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ABSTRACT

A structure of wall layer is considered with the
assumption of small mean free path of particles
compared with scale length of the problem. It is
shown that in the case of weakly absorbing wall the
structure of wall sheath determines uniquely the
plasma inflow velocity. For the conditions of the
absolutely ' absorbing wall, solution of the Kkinetic
equation gives the whole spectrum of values of the
inflow velocity.
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1. INTRODUCTION

In many types of plasma devices the plasma behavior
is significantly influenced by the processes near material
walls which bound the confinement volume [1, 2]. In toroidal
machines plasma has a direct contact with limiters or/and
divertor plates, and in mirror traps end walls absorb plas'ma
flowing out from the mirror along the field lines. Often,
particularly in large machines, the mean free path A in the
edge plasma is small compared with the connection length L
(counted along field lines) between the walls. In such a
situation, Coulomb collisions play an important role in
formation of the wall layer. :

In the simplest model of plasma-wall interaction
it is usually supposed that plasma particles that impact the
wall - experience reconbination but the interaction of the
plasma with the neutral component is ignored. Assuming that
the magnetic field lines are normal to the wall, one of the

main conclusions of the existing theory [1] is that the
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plasma must flow to the wall layer with the velocity v which
is of the order of the ion-sound velocity, v ~ o {Te +
+ Ti}uz/m:xz This conclusion is derived basing on the Bohm
criterion [3] which ensures monotonicity of the' potential
profile in the Debye sheath near the wall together with an
analysis of the plasma flow outside the wall layer due to a
particle source. In our opinion, this conclusion, being
qualitatively correct, does not adequately describe physics
of the collisional wall layer.

“A correct approach to the problem in the limit A«L has
to be based on a solution of the kinetic equation near the
wall with a collision term and a proper boundary condition
accoﬁnting for particle absorption by the wall. This
solution describes a transition in a layer of width ~ A from
a shifted maxwellian (that corresponds to a plasma flow) to
the distribution function on the wall. A solvability
condition of the kinetic equation must provide the value of
the inflow velocity v without any additional considerations
related with the Bohm griterion. For the hydrodynamic
equations that are valid far from the wall layer (at the
distance much larger than A) the inflow velocity v can be
considered as a boundary condition on an absorbing wall.

An attempt to account for collisions in the edge plasma
in numerical calculations has been done in Ref. 4. However,

due to numerical difficulties the authors of Ref.4 have

considered only a parameter range that correspbnds to Azl

A complete solution to the Kkinetic problem requires
an extensive computational work. In this paper, in order to
demonstrate the main ideas, we restrict our analysis by two
relatively simple considerations.

In Sec.2, we describe a model which assumes that only
a smail fraction of impinging particles is absorbed by the
wall; the rest of particles is elastically reflected and
comes back to the plasma. It turns out that solution to this
problem can be found analytically. In the limit of a small
electron temperature when one can neglect an ambipolar
potential this solution is obtained in Sec. 2. In Sec. 3 ef-
fects of finite electron temperature TE are taken into ac-
count. It is worth noting that the model of a weakly absor-
bing wall was also wused in Ref. 5 for a study of the effect
of a conducting wall on plasma stability in mirrors.

In Sec. 4 we consider a problem of an absolutely

- absorbing wall. For the sake of simplicity, we consider only

a case in which plasma flows into the layer with the
velocity significantly .exceeding the velocity of sound.
Using a model collision term we are able to reduce the
kinetic problem to an integral equation whose solution is
found numerically. Therefore, we show that the absolutely
absorbing wall allows not only sonic but also supersonic
inflow velocitit?s.

In Sec. 5 the main results are discussed.



2. A MODEL OF A WEAKLY ABSORBING WALL

We begin from the problem of the plasma flow to a solid
wall that absorbs only a small part €, € « 1, of the
particles that reach the material surface while other
particles are elastically reflected from the surface.
Consider a two component plasma that consists of singly
charged ions and electrons. We also assume that the magnetic
field lines are normal to the surface of the wall and the
plasma flows along the magnetic field. The coordinate system
is chosen so that x axis is perpendicular to the wall
surface and 1is directed to the plasma, the surface
coordinate being x = 0.

In I this section, for the sake of simplicity, we
restrict ourselves by consideration of a plasma with a small
electron temperature, 1"‘E « Tl. In this approximation, the
ambipolar potential arising in the plasma does not affect
the dynamics of ions and therefore can be ignored. Hydro-
dynamic equations of particle and energy balance for ions

have the following form:
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where n, T, V are respectively density, temperature and
; 1 i i

hydrodynamic velocity of ions, K=1.6T?/2/eﬂm§/ °A is the ion
heat conductivity (A is the Coulomb logarithm). In the
energy balance equation (1.2) we do not take into account
the term which is responsible for the electron drag. A
condition of such a negligence will be given at the end of
the present section.

From what follows we will see that the characteristic
length | of change of n, 'I'1 and i’f’i equals to I ~ A/g and
the characteristic hydrodynamic velocity equals to Vi ~
~ E[Tl/mi}uz. With these values of | and Ifl a simple esti-
mate shows that one can neglect ion inertia in the equation
of motion and take it in the following form

aniTi
=0 . (1.3)

dx
Writing down Eq.(1.3) we have also neglected ion viscosity
which appears to be small in parameter e.

The system of equations (1.1) - (1.3) must be completed
by proper boundary conditions at the wall and at infinity.
The Dboundary condition at infinity consists of the
requirement that the density and the temperature of ions are

to -be equal to some constant values
n =N T i (2)

ioo i joo
X = ¥ o=

As follows from Eq.(1.3) with accounting for Eq.(2) the ion

pressure does not depend on neither coordinate x nor time:



i
nT = p= const. (3)
i 1

1
Substituting Eq.(3) in Eq.(1.2) we find that the density of

the energy flux g also does not depend on Xx:
i :

. aT.

1
g = qgl(t) = 5 niFiTi—- K= (4)

Proceed now to the boundary condition at the wall. In
order to derive it we need to know the ion distribution
function near the surface at the distance x « A. In the
limit, € « 1 when almost all particles are reflected
elastically from the wall the distribution function f at the
wall 1is close to a local maxwellian, fw = (mi/2nle}3fz e
X exp (-mit’z/z”f"iw], with the temperature T_lw being the ion
temperature at the wall. The required boundary condition
follows from the spatial continuity of the energy flux: when
x - 0 the gquantity q. has to match the value q.. of the
energy flux absorbed by the wall. The latter can be found as

the product of £ times the energy flux flowing to the wall:

&0 i 3 1/2
: 1 2 Zpi
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where n is the density of ions at the wall. Performing

W
Vi absorbed

a similar calculation for the particle flux ¥

w

by the wall:

o0 0 0 5o 1/2

o et b dw
niniw = Bn J-dvy Idvz gy iy F o s.:[ ], (6)
-0 -0 '

x x iw 21m.

i
-

and substituting Eqs. (5) and (6) in Eq.(4), with account

for Eq.(3), we find the following boundary condition

ani 1 P, = 4
S N
8x e [ 5 ] ey (7)
o' 8ntm n
X=0 i ioo
where K is the ion heat conductivity at the infinite
distance from the wall.

From Egs. (1.1) - (1.3) one can easily derive a single

equation for the function n (x, t):
1

172

i _% 3 K8n1+ 2p1 ni
gt 5 9x Eiax N ey stlz. ol (8)
1 -

Iw

Here k is meant as a function of n and p. Solving for
Eq.(8) with the boundary conditions (2) and (7) one can not
only find a steady state density profile in the wall layer
but also examine a transition from an initial profile to .a '
steady state oné.

To find a steady state solution we require the
expression in the square brackets in Eq.(8) to be constant.
This yi:lds the'following equation that implicitly determines

the function n (x):
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where | = = K [ ] , N=n/n , and N is a constant
£ 0 2nimp] I 1o w

that has a meaning of the ratio nlwfhim . To evaluate Nw one
needs to equate the value of the expression in the square
brackets in Eq.(8) at the infinity to the value of this
expression at the wall taking into account the boundary

conditions (2) and (7). As a result one finds that N = 4/5,

W
i.e. _
noo= 2 gyl (10)
iw S i
According to Eqgs. (3) and (10) the temperature Tl is
; w
i
Tjw ®2 Tim . (11)

Now, it is easy to find the velocity of the plasma flow at
the infinite distance from the wall. As follows from the
flux continuity, n V. = n Ifim , and Eqgs. (6) and (10):

iw iw ico

213, 1/2

"= o s
ioo Smm n
i1 o
This' result together with the definition of | given above
justify the above formulated assumption about the order of

magnitudes of |l and V .
| §

10

In the case when the initial density profile differs
from that given by Eq.(9), a transition process will take
place during which n will tend to the steady state distri-
bution (9). To illustrate this transition we considered an
initial profile corresponding to a constant density along
the x axis, ni(x, t =0) = n = const. A numerical solution
to Eq.(8) has been found; it shown in Fig. 1. The density
and the length in this figure are measured in uﬁits R and
I respectively. As is seen from the figure, the initial
profile does =evolve to the steady state one, the
characteristic time of the relaxation -being of order of
LV~ xmml/ezpi.

Returning now to the negligence of the electron drag in
Eq.(1.3) one can show that it ist small in comparison with
the terms retained in Eq.(1.3) if the following inequality

holds:
1/4 3/4

m :

& [
 § -

This inequality constrains the electron temperature from

below.

3. EFFECTS OF FINITE ELECTRON
TEMPERATURE

In this section we consider a steady state problem of a
weakly absorbing wall in the case when the electron

temperature Te is of order of the ion temperature Ti.
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Equations of particle and energy conservation for the ion

species can be written as follows

nVv
ii

ji = const, (12.1)

dT

: i Spier iy
JiTi K 97 * epJ = g = const, (12.2)

(WNTH®)|

where ¢ is the ambipolar potential. The force balance
equation for the ions is
an T
£

dx

ten 98 o (12.3)
i dx

(here we ignore ion inertia as we did in the previous

section).
For electrons we assume that their temperature is
constant {which_ is a good approximation taking into account

high electron heat conductivity):

nelf’e = _j"E = const, (13.1)
dn d
TE dxﬂ - en_ EE = 0. (13.2)

Suppose that far from the wall the fluxes of electrons
and ions are equal; due to the flux conservation they will

be equal throughout:

From the equality of electron and ion fluxes together with

the quasineutrality condition it follows that the hydro-

12

dynamic velocities of electrons and ions are also equal to
each other. This means that there is no friction force
between electrons and ions.

In order to derive boundary conditions for FEoe. (12.1)
(12.3), (13.1), (13.2) we define the temperature Tim and
the plasma density n_ at the infinity and take into account
that the ambipolar electric field has to vanish far from the

wall:
) =L (14)

N =00
Let us calculate the fluxes j and g as functions of
i

the density n. and the temperature T of ions at the wall.
1w

Using the same arguments as in the derivation of Egeli{5)

and (6) in the previous section we obtain:

1/2
73

oo o0 o
an LR i w .
J_Eniw_[dvy Jdvz J.dvxvxfiw Enlw[ an_] : (15)
o0 -0 oo

1

: o0 00 0
q,=en J.dvy Jdvz Idvx % mivzvxfm = 2jT, .~ U6)

~0 - -0
where fiw is the ion distribution function at the wall. From
the other hand, taking into account the requirement dTi/dx =
= 0 at the infinity together with Eq.(14) we find from Eq.

(12.2) that
S

-qi G 2 Jrim :
Comparison of the last expression with Eq. (15) gives

T = STim/-ﬂ which coincides with the result (11) of Sec. 1.

Iw
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Prqceed now to analysis of the spatial profile of the
ijon and electron densities. Note that the plasma is
quasineutral everywhere except for a thin sheath near the
wall with the width of order of the Debye length. In this
Debye sheath the quasineutrality breaks because electrons
partially escape the plasma due to their high mobility so
that the total plasma charge becomes positive. In the Debye
sheath the potential drop arises that prevents further
escaping of electrons and accelerates ions moving to the
wall.

First, we will find the ion density outside of the
Debye sheath where the quasineutrality holds. As follows
from Eq.(13.2) the electron density satisfies the Boltzman
equation,

n =n exp (ep/T ) . (17)
o £ :

o
Summing up Egs. (12.3) and (13.2) yields
Loy S
ioo e

n = A {T1+ TE} ; - (18)

The quantities ¢ and n can be excluded from Eq. (12.2) by
;  §

using Egs. (17) and (18) and the quasineutrality condition,

n = n .The resulting differential equation for the unknown

i =4
temperature T can be easily integrated and gives
1

iT i 757241
lco i i

- 0 . (19)

;S e Tim+ T
W e m{_—#_E]
2 i ico @

'!........-..’.._]

ﬁu"'l+ Ts3

The ion flux j entering Eq. (19) is not yet determined and
will be found later.

Consider now the Debye sheath. We assume the temperature
T1 in the sheath to. be constant because according to Eg.
(19) the characteristic length on which Ti varies is of the
order of A/e, where A is the ion mean-free path. Therefore
within the Debye sheath which is much thinner than A the ion
temperature is approxiniately constant and is equal to Tiw.

From Eq. (12.3) one finds that in the sheath
n =n_exp (-ep/T ) , (20)
0 - iw

1
where n is a constant to be determined. The dependence (20)
needs to be matched with the density (17) at the distance
that is much larger than the Debye length (but yet much
smaller than A/g). The value o of the potential in the
matching region is defined by the quasineutrality condition.
Substituting T_W instead of 'I‘il into Eq. (18) and equating
1
the result to Eq. (17) one obtains:
T T +»7T

= ..j In .__u_im .

% e [ B T]

iw e

The equality of the expressions (17) and (20) in the
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matching region leads to the following value of n,

T

T T 1+T
it ioo a iw
0 o L e -

iw e

The poténtial g at the wall is determined by putting the

electron flux absorbed by the wall equal to the ion one. The

_electron flux can be calculated with the use of the formula

(15) in which the ions quantities are substituted by the
electron ones. This yields

1/2

3¢ o e eyY
% 1w w £ e W
i nu[ m ] o {- T-_] i __Fv"_‘ "o [m_J £ [T_“]’ e
ven i 1w 2T

mT. ;A Sl
: ook 11_1 i e iw ito e
Ywo el T 7 BT T + 7T
7 i iw e

Now, the flux j can be found by putting ¢ into Eq. (21):

1/2 T /20T +T )

T e T m T iw e iw
j Pies £ ” [ __E] [ joo e][ a8 lw]
Ven i le+ Te miTe ;

=

The calculation of completes_'determination of the ion
teinperature profile (19).

The qualitative dependence of the potential versué x is
shown in Fig 2. Note that the wall potential ¢ appears not

%

to depend on the parameter ¢.
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4. SUPERSONIC PLASMA FLOW TO THE WALL

Consider a steady state plasma flow to an absolutely
absorbing wall. Again we assume that, first, electrons are
cold and one can neglect the influence of the ambipolar
potential on the ions, and second, that the magnetic field
lines are normal to the surface of the wall and plasma flows
al-:rng' the magnetic field. In this section, we will seek a
solution in the case when the plasma flows to the wall with
the velocity essentially exceeding the 1ion  acoustic
velocity.

At large distance from the wall the ion density ., the
ion temperature 1"i and the plasma flow velocity Ir'm uniquely

determine a maxwellian distribution function:

m 3/2 m. (V-7 )?
i 1 2]
ZnTi 2T1

As is mentioned above, we suppose that

1/2
i

V8 oo v (K I (22)
= I i

oo

1
Our approach is based on a solving of the kinetic

equation for the ion distribution function in the wall layer

af _ '
V}t "3; = Stf £ : {23}

Te this equation a boundary condition should be added

which takes into account absorbing properties of the wall.
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Due to the absolute absorption, ions with positive velocities

v are absent on the wall surface:
x

flx = 0, v > D)=f) S (24)

We will see from™ what follows that near the wall, at
distances ~A, the distribution function f 1s considerably

distorted from the maxwellian only in the velocity region

2 It
ol o e
® Tt L T [25]

1 Y z
characteristic velocities on which the function f (taken at
ca

, i.e. in the region whose scales are equal to

the point 37 0) varies. However, outside of this region,

and in particular where the bulk ions are located, v =~ -V
.

o
G the distribution fm appears to be almost unper-

r

Vv
1
turbed when the condition (22) holds.

Since the bulk ions are maxwellian we can use the

ion-ion collision term in the following form [6] :

a d
Vv kj k
k av
J
where
o vV v vz
D_Ln[k_j kJ[Tl]]
+ e
kj Sm % 2 3 v ;
v v
F=..__LHE
k L3 e
v
2 =
L=[4H6]ﬂ : uz=£
: 7 m
m i
i
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The expression (26) is valid in the velocity region (25)

under the condition (22). In that region the collision term

~can be even more simplified allowing for |8f/6vx’ » |af/6v-l|

and keeping only the largest terms in the parameter VT/V :

o
ve 2 ve 2
Stf:lé‘n['f}?ﬂlab -;_3_2+ ;azﬁzzﬁj.vg?]f’ (24
o S K- ov' vav 7 x
o 1{ jrs) X o
5% 52
In Eq. (27) A = — + — and V denotes the gradient in
1 2 2
av _ﬁvz
b )

the velocity space.

In the collision integral (27) we neglected the
electron-ion collisions causing the friction between the two
species. It is easy to show that the ion-electron collision
term is small in comparison with the terms retained in Eq.
(27) if

2
m. e e
L

D’m 2 M 5 1/3 :
T»T{—-J [i] e e e
e =T
T
Even with a relatively simple collision term (27), the
kinetic equation (23) is too complicated for analysis. Being-
a three dimensional problem its solution requires extensive
numerical work. In order to proceed analytically, we
X : g s S
substitute the multiplier v, in the second term of (27) by

2
the factor ¥

2v 2 :
Ln 1 T 8 2 S 8
Stf=—[—ﬂ = — ‘i}'—-]f (28)
S AR | 3 2 o FReR T
I
Lo Vmavx lm x
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The new collision integral conserves particles as the
! 2

he : : 2
original one, Since of order of magnitude vl e VT, our

substitution does not qualitatively change the behavior of

the distribution function f. It seems reasonable that if a
solution of Eq.(23) with the collision term (28) exists than
the solution of the kinetic equation with the collision
integral (27) exists as well and the two solutions are
qualitatively similar.

Before turning to the analysis of Eq. (23) note that
the equilibrium distribution function that vanishes the

collision term (28) is

y2 22 myy

0 F2 3 2 2 2z
T v v V Vv

1 T i i

This function satisfies Eq. (23) and corresponds to a

maxwellian with anisotropic temperature, T = ZTJ_ , and the

I
macroscopic velocity 7m in the x direction.

Integrating Eq. (23) over the perpendicular velocity ¥

one finds
2
Vﬁ:ﬂ__ap+3g, [29}
x Ox 2 av
BV : x
X
where
! vz
F‘=J-dff}if,fl=—l‘—2—%,3=£“—g—lm—.
% Ve
oo [0a]

A boundary condition at the wall for Eq. (29) is obtained
byintegrating Eq. (24) over v '

20

Flx =0, V> 0r=0 (30)
x
We must also require the function F to go to a maxwellian
when Xx- oo
" = F (31)
o -
b v

x :
Neglecting terms of order of v:XVm we have for Fm

1/2

2v V + V2
1 X 0 00
F =] — exp |-
w0 [ 2 ] 1J::
My :
In addition to Eq.(31), we require
F} =0 . (32)
V S0

X
We have also to take into account that outside of © the

interval (25), in the direction of negative vx, the funlction

F has to match Fm

F| = (33)

! 00
v 5 -
x

Now Eq. (29) is to be solved subject to the boundary
conditions {(30)-(33). Let us transform to a new function g
instead of F, g = "(P*Fm}, which clearly satisfies Egq. [29).
as well. The boundary conditions (31) - (33) for the new
function g have =zeros on the right hand sides and the
condition (30) takes the following form

gt =0, vx>OJ=F

v

An equation similar to Eq. (29) (it differs by the

absence of the term with the first derivative on the right
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hand side) has been solved in Ref. 7. Following the method
employed in this reference we seek a particular solution of
Eq. (29) in the form

g (x, vx) = fs[vx] exp (——sax},

where s is a positive constant because g| _m=0. Using dimen-
x
- . 2 3 L -
sionless variables, x9xA"/B", v v A/B, and defining a new
X x

function h and a new variable w,
s

£ 1
f (V ] == h ['V J E}Cp [— _.)_E] ; VvV =W e :
8 X g8 X 2 b4

we obtain the following equation for h :
8

d°h .
e B Wl R0
2 5

dw

A regular solution to this equation is the Airy . function

Ailsw):

h (w) = 4i (sw) .

]

Now, a general solution to Eq. (29) can be written as

a superposition of particular solutions:

g
glacy ) = exp[— : v ]J-dscfs}exp{- s x)Ai [— SV + i ], (34)
X 2 iR X 2
45
0
where C(s) is an unknown function. Solving the integral
(34)

determine the distribution function Flx, v ).
X

equation and finding the function C(s) allows to

The equation (34) has been solved numerically and using

22
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the function g the distribution function F has been found.
The dependence of F versus v at the point x = 0 (i.e. on

the wall surface), is shown in Fig. 3.
5. DISCUSSIOCN

One of the main results of our work is an establishing
of a boundary condition on the plasma normal velocity near a
material surface. This boundary condition arises due to the
existence of the collisional wall layer near the solid wall.
For a weakly absorbing wall, it is shown in Sections 2 and 3
that this velocity turns out to be uniquely determined and
by order of magnitude is equal to the product of the ion

thermal velocity times absorption coefficient e. We
emphasize again that this conclusion is not related with the
Bohm criterion and results only from the solution of the

hydrodynamic equation describing the plasma flow into the
wall. In addition to the plasma velocity V, we were able to
find, in Sec. 3, the plasma potential distribution. Choosing
the plasma potential at large distance from the wall as
zero, this potential drops to rpG=-D.12Te/e in the wall-' layer
(for Te= Ti and hydrogen plasma) and continues to decrease
in the Debye sheath taking the value -;owmﬁ_z.l-'-l}"e/e at the
wall. _

Extrapolating the results of Sec. 2 in the limit €51

(that is the case of an absolutely absorbing wall), would
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lead to the conclusion that the plasma velocity in that case
must be of order of the sound velocity ¢ . However, the
situation appears to be more complicated. EAS is shown in
Sec. 4, in this case there is a continuous spectrum of
allowable velocity values V; in particular, the velocity can
- be arbitrarily large compared with the sound velocity.
However, it is clear from simple physical arguments that
this velocity can not be much smaller than ¢ so V has to be
bounded from below. The exact value of thes lower boundary
should be found from a numerical solution in the wall layer
of kinetic problem with the exact collision integral. Though
the constrain on V from below by a quantity of the order of
c. is similar to the Bohm criterion, the physical nature of
these two criteria is quite different.

What value of V will set up in a particular problem
depends on the geometry of magnetic field and plasma
sources. In limiter shadow of tokamaks typically V ~ ¢ . An

s

example of supersonic plasma flow into the wall is given by

the expanders of the gasdynamic trap [8].
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Fig. 2. The distribution of the potential near the material wall. The main
potential drop occurs in the Debye sheath. Outside of the sheath the
potential changes on the characteristic length ~ \ / g, going to zero

Fig. 1. Therelaxation of the initial profile n;(x,#=0) =n; - =const to the steady at infinity.

state. The length and the density are measured in units
1= "k eo( M/ 2n; mp;)l“{"’ and nj o respectively. The profiles shown by

thin lines cnrrespond to times t/r =1, 3, 7, 15, 23, where 7 =
=Swkcomi/4e* pi (they approach the steady state profile shown by the
heavy line when ¢ increases).
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0.5

Fig. 3. Theion distribution function F (v x) on the surface of the wall in the

velocity region vy —~ ‘%fvm {bold line). For comparison, the
equilibrium ion distribution function F e« (v x) is also shown (thin

line). The velocity v x is measured in units i/ve and the function F
— in such units that F « is equal to exp (— v x).
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