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Abstract

Within the framework of the statistical theory of crystal
ordering the polimorphic (structural) phase transitions (PPT)
in amorphous systems (liquid, glass) are studied. The PPT chan-
ges the parameters of the tangent lattice, the latter is the
generalisation of the crystal lattice onto the case of amorpho-
us systems. The local structure parameters asre introduced as
the invarients of the crystal-order parameters. The simple ha-
miltonian is proposed and the corresponding phase diagram is
studied in the mean-field aepproximation (MFA). The system dis-
plays the line of the I-order phase transitions (PT) in the 1i-
quid, terminating in the critical point of "structural boiling".
It is shown that on the line of the coexistence the local struc-
ture of crystal and liquid mey be different. Some physical im-
plications are indicated. The possibility of the application of
the theory to some physical systems is briefly discussed.

= Permanent address: 1Inst. Physics, Technical University,
Wroclaw 50-370, Wybrzeze Wyspianskiego 27, Poland



1. The atatistical theory of the condensed matter (crys-
tal, liquid, glass) proposed recently by Patashinskii and Shu-
milo [1,2] gives the'unified "description of the properties and
structure of both anisotropic and amorphous phases, by introdu-
cing the idea of the tangent lattice. Namely, the atoms of the
small volume &V of the condensed matter (containing h ,~

10 » 10° atoms) can be mapped onto the latiice sites of an
ideal lattice. Changing the position and orientation in space
of the ideal lattice one can achieve its tangency to the phyai—
cal system in volume § V. Then, the coincidence of the atoms'
positions and their images in the lattice is maximal. The map-
ping can be continued along the paths in the volume of the sys-
tem and is characterized by the rotation a () of the ideal
lattice from the fixed initial orientation to its tangent posi-
tion in each volume SV (71"'”)- This rotation is the important
characteristic of the mapped configuration of atoms. The bifur-
cation of the mapping which may rise when moving along the clo-
sed path reflects some properties of the linear defects of the
structure. The physicel picture of the configurations we are
dealing with is as follows. Along any path which does not
cross the line of the defect the distribution of atoms ressemb-
les that of the thin pivot cut from the monocrystal along some
line and bent in a continuous way, R's importent that the do-
main of such a "good" material is connected and that any 2-di-
mensional section of the system passes mainly through the
ngood" material. The "patohea" due to the intersection with the
lines of the defects are disconnected.

It's well known that in crystals the competition of the
types of lattices gives rise to the polimorphic phase transiti-
on (PPT) with the discontinuous change of the type of the lat-
tice. The picture of the amorphous state described above enab-
les one to study the phase transition (PT) with the discontinu-
ous change of the type of local lattice also in an amorphous
gsystem. The requirements for such a PT are that the two compe-
ting types of local order which define the types of the tangent
lattices differ stirongly so that the intermediate configurati-
ong have great values of energy. As the result, the connection
property of the "good" material yields the surface energy be-
tween the domeins with different local structures, The order
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parameters describing the PPT in the amorphous system are the
scalar characteristics of the local structure - the invariants
of the tensor moments of density of atoms. The more detailed
study of these parameters and the ligquid-liquid PT is given in
paper [ 3] of Patashinskii. When moving along the line of the

PPT in the amorphous system (liquid) into the domain of high
temperatures, this line can terminate in a eritical point. The
thermodynamical study of the PPT was given in paper of Patashin-
gkii and Shumilo [4].

In our earlier works we studied the models of melting,
crystallization [5,6] and the PPT in crystals [7] in the case
when the local order was fixed and the only degreea of freedom
were that described by motation %(F’F’}. In compound systems
with a few components their relative rotation may change the
total local order while the local order of the components main-
tains fixed. Such the systems can be studied in the framework of

papers [5,6].

The aim of this paper is to perform such the calculations
for the system in which the change of the local order is possib-
le due to the relative rotation of fixed local structures of
its two components.

2. In the cry=stal phase the global point-symmetry changes
at the PPT. On the contrary, in amorphous sysatems the global
gymmetry keeps isotropiec, i.e. there are not any long-range cor-
relations of the relative orientations of the local crystal or-
der parameters (the structure tenaarsﬂ;Pﬁg-[ﬁﬂ). On the other
hand, from the argumenta presented above it follows that there
can exist the long-range correlations of the invariants 4’ of
these tensors (see [jn Then, the PPT in an amorphous matter
would be a phase transition (PT) with the (discontinous) change
of local structure parameter\(}hi; -, where the brackets denote
the statistical-mechanics average. To study such the PT, one
must account for the fluctuations of the positions of atoms in
SV (), giving rise to the fluctuations of invariants ¥; .
Instead, we will use the more simple in treatment parametrisa-
tion of the set of the local configurations. Namely, consider
in each point ¥ the two ideal lattices, characterized by lo-
cal crystal order paremeters TJﬂpﬁgﬁﬁﬁ' , (L=1,2), The flue-
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tuations of their relative orientations give rise to the fluc-
tuations of the 'invariants %ﬁ of the total local crystal order
parameter 'T;Prg(ﬁﬁ “T{j E(#)+ E(”a of the tangent lat-
tice. Let's define the simp est locaf'structure parameter, i.e.
the invarient of the tensanﬂFh,g(n*‘) :

)= Tf;a (F)Tf[lﬁg(ﬁ. (1)

In this paper Einstein's summation convention is used. Note that

P(®) has the meaning of the local energy of interaction of
the two lattices [5,6].

Congider the following hamiltonian of the crystal-amorpho-
us. structure : e

A" 2 : - :
“HER) =3 2 TIBTOR) + TR o)
U@ @) , 2

where, for the sake of simplicity, the tensor indices are not
written out explieitly. The first two terms are the standard
cryatal order hamiltonians [5,6], the third one describes the
interaction of the crystal-order parameters of the two latti-
ces. The last term, describing the interaction of the invari-
ants, plays the crucial role in the PPT in the amorphous phase
{i.e. whenn<"F {7-—0‘ }Jo It should fulfill the two following
conditions. Firﬂ s the interaction of the local structure para-
meters p(¥) end p(#) of the two neighbouring &V(¥) and
EVQT? must be of the "ferromagnetic" type since, as stated
above, the policrystallic configurations of atoms are of small
probability. Second, the local (i.e. in each point ¥ ) energy
should have at least two minima, corresponding to two nonequal
values of invariants. The stability of these minima should de-
pend on the parameters of the hamiltonian. The simplest hamil-
tnnian]fﬁﬁﬁj&ﬁ?) satysfying these requirements is

U (‘P(ﬁ‘),’?(ﬂf’ )) (’P(W) +'F(fr)) " }L’.P(W)‘P(WD | (3)
where /U, -2 SRR
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3, Since we are mainly intereated in revealing the effect
of the PPT in emorphous systems, we'll make some simplifying
assumptions which do not affect qualitatively the results.
First, we'll consider the simple case of the locally cubic sys-
tem, i.e. when the tensors T:‘:Pa,g(ﬁ) have the cubic point-sym-
metry. The generalization to the case of the other point-sym-
metries can be done easily following the lines of [7]. Next,
we'll study the case when the allowed orientations of the local
crystallographic axds f.:vi'_|._ﬁ:iII g[p?) with reapect to a fixed
coordinate system form a discrete set C¥) . whe qualitative
results are the same as in the case of the continuous rotation
orTE‘}MS [."F) : the problem of the equivalence of the two appro-
aches was studied in [6] . For the set SY we take the four
orientations {%lﬂ ,ksi}_..'-l} defined in [5], and study the ca-
se when §@l= “éfﬂ . Then, the hamiltonians '}C=-T‘"‘j{ﬁ_\'®($)
(L,k =1,2) are the ones of the 4-state Potts model [5].

The thermodynamics of the system with the hamiltonien '3{. ’
egs (2),(3) will be astudied in the mean-field approximation
(MFA) approach of [5-7] . The MFA equations are

s> =2

Tm ~p L ea (48)

By f‘«(ﬂ‘l ~ -qsgé_e ,
K!a'ﬂ
(4b)
r Z pH
{{i{«) A
where %>
~PHuea
= € e, , (4¢)
A
3::35?
- 4
i ; (4d)
F‘}{‘HF&= ., C-.d<-‘wj>_‘_[ﬂ T ﬁl? +}L<?>? ;
Jybfa

Caebard— 7 Gl % .

Here, I} denotes the inverse temperature. The solutions

: Tﬂ'} >o and <?>ﬂ of eqs. (4) extremalize the thermodyna-
mic potential -

el ) : W, .
T, = A p> S b

o

4. In our discrete model the invariants ‘P(ﬁ'-“) can take
only two values since _EMS(QK)IMS(%L ~ Syl » From
16 relative orientations of the axés of - UF) in our mo-
del 4 correspond to the coincidence of the Eﬁ:al lattices

A Aw AN AR
(89=3% ke4,.H)  while the other 12 (89,49, kal=4,..4)
describe an "orthogonal" relative orientations of the axes of
1%5(??) « The solutions of eqs. (4) displaying atT!F4=
= 0 such the properties globally (i.e. in each point ¥ ) will
be referred to, correspondingly, as the "parallel" {".P ) and
"orthogonal" (0 ) phases.

For the 7P =-phase straightforward but tedious algebra
yields the following results. The temperature dependence of

the crystal-order parameters <-r{3|3§5> can be expressed via
one scalar amplitude h({.‘-) :

T A=< ®=<TE 5P =hB  G=1) . (o)

The orientation of the two lattices, corresponding to eq.b
-l : AlAY ()
at R" =0 is given by ™ @K for some fixed Kk .
As shown in [51 the temperature dependence of these three pa-
rameters yields that of all the others. The thermodynamics of

the P -phase can be studied via the MPA eqs. (4) which take
the form

2
Fo= 23 if;; <Pl Lmt (7a)
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2chfh) , () et Pacnapx ) @)

iy PR =th.-$@r<g{Hﬂmwﬁa " i 93

Ry . A e e i Py
h= %___é_ e [5( /af?ﬂ{(-e 6Ph+ eziih)er(u+/;(P>1 3 23 Z, & . 25\12[53 e 'Y __
_enzPUchLlﬁx} , (@)

-quhzﬁh}, (<)

Lp>= HZ(E-T- i o PR *’:@{ ( o 1?h) eﬁ“ﬁ(&f +j:i<?9*

-“\-.--'_I_.m‘I

d ' 8 (ﬂi—\-M{ > o n
X_E:F%; . iy ){ZshZ[Sx e D shq[?x}, (34)
+ie |

2 R gl WY =
< EL) %ﬂ_ o f /ud.’q:br){ 6EHP(¢+#<?§)CMZFU__ ezpd

4]

-y chl_[?h} ; #4) i
g w5 0
- €. chlifx -} dnf:’x[sx}} (3e)

Q. a3 '
=, L e ~ o~ S o M i where =\J- y Andex "o" dendt th th .
where T’S’ M- 75 3 4 P’_(jﬂﬂp ,}L=/1,2.EI}_ , K=o 75 and index [3 @ ﬁ)p ; notes the orthogonal phase
"p" denotes the parallel phase. In what follows, some solutions of eqs. (7) and (9) will
Analogously, for the O -phase the crystal order parame- be found and the corresponding phase diagrams will be construc-
ters are defined by two =scalar amplitudes ‘x(p‘),a{:p') : ted in the space of the parameters of the theory ([Sljiﬁ',m!)/,l., P9

5. In this section the case when u/J>pd }*/{5’3':1_ will
<T[EE_5>(fL) _—:<T(’-) >ﬂ9= H(F‘) (8a) be studied. Then the U(‘?) term in hamil‘tc:nian (2) becomes
123 ? dominant and the solutions of egs. (7) and (9) can be studied
< ® o ( 4 o perturbatively. Physically, such a situation corresponds to =
oy = S5O N o TN - el | - : .
ul3>(® <T31\‘1\/{m <T12.'.3>[®_' <T33[1\>(m_x([§)' g system T.rhere the surface te:rle';:.on c':f the structureless domain
separating the two regions with different local structures (non-

equal invariants) is large., This effect can be expected e.g. ir
The orientation of the two lattices corresponding to eg. 8 = ) s -l

at | =0 is given by %&2 g ‘%T for some fixed numbers k4[| . Y P
The thermodynamics of the (¢ -phase will be examined with the 2«1 Congider firet the phase diagram of the liquid, i.e.
help of the MFA equations (4): when the crystal-order porecmeters vanish (h=0 - }.;-ska,—_-[) ) s
23 & Above the melting temperature of the crystsl pheses this rhoze
]‘:o = m }.L<’-{_~> +‘%£(J‘E')X2+%it t"ﬂ{]ﬂl“ _iL:_leo (‘3,:;) diagram is exact, while below, the smell ecorrections of scloti-
: 8 ? ve order O.l,r"‘])"icﬁ A due to the non-gzero values of the crys-
&
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tel-order parameters can be accounted for. The egs (7d) and
(9e) take the form

v
2F AN ] i 1
(HTﬁ{-@; ;E’ e sl (10)

where V=H§C£+F{P“>) . Eq. (10) describes the PPT in the
liquid phase., The graphical representation of eq. (10) and so-
me characteristic cases are shown schematically in fig. 1. The
character of the PPT depends on the value of « Consider first
the case shown in fig. 1a, i.e. when 0L <K, + The P.T
is the first order one, both the low-and high-temperature pha-
ses are the P -phases (the dashed line). When the value of o/
is large anaugh,ﬂf)‘_\,&f{#)w » there is no PPT. The local struc-
tjrempa.raneter changes fnntimoualy at all temperatures
T=p"1 . When 1‘1.[1%_) > ﬁr_‘) (H:f#) e there exists the
lower metastable branch, corresponding to the O -phase. When
Uu> m(423)°  this brench disappears. This situation is
shown in fig. 1,b. The value %/ =(¥/.)., corresponds to the
eritical point of the line of I-order PPT. This case is ghown
in fig. 1,c. At the critical temperature (4{"5}'7)”' the tan-
gent line to the plot is vertical (the dashed line). Ome finds

(ﬁ‘)w=l“l{%)1(m,—4) SGAY L4 B (I8)

When —l'ﬂ[-("'!;})ldz ‘9’#(0 there exist both upper and lower
brenches of v . At | = 0 the upper one is stable while at
T—= o= there is only the lower one left. The PPT takes
place between the low temperature P -phase and the high tem-
perature © -phase of the liquid, as shown in fig. 1,d. For
_112_.(”{1:91{ n-!%{ -1y ("'lfu,)" both the solutions exist but the

P -phase turns out to be metasteble. There is no PPT; the amor-
phous order parameter which describes the O -phase changes con-
tinuously at all temperatures | . Finally, when °i"/ﬂ_ <- "-11( %)1
there is only the O -phase left, as shown in fig. 1,e.

Let's sfud;r the phage diagram, corresponding to eqs (Ta),
(9a) and (10). The low-temperature expansion of the free ener-
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gieas (7a),(9a) yields
. %
Ff,,..gg(:_?] w58 (ﬁ'>‘”3(;_;)1) 3 (122)

Fo- e L (AT, om

~ =4
where (ﬂﬁ.) —» () . The phase diagram at | = O is given in
fig. 2. The line of the PPT (F‘%‘,’=F{;‘) is (at(fF)"—=>0 )

(“g’] =-H[3—)1+ hﬁé 2 (13)
Flagy \¥ MER

The numerical analysis shows that relation (13) holds for all
the points of the PPT line. This fact yields a very simple geo-
metrical interpretation of the parameters of the PT in our ge-
neralised Potts model. Namely, the equation of the line given
by the 1l.h.s. of eqg. (10) end passing through the point (W3, Ys)
(see fig. 1,d) (where the smecond derivative of the r.,h.s. of
eqs (10) equals zero) is just that givem by eq. (13), i.e. i the
line of the PPT. Hence, for the given ﬁ{/}b the PPT takes place
at(ﬁﬁ)ﬂi(eq. 13); the order parameter changes from V, to Po
(see fig, 1,d).

The line of the I-order PPT terminates in the critical

point
2
(*E“_)W;"H(Eﬂ (m3-4) (142)

(%F)cr_—_ﬂ {f;}z : (14b)

This puir_tt can be referred to, in analogy to that in the theo=-
ry of the liquid-vapour P.T., as the critical point of the li-
ne of the "gtructural boiling".

Let's now find the eguations of the lines of the instabi-
1ity (spinodals) of the P - and O - phases. At [ =0 , the
? -apinodal equation is C.E-‘{%T#q!ﬁt =4 while for the
O - spinodal one has [’_',=—4/3 (see fig. 2). The simple freat-
ment of eg. (10), namely constructing the tancent Tire 1o -

& "



rhs of eq. (10) in point V, yielis the following parametric
representation of the spinodals

v V, Y/
i & . B e’® Vsl
£1 HE’('H-] {fwn — = £_—2%

(?""] S?i“ (e\fﬂ-l.g]?- E.VD + '3 (15&)

1 2 V,

:*’i:) “15*%[%) —— : z (15b)

p# Srw. (E.. D+ 5] " .

For — ooV, L0 one obtains the O -spinodal; for 1.64<

L VoL oo - the D -spinodal. The values O<V,< 1.64

correspond to unphysical (unstable) solutions of eq. (#0). At
low temperatures one finds

BT el g mir o
B - il i O

(compare with fig. 2).
The phase diagram of our liquid is presented in fig. 3.

In close vincinity of the critical point, eq. (14a, b) the
MFA treatment is inefficient (see, eg. in [8]). The two minima
of the hamiltonian H('*l") are well separated only when the corre-
letion radius is small enough. Let Li be the path in the space
of the invariants ‘[’;_ joining the two minima, such that the
values H(¥) Yel, , are as small as possible [3]. Then, the
coordinate m along path L  is the critical mode. Consider
the long-wavelength slightly inhomogenecus fluctuations Uf(?) .
In the domain with linear dimension %, , where 7%, denotes the
radius of the orientational order, W(¥) changes slowly. Then,
the theory of the fluctuations of the field #(¥) is equiva-
lent to that of the scalar field near its critical point and
can be found, e.g. in [8].

~F = Ve o~
5.2 At low temperatures Tuu(“—;'-) THT{TPFT the crystal-
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-liquid, i.e. the melting P.T. takes place. In the absence of
the crystal phases (see sect. 5.1) at these temperatures the
local structure parameter {-P“} changes very slowly with tempe-
rature ({p’?(‘l‘)=ép}(o)i-¢x?(—$.) . ﬁ}"ﬁ, ) end can be trea-
ted, with good accuracy, as the constant 4?‘)(0) y (see, eg.
fig. 1). Then, in the first approximation, one can study the
phase diegram of the system assuming that the interaction of
the local sfructure- and crystal-order parameters do not change
the velue of the former. On the contrary, this interacti-
on influences strongly the "free" crystal-order diagram, shown
in fig. 8. Hence, in what follows we take {'P}P(T)=-(P>P(D) &
=42 (443] tor the P -phase and <o) =<2, 0) = - M (4aa)?
for the O =-phase.

5¢2+1. Consider first the P -liquid = p-crystal P.T.
From eq. (7a) one finds that the h # O solution of eqs. (7) is
thermodynamically stable when

:]-\'E\)O (17)

It's necessary to make some comments here, The MFA treatment of
the spin hamiltonians of our type yields good results when the
configurations giving the main contribution to the partition
function Z do not differ too strongly. In the spinformalism
language, they are the configurations of the ferromagnetic or
antiferromagnetic types. On the contrary, when the typical con-
figurations with approximately eQual energies describe the
strong fluctuations of some order parameter, the problem of the
interpretation of the MFA results is difficult. For example,
the MFA metastable phase at | = O in the theory of crystal or-
der [5], comstructed with the help of three energetically dege-
nerated states, turns out to be unstable when the fluctuations
are accounted for [J] . In the p ~phase the analogous effects
may take place for Ewu-nj + The "pure ferromagnetic" soluti-
ons correspond %o

x>0 (172)
instead of (17).

Eq. (7c¢) takes the standiord Fowm [l

3



z
e S s it (18)

32 ¢ Bi+3 :
where —Bﬁf;'n,=i « For the free energy F‘P (eq. 7a) one obtains

i e L P (©
T P jﬁi— Eo(w) (19)
where

©py 84 2 8ph
FOM= T gh - La(Le3 M) oo

and EP{L} is given by formula (12a). The melting P.T., defined
by

(7 BEP EUE L
Fe (h[fsﬂ) ) ?c.) = F;F][D: F'c-) (20)
is the I order P.T. One obtains

— -4
. =0.3260 (21)

5¢.2.2., Let's now study the Q =crystal= O =liquid P.T.
The crystal-like solutions of eqs (9) are thermodynemically
stable when

T el i Jegp 0 (22a,b)

(see eq. (9a)). The physical meaning of the latter inequality
iz quite analogous to that of (17). Namely, the T = O soluti-
ons of eqs. (9), xX,=4y,=-M[23 , describe the case when the
orientations aﬁﬂ %(ﬂ of the two lattices do not coincide.
When the strength of the ferromagnetic interaction increases
and (22b) is violated these solutions do noi correspond to the
absolute minimum of energy. The inequality (22a) seems, at
first look, somewhat strangely, since it imposes the lower bo-
unding on the strength of the antiferromagnetic interaction in
the system where the rclative orientation of the two lattices
is "antiferromagnetic" (‘%(%%{ﬂ ,T;-.o) . Note that there

was no upper bounding in the ferromagnetic case. This is so

14
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due to the somewhat different role which plays Y in "> and
O - systems. Consider the case of |y|-> oo . In the P =-phase,
the x -term in hamiltonian (4d) generates (at low temperatures)
the crystal ordering in the two lattices. In the (© -phase this
term yields a metastable ordering of parameters T(“'}ﬂpﬁ,g(ﬁj
studied in paper [5] which becomes unstable when the fluctuati-
ons are taken into account. The MFA inequalities (22) describe
the case when the melting temperature of the "interlattice" or-
dering T~ x is lower than thet of the crystal ordering of
each of the lattices, [.~] . This rules out the |x|>7] diffi-
culties discussed above. Eq. (22a) guasrantees that the | = 0
solution >, , Yo yields the minimum of the energy. Namely,

the fluctuation of the energy due to the variation of the| = 0
solution: Kov3ls o s ‘,jn_llgl are favourable when ]J"?S £

“ ¥ (1-0,8)=-® (t=0,0)-1\8\(J+y) . *’

In analogy with (17a) the "pure antiferromagnetic"” orde-
ring corresponds to

~J< x40, (22, 0)
instead of (22a, b).

The equations (9c,9d) were solved numerically. For the
thermodynamical potential (9a) one obtains

F = E(u.) i ;% Ff)(xjtp (24)
where
E:(G}(X, 3)=2£|: _:31_—;_? ;<1+-;':i 'd?' " %__ bn{Z Ezﬁu ¢
R B e“f?ff%,re"“?*'fi‘n}’ ¥
and 'FD(L} is given by (12b),

The two typical solutione of egs. (9c, d) are shown sche-
matically in fig. 4.

15



th - and O-
The solutions (x, y) eand (-x,y) are physically equivalent due end (9c,d) the equations of the spinodals of the P

%o the X «>-x gymmetry of eqs. 8. We'll not deal here with ~ phase, respectively
other (metasteble) solutions for the reasons discussed above, ~ y ~_ Yy (29)
The character of the melting transition, taking place when OL=-E,_?-‘(3+E) ol 23 (J"E) -
©f (= e L
Fu (K(Fc.)gﬂ([sﬁ); {SEJ o F,;EQ[D,DJ ﬂ’c,) (26) The free energies are given by
v F:P (T:O,Fnoj‘n=*z‘i+)=ujs-—~[j+xj—»3:{_,’ (i}-%—(]-l*ﬂ) p (30a)

depends on the ratio of constents ] and ¥ - Let's intro-
duce the parameter
T=0,u=0, x= =-5._)=._5_ % e (~ 4 (. (30b)

A FO( O}Ju' U,)c‘ ! ¥ ED (SJ 25')41{ "L(.H.[J @ =
g o e

T (27)
The pPT (F =F} takes place on the surface
Then, there exists such a W, (tricritical) that for W< Wy Rk
the melting P.T. is of the first order (fig. 4,a), while for ;E_iﬂf X (31)
w}w,m__ it's the continuous one (fig., 4,b). One finds

The T = O phase diagram is shown in fig. 7.

- R |
wtﬂ o PO T (28) The simple analytical treatment at T # 0 is available
only in the vincinity of the line of the decoupling of the in-

The dependence of (% ' on W is shown in fig. 5. b
T’L i teraction between the two lattices: o = X = O. Let's intro-

The phase diagram of the system with hamiltonian (44),

with WA ’u,f]‘;;.d_ is shown in fig. 6. We have not sho e
3 - . a WIl itk Pt e N‘ it 1 h). = N
there the small corrections (of relative nrder%«ﬁd_ ) to S-F"FJD_- F(JMJJ'KJP*'AP1<?>(J*J&H’P+A? ,HP.D“&}%{,PHEI';;))
the phase diagram of the liquid, which can be found from equa- ~ .
b i : ‘ =

tion Fo=F (eqe. (19), (24). Note that we used p"d in- F[ ?DJP:<?>[O’D‘P)’H?IF(D'D’P)) 3
stead of f}"‘* for the temperature. As the result, the inclina-
tion of the surface of the PPT in liquid is no longer constant where H?ﬂ-" denotes the crystal order parameter, i.e. H?Eh‘ ;i
and depends on W . Hna(x,aj ; F(_ H‘hﬂ)EF‘F;G « One finds

6. In this section the case when m[I<€A sl €4 will ¢
be studied. ThE'U'(?) term in hemiltonian (2) is small and the §F = BEIIE_ di & __'Ettﬂ_ Jg-t- —g—f-_;ﬁ-?— JF (33)
solutions of eqs (7) and (9) can be studied perturbatively., 0 % @) Qx (©) op (o) ;
Physically, such a situation corresponds to a system where the .
surface tension of the structureless domain separating the two
reglons with different local structures (local invariants) is eince
small., LU S s =) s oF0 i

We'll study the phase disgram in the first approximation, | j 9% ()] a'& (o) oh Q 3<?> M- g

i.e. when L = 0. At T=0 (p™*=0) one finds, from eqs. (7¢)
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in virtue of eqs. (5). The simple calculations yield

oF 2
s ARSI 31 SR 2
ol © ('-I) 0 3 3&?'@=—5(1,1—;)h, : (35a)
oF, 1 :
—2 (2,2 . o (35b)
eh (*—1) N H o=y
) ) 'E}& ©) Y 'Fl_, ’
(35¢)
PaF l
i, 5, SRS {F( - 9 1}
e U}+—5—h
?'F o) g ; < .,

U
In ihe ebove formulas the derivales are taken in point (0=
=(<=x=0,F) .
The PPT takes place when

5‘:15=5Fa ’ (36)

which yields, with account of (33) and (35)
. & ("i*)=_‘1_ (37)

in agreement with (31).

i The melting P.T. of the P - and O - phasea takes place
en

S Fu?= h) Fma : (38)

where SFL‘. is given by (32) for H- o= 0. Accounting that

~ Y s
F [DJD* fes “‘Puﬂ(-P'-') ’ {?‘?{?’-CJ) =1 F(OIOJFC JOJD)

the P -phase melting

one finds, for

X SN B
FL(P F’G)+T°L+h”=o , (39)

end for the O - phase melting
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SO e
—3?;({5*[&. +-’.:;Jco<+g=-0 1 (40)

The phase diagram is shown in fig. 8. The structure of the
liquid depends on the value of L . For oL >0 one has
P -phase, for <0 - O - phase of the liquid.

gt

In the vicinity of the line o = ¥ =0 all the three
P.T. are the first order ones. The melting of the ? -phage
is the I-order P.T. for(cifig) % # 0. This can be found by
writting eq. (7e) in the form h=¢(h) and solving the equa-
tion f“ (0) = 0., The only (real) solution is (3‘%&)“4"- 0. The
dependence of the melting temperature '(?,;_‘- on/jyis shom in
fig. 9. In order to obtain the full phase diagram it's neces-
sary to solve numerically eqs. (9). We'll not deal with this
task in this paper. :

7. Let's discuss briefly some of the results. Consider
first the case when there exists the critical point of the
I-order P.T. in liquid, see fig. 3. The latent heat produced
at the P.T. equals to the energy necessary to change the local
structure of the liquid and depends on the distance from the

critical point. whenﬁf{f,_—a-(d;r_) cva""ffﬁ’ "("!FF)W then @—~0 .

Away from the critical point where the local structures of the
two phases differ strongly, Q ’ a_'}kT “gince }L’}L and the
P.T mey be accompanied by strong energetic effects. Such a
gituation may teke place in alkeli halides, which undergo the
B1-» B2 PPT at sufficiently high pressures [1Q]| . The strong
energetic effect in NaCl fluid observed by Alyoshin [11] may
be the candidate for the I-order PPT in liquid. The strength
of this effect decreases with temperature and vanishes near
T a< 1000°C.

When the energetic effect is small (&4 ) there's no
i{-order P.P.T. in liquid. However, as can be seen from figs. 1,
b; 3, on the formally continued line of the I-order P.P.T.,
not far from the critical point the value of the local struc-
ture perameter changes more strongly than for other values
of parsmeters, see fig. 10. In these sense one may speak of
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the "diffused” line of the continuous P.P.T. in the viecinity
of the eriticel point. Far away from this point the effect
vanishes. When /u,{d_ one has 'fs"w*ﬁ,-.'ﬁc and no effectas of
the type described above can be expected in the liquid phase
near the melting point. The situation may, however, change
ihen p~]nlyl o Nemely, take }L(jﬁlg\ : as the result

(SW>T§¢ bl TS'GF.;-_-,T;C » i1.e. the critical point is near the
melting point. Then, the noticeable fluctuations of physical

characteristics could be observed in the vicinity of the sur-
face (in the space of the parameters of the theory) of the

crystal FPT, formally continued inte the liquid phese. One of
the candidates for such a "diffused” P.T. is the liquid near

the FPT cubic-hexagoral crystal, which reveals noticeable
change of density im this region.

The next interesting problem is the P.T. between crystal
and liquid with different local structures. As can be seen
from the thermodynamical phase diagrams, figs 6,8, such the
phases can coexist for some values of parameters. From the
point of view of the thermodynemics, the corresponding P.T. is
equally well described as that between the phases with the sa-
me local invariants (structure). This is not so when the kine-
tics of the P.T. is studied. For example, there mey appear an
extremaly large temperature interval of the supercooled liquid.
As the result, the thermodynamically stable phase cannot be
reached via an equilibrium P.T. Note that this effect exists
independently on the strength of the energetic effect due to
the local structure term (3) in hamiltonian (2). In such & ca-
se, an extra interaction is néceaaary to overcome the potenti-
al barrier. For example, the transition due to electron or
neutron interaction with the amorphous 8i0, [12] might be an
example of such a "difficult" PPT in glassy phase.
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Graphical representation of eg. 10 and its solutions
for some values of & ,

2z
The phase diagram of liquid at T = 0. The continuous

and dashed lines represent, respectively, the sfable
and metastable mlutians.()u.‘%j,ﬁ)

The phase diagram of the liquid far‘kLﬁb]jﬁr g
The two typieal solutions of eq. (9c,d).

The dependence of the melting tampara‘l:ureT E(FCJ i,
see fig. 4, on W=(I)(34y) * -
The MFA phase diagram of the system with hamiltonian
(2),(3) tor S>4 &5y . .

The MPA phase diagram of the sydtem with hamiltonian
(2),(3) for M = 0, at 20208

The MPA phase diagram of the system with hamiltonian
(2)1-{3) for }Ln C.

The dependence of the melting temperature of P -pha-
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ge for /u,:- 0 on:]*'b’

In the vieinity of the formally continued line of PPT
in liquid (fig. 3) beyond the criticel point the or-
der parameter <p changes rapidly with temperature;

o £ W b the effect is small.
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