusion due ic Born /10/ on unpredictabili-
ty of a quesiperiodic trajectory is related to the fact that he
conaidered prediction from the initial conditions only, and not
from a finite trajectory segment.

5




An interesting and instructive example of the interplay
between deterministic and random features of dynamical chsaos
is the electron motion in a "braided" toroidal magnetic field
with rendom lines /11/. Configuration of such a field is cha-
racterized by the radisl diffusion of magnetic lines: :
((AT"} » =< /  where £ is the line length. If one would com-
 pletely neglect both the electron scattering and all the fini-
te gyroradius effects the electron diffusion were ithe same
with -E’d= W;ﬁf +» However, if only the scattering is taken into
gecount but not the drift, nor a shift of guiding center, then,
by virtue of motion reversibility along a magnetic line (even
a chaotic onef) subsequent to a change of 'Lf,} aign, (f deoe T ’
and.<édr?f>efgrﬁf11f. Also, generally, the chsotic motion is
reversible, and its statistical relaxation proceeds for both
directions in time as Z‘ ~>2 02 [12/.

All the complexity of a random trajectory, i.e. all its
past and future chaos,'ié completely contained in the exactly
fizxed (imaginarily!) initial conditions. It means that the ul-
timate origin of dynamicel chaos relates to thaiconiinuity of
phase space in classiecal (but not quantumf) mechanics. The
proper dynamical system is only to provide the exponential in-
stability ( A > 0), and therefore it may be very aimple that
gtill sppears so paredoxical.

3. Statistical Properties of Hamiltonian Dynamics

For a trajectory of dynamical system to be random it is
necegsary and sufficient, according to the Alekseev-Brudno
theorem /5,6/, that qub'ﬂ, or equivalently, that the maximal
Lyspunov exponent jihmbfﬁ'ﬁ. This is apparently the simplest
numerical test for randommness, However, the randomness by it-
gelf implies only that the very concept of trajectory loses
‘its direct physical meaning like that of unstable equilibrium
or of unstable periodic orbit. The dynamical chaos has to be
described in terms of statistical mechenics, yet its statisti-
dal properties may be very different. They are determined, to
a large extent, by the behavior of correlations or, correspon-
dingly, by the type of motion spectrum. A simple ("routine")
statistic relates to the exponential correlation decay and to

nonsingular spectrum at & = 0. In this case a simple statis-
tical description by means of a kinetic (particularly, diffu-
sion) equation is applicable. A complicated ("abnormal") sta-
tistic corresponds, in particular, to a power law dependence
of correlations as Z > * oo ; and of spectral density as

() —» 0. A well known example of such a behgvior ig the 1/c)
noise.,

As en example we shall consider a “simpla" model /13/
described by the so-celled standard mapping é;,ﬁfw*(:ﬂﬁﬂj

where . s s ¢

Here 57 , & are action-phase variables, and ﬁf ig the only
parameter of the model, Many particular problems in nonlinear
dynamics can be approximately reduced to this map, e.g., the
particle motion in a mirror magnetic trap /2/ (for other examp-
les, particularly, related to plasma physics, see Ref. /1/).

For K>> 1 the motion in.é? is described by a simple dif-
fusion equation /13/, the diffusion rate being a complicated
funetion of K though /14/. However, for special walues of
K 2 2% n, where integer n £ 0, the motion statistical proper-
ties become much more intricate /15-17/« In particular, the
diffusion rate, formally determined numerically, grows indefi-
nitely ag the motion time increases. The origin of such sta-
tigtical “anomalies“*} relates to the cheos borders surroun-
ding the domaing of regular motion which occur for those speci=-
al K. Notice that the chaos border is not the only origin of a
complicate&'st&tisticf Apparently the most gimple and graphic
example of the latter is the so-called "gtadium" model /187,

In case of a regular motion the statistical description
aseéems, at the first glance, to be cowpletely inadequate. Howe-
ver, the question proves to be more "tricky". T» see this con-
gider for a moment the quantum dynamics, i.e. the evoluiion of
= state vector ?ﬂ@ﬁt Here the motion (energy) spestrum is pure-
1y diécrete for any conservative system bounded in the phase

*) The quotes here intend to emphasize that those properties
are anomalous to us, due to our previcug experience in study-
ing random processes, rather than to the Nature.




space. Hence, it appears to be no room for the dynamical chaos
in quantum mechanics. Yet, the correspondence principle requi-
res some transition to the classical motion, including a chao=-
tic one as well, The resclution of this apparent contradiction
has been given in Ref. /19/. The main idea is in imitetion of
some statistical properties of the classical chaos on a finite
time scale of the quantum motion. In other words, in quantum
dynamics a temporary, or transient, chaos is possible in spite
of discrete spectrum. But the same is true for a regular clasg-
sical motion as well! In this respect, I would like to attract
reader's attention to a series of interesting papers due to
Ott and coworkers /20/ dealing with some problems in plasma
physics. However, it should be mentioned that no limitations of
the classical chaos due to spectrum discreteness are taken in-
to account in these papers.

4. Resonant Theory of Critical Phenomena

The so-called critical phenomena occur, particularly, at
the cheos border in phase space. First, we consider g gimpler
problem about a critical KAM (invariant) curve, e.g., one in
the standard map (3.1). A KAM curve is specified by the mean
frequency <G> of phase rotation, or by the rotation number
(frequency ratio) y = S 77 . Por K = 0 the curve

fg?' L7 #  1s just a straight line on the phase plane., If
,f.(;é O the curve is distorted: y{{? Jr {?9 K, r./ . It vecomes
eritical at certain K= A{ (] when it is destroyed and bifur-
cates into some disjointed Cantor gset, or a cantorus after
Percival (see Ref. /21/), embedded into & narrow cheotic layer.
The study of critical KAM curves had been started by Greene
/22/, and was continued by many other authors, especially tho-
roughly by MacKay /23/. Here, the resonant theory of critical
phenomena /24/ based upon the analysis of resonance structure
near a critical KANM curve is briefly presented. One advantage
of this approach is the possibility of approximate analytical
calculation of many scale factors whose exact values are obtai-
ned only numericelly. The resonant theory provides also some
physical insight into-the critical structure and, particularly,

: %k
leads to various relations between its parameters /24/ ). The
results presented below have been obtained in collaboration
with D.L.Shepelyansky /17,26/.

The atructurﬂ of a critical KAM curve is intimately rela-
ted to the arithmetical properties of its rotation number in
the continued fraction representation

: e ) : o
T: " i_ R (-m.f)m‘a’ M—S} .-'-'-) {¢-1}
m, + 7
“z + —_——
M_\; + Lrw
The convergenis of this expension _
. - S (4.2
= P = (m”-.;,-,_ ”‘-"u) " . (_4'_ )
L J ; :

provide the best rational spproximation to ¥ with dgnnmingtnr
qQ< Qe From dynamical viewpoint the periodic 't;-a.j ectories
with rotation numbers I; correspond to the principal (stron-

' - gest) resonances in a vicinity of curve ¥ . They are outlined

in Pig. 3 where the critical curve with r=rg 15 chosen ag the
axis of the mean phase (&> (?¥?> Z#r.) . For each resonan-
ce one period of its separatrix is shown (there are g, such
periods over the periodic trajectory, i.e. within the phase
interval <&>= (-2, Actually, edoh separatrix is embedded
in a narrow chaotic layer, so that the whole critical structu-
re is a capricious mosaic of both regular and chaotic motion
cumpananta with a comparable measure.

Thﬂ principal resonances determine the structure for cor-
ruapnnding scales of ever diminishing size which converge to
_the critical curve. The simplest eritical structure relates to
the so-called "golden" curve of F = rg = @ e
= (VB-1)/2 x 0. 678 (see Rets. /22,23,21/*). Asymptotical-
1y, as M -> %o (% - oo all the.scales here are exactly si-
milar since the scaling factors are related to the ratio

*)  8till another approach to the study of critical KAM curves
hag been proposed earlier and is developing by Escande and co-
workers /25/. Essentially, this thedry is also a resonant one

meking use of the two-resonance approximation.

= is believed to
i ceptional in other respects, curve

be tgg zi::nzgat one againﬂt perturbation, i.e. it gets dest-

royed at the biggest K /22/




$2=4./%. , o denominators for successive convergents which
rapidly epproasches the limiting value Sﬂ:: 4/?3 =41+ f} =
1.618.

The complete relationship of the structures at different
scales is given by the so-called renormalization transformati-
ons which form a group. Such a renormgroup may Be considered
az an abstract dynamical system in the functional space of va-
rious mappings where the standard mep, for example, is just a
point. The serial scale number 4 is then a substitute for the
time. This renormtime is thus proportional to the logarithm of
characteristic size §¢:E' or of physical time’ 9;, for a given
scale # (see Ref. /24/).

In the problem under consideration the Irenormgroup, as
well as the sequence of principal regsonances, ig digerete so
that the corresponding abstract dynamical gystem is always a
mepping (of the phase plane structure on two different scales).
We shall call it renormmap for brevity. The asymptotic simile-
rity on all the scales, or scale invariance, is the gimplest
dynamics of the renormmap, namely, a fixed point of saddle ty-
PE.

A convenient and graphical way of presentation for s eri-
tical structure is the Fourier spactru:& of motion on the criti-
cal curve or in its immediate viecinity. For s periodic trajec-
tory, the Fourier amplitudes <, are defined as follows:

LG /2]
G)=Rrrt+ 5 a ;5},#(2?;’ i) (4.3)
' k=1 -
where fff is discrete time (number of map iterations); g, the
motion period; Iy, = P2, /Cﬁxv the rotation number, and /l»}:,’ =
= k/(;ﬁ < 4/2  the moduli of motion frequencies. By virtue

of the time discreteness and of &/7/ antlsymmetry the amplitu-

des satisfy the relation 4 Y :—{Ep.

The largest amplitudes cnrraspcnd to'priucipal resonances,

and, hence, to the motion frequemiaa, or detunes from exsct
resonance () =0/ :

V. =¢,ry '__-./3’;, ' (4.4)

L
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The;r sre apprnximatel:l,r described by the following empirieal

~expressgion

A o

Here we heve defined the reduced emplitudes

A, = 5. lap e, Bl ek

ﬁ’i 5 exp{Cq,”D'(f(K, rn)"KaJ} 2 B v ) (4.5)

Bind' gome effective local perti;.rbatinn it
; : A
K (K. ¥, )ﬁ K+ K (hrty). - (4.7)

which is fairly well appruximated. eccording to our numerical
date, by the linear dépendence with "gradient" K 7 = 0.211.
Note that Eq. (4.7) holdas for the set of convergents I, — —
only as function Kf (r) is apparently everywhere singuler
(fractal) sccording to Ref. /28/. We make use of & modified
frequency '

-

y =L Sntrv)  (4.8)
oI :

which provides a better consistency of numerical data at large
Y » Eqe (4.5) is similar in structure to but different from

ona given by Escande (see Ref. !ETI}.

The empirical exponent A/ == 1.13 im Hq. (4 6) takes

socount of the dependence on reduced detune V3¢ 'y , while nu-
merical factor ( = 1.2 relates to deviations :{m the oriti-

oal condition K KQ where K = 0.97163540631444 i _
Greene's critical K value for v'= Ty /22.23,27/. Finally,

.the limiting emplitude, which characterizes thi_g eritical scale
invariance, or the fixzad point of remormeap, ie equal numeri-

celly.to M

A =lge] =336, VgVl =4 (.9

A 'canvarganna fﬁ‘,fibfﬂ-—i 1G], is ahown in Pig. 4. The

| numerical date have been obtained from tha periodic trajectory -

of tﬁ,ﬁu 46368 ( [FN—- r?f::'a x 10719, Notice asymmetry between
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two sides of the critiecal curve, In part, if is due to alterna-
ting detune .Wf: PF-- { . Yet, for n 2 8 the detune oscillati-
on becomes neghgibla (it decays as q 2} but the aasymmetry
still persists because of the gradient term in Eq. (4.5) which

= i
!

decreases ag @ «

Fourier amplitudes &2, of a critical curve are closely re-
lated to the phase plane structure of nearby resonances. Consi-
der Fourier emplitudes of the perturbation Uy, (in Hamiltonian)
corresponding to frequencies ), of the critical motion. As
the latter is a driven oscilletion it is reasonably to assume
Q,ha;-; 17 /ﬁi + Using Eqa. (4.5) and (4.6} we arrive at

V. = ¢l veg v = /r‘) Flkr,) 0

Here (,P{rj,;ﬂ 14047402 oss is the limiting value of phase ad-
vance @, = ¢ _{2 for the small oacillation with frequency
Sk, = g, VU, a.'hout periodic trajectory I . Phase @ is
related to the stebility parameter of periodic itrajectory, or
Greene's residue /X = Scn 2(@/2}. In particular, ﬁh {r}) =
= 0.2500888 ... /23/. This is.also an important ‘characteristic
of scale invariance, and it is related to ﬁm by

1[’(‘?“')__42 9 f{-‘)_(iff,gf

in a reasonable agreement with numerical value (4.9) from the
Fourier spectrum.

(4.11)

The above relations also permit to .calculate the set of
regidues E (ox y)ﬂ ) for periodic trajectories }';? at a given
K or that of K for a given /X o From the former da.t& in
Ref. /27/ (see Eq. (3.21) there) the factor (= -4, ﬂEn—J.’l‘l

which is rather close to the esbove value. However, the gradient

}("r ., ag obtained from the geme data in Ref. f23/, turns out to
be quite different

mnle 7 ! |
P Vs g ul
= 4 _ (4.12)
;<£ R b 35%

where we have used {, = 1.11, and where 5;3 o 00439 is a
constant in the standard scele invariance relation /23/:

R, = K+ By 5\ (4.13)

Here the convergence parameter

| OB 7 '
T i D ng._-;g_ 1,618  (4.14)
;’?M—f-'f E,""
according to the resonant theory, while ite numerical value is

SRW -1.635 /23/. The residue dynamics in n is also depicted
in the upper part of Fig. 4 (after Ref. /23/). '

Assume now that the above relations hold not only for the
"golden mean" = r'& but also in some neighborhood (in K, actu-
ally). Then, one immediate conclusion from Eq. (4.10), where
we lceeyg the same value for C{D ©. {r‘), would be a ghift in
)Q (r»’) for those special /- {m L (f/mz-Hf m) /2
which obviously retain an exact scale invariance /25/. The
Bhift is due to a different limiting value of the detune

i
’fﬁ;ﬁ/ e £ e (4.15)

: : i My
(m)]) : L T
R (r )w(.?ﬂ,_{,) Ko (] (e
This is the case, indeed, at least, qualitativel:,r. Accor-
ding to numerical data in Ref. /27/ R (r 'EJ) = 0.23%0,01

( K.(r#) = 0.9574...) while Eq. (4.16) gives K, = 0.20, In-
stead, we may calculate /M velue to obtain: M= 1.6430.18,

whence

e Renormalization Cheos

Representation of the rennrmgraup as a dynamical system
is instructive, particularly, in that it suggests a more rich
¢ritical phenomena than just a fixed point, i.e. exact scale
invariance. The opposite limiting case would be a chaotic dyne-
mics that is e random variation of critical structure from one
scale to the next. Such a possibility was discussed in Refs.
/17:29/, and is implicitly present in Ref. /23,25/.

As we have seen in the previous Section the critical struc-
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ture depends, particularly, on renormalization -dynamice of de-
tune (Y54 V ), o The latter is determined, in turn, by arith-
metical properties of the rotation number K . It is easy To
verify that the dynamics of frequency ratio i, :'-"-7”/}),,,,_{ (}0’)
is deseribed by the mapping’

1 1
s o= wod 1 } —_— = M (5.1)
! ; un-'f [Mrr-‘f ] e

with the initial o= I = (M, M2 ..., M,,..). Then, for
almost any ¥ the sequence {UH} is rendom since its KS-ent-
ropy A = ALY Enl >0 (see Ret. [12/)« Apparently, the
gequence {?’H‘H} is also r_anduni as well as -fqh} (_g‘ﬂ- Mg ot
+ q;h“z},'and {ﬁfjh‘d”; too. The dynamics of ¢ can also be
described by the map (5.1) ueing the ratios W, = ¢, , L 8
Then, backwards in renormtime /L '

pie | k. M ol %
W ._—';}: Imc({j‘_: [wh]—*mm. {5?}
with the "final" condition W), = 1/m, and rational 3, ’ @nm
ly. The "initial" condition for map (5.2) is irrational W,
with reversed sequence of the elements /.. Since the set of
such numbers has the full measure, the sequence wJ, has the
same statisticel properties as those of (, , and the average
ratic of successive denominators is given by (see Ref. /12/):

/:

2
22298 (5.3)

,F__‘.J'L,'I___'i_—- G _i'.'
{'gh*h}> e .EJ. S = <w>—<ci/h-j>He

An example of the critical étmcture for & rendom
= (2,1,1,4,2,1,2,4,4,4,2, 44,4 % .fz;..(.):)
=, 37I66%5 Fees . b

Y= Tpanp

ig also depicted in Fig. 4. The data have been obtained from
the periodic trajectory with Gy = 10612 ([!";ﬂ,—. gl 0T EY:
at K = 0.9618704. The chenge in renormalization behavior is
#triking: a big Fourier 'amplitude variation is apparently irre-
gular, .and shows no obvious trend to decay. The same is true
for K, variation as well. Note that ¥ payp 1S close to another
"golden" =4 -F; = (2,1,1,044) & 0.382. In Fig. 5 the depen-

14

dence Df'fq,ﬁ-f V8. !ﬁ@?} is 'plotted to see if pqﬁar law (4.6)
still holds. It does, indeed, to the accuracy of a few per cenft,
as the least square fit shows. Moreover, the parameters s =s1.37

~ ‘and’ especially ﬁwfréﬁﬁa)xﬂﬂﬁa are close to the "golden" ones

(Sect. 4}*.}. Note that the present /u ‘value is gtill closer

ta one for r[.z) (see above).

6. The Chacs Border and Statistical "Anomalies"

The chaos border in phage plane is always a critical curve.
However, neither  exact location of this curve nor its rota=-
tion number are known beforehand. Therefore, this problem turns
out to be much more complicated than the previous one. On the
other hend, it is much more importent. A given critical KAM

_eurve: corresponds to very particular values of the a‘aars'bm para-

meters, K, for instance, in atandard map. This is alweys an ex-

ceptional case. On the contrary, the chaos border gemerally
exists in a wide range of parameters, its position and rotation.

number verying, while the eritical structure persists.

As an example we consider the so=-called separairix mapping
713/ : o
Y =Y+ 5n8; ‘Q:g"}t'ihl'yf (6.1)

.with the only parsmétar A o This model apprdﬂnataly deseri-

bes, for exemple, the particle motion in a mirror magnetic trap
near the loss cone /2/. Map {(6.1) reduces locally in ys-z to
the stendard mep with K=~-A/z , anﬁ_gzg,fﬁjzf_,_ﬂ(g_*z)/z _
Roughly, the chaos border corresponds to ”([= K&ﬁi el
to |Z]|= 2.'5;.3 A , =0 that chaotic component of motion comprises
the layer (ld | < A« The border rotation number rég_%?, Enide,

First wumerical date on the structure of chaos border hae
ve been obiained in Ref. /26/-following the technique of Ref.
/30/. The method wes based upon the concept of Poincaré recur-
rences and consisted in Gdﬁput&tiﬂn of the probability P (2")
for a random traj ectory to recur after 2V iterations back to
the layer center Y = O. The resuliing numerical data for va-

*)  The same is also true for C in Eq. (4.5) which is equal to
1.2 from @,,, and to 1.1. from Rm. ; ;
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rious A from A = 1(+) through A = 100 (®) are shown in
Fig. 6 (after Ref., /26/). Roughly, the dependence [’(Z)) looks,
at average, like a powexr law:

o' LB

P

Por small T the exponent p = 1/2, and- B = 1 independent
df A . It is expleined by a.homogeneous diffusion inside the
kayer until its border is reached. This is just the recurrence
behavior which was observed in Ref. /30/. At a larger ¢ the
dependence changes abruptly. The overall average <po>= 1.45
-with a fairly big dispersion from p = 1.26 (A = 30) through
= 1,64 ( A= 1), This latter behavior of recurrences is
gpperently related to the structure of the chaos border /26/.
A ﬁ:uwer law dependence suggestis some scale invariance of this
structure. Apparently irregular oscillations in P/7), clearly
seen in Fig. 6, are also g very important peculiarity of the
recurrence behavior. Moreover, they do not depend on the initi-
@l conditions in spite of motion instability. Thia suggests
their relation to the chaos border atructure too. A similar be-
Havior was observed in a rather different (but also two-dimen-
dional) mapping in Ref. /16/. The oscillation in P/ has been
interpreted in Ref. /17/ as an indication of the renormcheaos
for most values of parameter A %

(6.2)

An attempt to analytically evaluate the critical exponént
p was made in Refs. /26,24/. The main idea was in that the
diffusion rate Dec p* is rapidly approaching zero near the

¢haos border ( Pp=1-1; >0 ). For o > 2 the diffusion equa-
tion

! '

__‘g = — szﬂ _ (6.3)
oL, AR e

Has no eigenfunctions which are regular at © = 0. This leads

particularly, to a nonexponential (power law) relaxetion. For

the critical exponent in Poincaré recurrences the following re-
lation has been derived

{
of =2

p= {+ (6.4)
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The exact solution of the problem is posaible by meens of the
Green function for Eq. (6.3) which has been found by Meiss
/31/« 1t confirms Eqe. (6.4). :

A more hard task is evaluation of the dififusion rate cri-
tical exponent of . Using the resonant theory, outlined in
Sect. 4 above, the value ¢ = 5/2 has been obtainéd in Ref.
/24/. It gives = 3 in a plain contradiction with the nume-
¥ical data. A possible explanation for this discrepency is the
following. The transit time <73, between neighboring scales of
the critical structure needs not to be of the border of cnrréa;
ponding time scale fhm 4, 88 was assumed in Ref. /24/. Accor-
ding to Refs. /21,32/ the transit time is determined by cros-
ging some crucial invariant cantorus which replaces the corres-
ponding critical KAM curve for a supercritical perturbation.
Particulerly, the following scaling has been obtained in Ref.
/21/ for the transit time between neighboring integer (princi-
pel) resonances ( ;ﬂzz,ﬁ’m) in standard map

_ : L _ 1t6.5)
where E: K'—- K& » and ? = 3-011Tif!t 3l

This result has been applied to the chaos border problem
/17/ essuming £ =< o near the border so that £ >0 at the cha-
otic side, £ <« (¢ at regular side, anﬂ £ = 0 on the border.
It gives : :
' 9 ' 5" 11
=ty [ 29 r— i R 6.6
pedrle mpnd s A= TR T (89

which somewhat uﬁderestimatea numerical ‘_mlué of P s 1ede

et

Here we consider anufhar approach to the prdblam. First,

we derive Eq. (6.5). The crucial invariant cantorus, responsib=
le for Eq. (6.5), is embedded into a chaotic layer whose width

ig determined by the biggest scale “Z:) (principal resonance)
of criticel structure destroyed by a supercritical perturbati-
on £>() . Then, from Eq. (4.5) t?,c"\-' £ " . The crossing time
for this chaotic layer is of the same order. Since scale

0, ~ c;;f' /24/, the transit time out of a large domain
P,.>> L, through the chaotic layer is
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T ~ %ﬂ ‘P‘* ?/ g -2 s (6.7)
‘c. . : '
in e fairly good agreement with Eq. (6.5).

FKow we turn to the chaos bor{lei‘. Since, by assumpiion,
E, ~ O, ~ 9”-2 the period @u_ of the crucial canterus on -

acale i 1is _
i £ : i
e &, g w G, (6.8)

Hence, this cantorus corresponds not to one of tlié prin=-
sipal resonances for the border rotation number Iy but to an
intermediate resonance (see Fig. 3), or to a principal resonan-

08 of some intermediate rotetion number v P/, < i, (%, )
¥o sssume in Bq. (6.8) that exponential dependence (4.5) holds

qualitatively for such intermediate resocnances as well. The
latter is confirmed by our numerical deta. Assuming, further,
just one (or = few) crucial centori on each scale and using -
Eq. (6.7) we errive at the following estimete for the transit
time o '

'amw_.@” (%)z-—v fiLj m‘p;‘a (6.9)

whence the diffusion rate and critical exponente ere

2 4 : 3 " (6410)

DAL ph wEgy I psT

The latter mmber seems to somewhat overestimate numerical va-
lue of /Dx 1.4 although one should beer in mind uncerteinties
in the numerical value mentioned ebove. The remaining discre=-
pancy, if any, mey be related to the fact that there are sctu-
ally many crucial cheotic layers on each gcgle. This important,
and as yet unsolved, quantinn is discussed in Ref. /21/.

The statiatic. of Poincere's recurrences mainlr serves
Just as & convenient way for studylng statistical "snomalies"
of the chaotic motion with a chaos border. Yet, it is also clo=
sely related to a more important stetistical property, the
correlation. Consider, fpr example, & correleting function
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which is approximately constant at chaos border. Then, the

correlation C(2)~ L) as &-—> 2o , and Eq. (6.9)
gives (see Refa. /16,26/)

C(z) ~ : i

T (6.11)
=P N :

Note that the latter law (for P = 3/2) is the same as fc.r one-
~dimensional, homogeneous and unbounded diffusion. The spec-

trum of correlation, or the "power" spectrum of motion, as
(D—> ¢ , has the form

5fw) a

i
T I

The law f/w is reached here for p-—!v,t’ only that is for an

(6.12)

 indefinitely slow correlation decay. However, for any /J < 2

i.e. for critical correlation exponent (p-1) < { , the spect-
rum is singular at (J = 0 while the integral "power" within
the interval (0, ¢ ) vanighes with <J if P> 1.

If a slowly decaying correlstion determines, in turn, so-
me other diffusion, the statistical "“anomslies" become aven
more "grave"., Indeed, the diffusion rate is proportional %o
the integral of correlation, which diverges if go..-f Lot
The diffusion in standard map for aspecial K:*:'.Z (/g0
integer) is an example. The usual diffusion equation is comple-
tely inapplicable in this case since the process to be descri-
bed is essentially non-Markovian, and the formally defined
diffusion rate grows indefini‘l:el:f with time /15-17/:

_g.. .
2 = .__inﬁ;? = . K6.13)

It simply means that the second moment of diatrihutmn functiun
(its width squared) grows faster than time: <G:!07) B oae 2P .
Numerical simulations with verious models confirm this conclu-
sion /15~17/. However, the problem of complete statistical

description for such an "abnormally" fast diffusion gtill re-
mains to be solved.
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Figure captions

Chaos in axisymmetric mirror trap: (1) adiabatic loas
cone; (2) chaotic motion (leakage of particles);

(3) regular motion (particle confinement); (4) chaos

border (boundary of confinement).

Nonexponential electron relexation in a mirror magne-
tic trap in semilog (circles) and log-log (dots) sca-
les: (1), (2) the exponentials with & =~~~ 0.35 and
0.61 msec; (3) the power law with exponent p=o 2.2;
I the electron current out of the trap in arbitrary
unita.

A sketch of principal resonances of periods IZZHF near
critical curve p= r—r; = 0. Two crucial chaotic
layers with cantori of periods éf-’h-rz and &, . 3
are also shown (Sect. 6).

Critical renormalization dynamics in # , the serial
number of scales (renormtime), for i = (. (fixed po-
int, or exact scale invariance, dots), and for a ran-
dom r (5.4) (renormchsos, or statistical scale inva-
rience, circles). Solid lines indicate one gide of
critical curves ( £>¢ ) while dashed lines do so for
the other ( P<0), cf. Fig. 3. '

Reduced amplitudes Ga va. detuné ﬁ@ﬁ‘ for a ren-
dom ¥~ (5.4) in log-log scg&p; E}r&ight line is the
least square f:i.h;r‘if"-ll'r‘/_gqﬁvl, : = 0.168. The circle

Ll

corresponds to I=1Ig while muw.puiﬂts h’?g,’y?!aafnr

r=r% (4.15).
Statistic of Poincaré recurrences in separatrix map
(6.1) for A = 1+100; ‘il‘:.‘n,.'r iterations (after Ref. /26/).
Upper line is Eq. (6.2) with p = 1/2 and 8 = 1; lo-
wer line shows the fit for A = 3(¢): p = 1.37;
5 = 4_0'_,,
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