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.

1 Introduction
In the limit of large center of mass energy

√
s and fixed momentum transfer√−t the most appropriate approach for the description of the scabfering

amplitudes is given by the theory of the complex angular momenta or Gribov-
Regge theory. One of the remarkable properties of QCD is the Reggeization
of its elementary particles. Unlike QED, where the electron Reggeizes [1, 2],
but the photon remains elementary [3], in QCD both the gluon [4, 5, 6, 7,
8, 9, 10] and quark [11] Reggeize. We use here the notion “Reggeization" in
the strong sense [12], that means not only the existence of a Reggeon with
corresponding quantum numbers (including signature) and trajectory, but
as well the dominance of the Reggeon contribution to the amplitudes of the
processes with these quantum numbers in each order of perturbation theory.
For example, parton-parton scabfering amplitudes in QCD are dominated by
gluon exchange in the crossed channel. The Reggeized gluon is a colour octet
state of negative signature in the t-channel, i.e. odd under s ↔ u exchange,
and to leading logarithmic (LL) accuracy in ln(s/|t|) the virtual radiative
corrections to the parton-parton scabfering amplitude with the colour octet
state and negative signature can be obtained, to all orders in αS, by the
replacement [8]

s

t
→ 1

2

[(−s
−t
)jG(t)

−
(
s

−t
)jG(t)

]
, (1)

where jG(t) ≡ ω(t) + 1 is called the Regge trajectory of the gluon.
The property of the Reggeization is very important for high energy QCD.

The BFKL equation [7, 8, 9, 10] for the resummation of the leading logarith-
mic radiative corrections to scabfering amplitudes for processes with gluon
exchanges in the t-channel is based on the gluon Reggeization. The Pomeron,
which determines the high energy behaviour of cross sections, and the Odd-
eron, responsible for the difference of particle and antiparticle cross sections,
appears in QCD as a compound state of two and three Reggeized gluons
respectively. Similarly colorless objects constructed from Reggeized quarks
and antiquarks should also be relevant to the phenomenological description
of processes involving the exchange of quantum numbers.
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The basic parameters of the Reggeons are their trajectories and the in-
teraction vertices. To leading logarithmic accuracy, ω(t) is related to a
one-loop transverse-momentum integration. In dimensional regularization
in D = 4 + 2ε dimensions this can be wribfen as

ω(t) = g2
S

(
µ2

−t
)−ε

cΓ ω
(1) + O(g4

S
), (2)

with

ω(1) = −CA

2
ε
, (3)

cΓ =
1

(4π)2+ε

Γ(1 − ε) Γ2(1 + ε)
Γ(1 + 2ε)

, (4)

and CA = N . The resummation of the real and virtual radiative corrections
to parton-parton scabfering amplitudes with gluon exchange in the crossed
channel is related by unitarity to the imaginary part of the elastic amplitudes
with all possible colour exchanges in the crossed channel. The radiative
corrections to these amplitudes are resummed through the BFKL equation
i.e. a two-dimensional integral equation which describes the interaction of
two Reggeized gluons in the crossed channel.

The integral equation is obtained to LL by computing the one-loop cor-
rections to the gluon exchange in the t channel. They are formed by a real
correction: the emission of a gluon along the ladder [6] and a virtual correc-
tion: the one-loop Regge trajectory, Eq. (1). The BFKL equation is then
obtained by iterating recursively these one-loop corrections to all orders in
αs, to LL accuracy.

In recent years, the BFKL equation has been improved to next-to-leading
logarithmic (NLL) accuracy [13, 14, 15]. A necessary ingredient has been
the calculation of the two-loop Regge trajectory of the gluon [16, 17, 18, 19].
Recently the gluon Regge trajectory was re-evaluated [20], in a completely
independent way, by taking the high energy limit of the two-loop amplitudes
for parton-parton scabfering with gluon exchanges in the t-channel. The
validity of the gluon Reggeization to NLL was confirmed and full agreement
with previous results was found.

So far abfention has focussed mainly on processes dominated by Reggeized
gluon exchange. However, let us consider a scabfering process with fermion
exchange, namely quark-gluon scabfering, which proceeds via the exchange
of a quark in the crossed channel, and let us take the limit s � |u|. Since
in the center-of-mass frame of a two-particle scabfering u = −s(1 + cos θ)/2,
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the limit s� |u| corresponds to backward scabfering. By crossing symmetry,
this is equivalent to quark pair annihilation into two gluons at small angles
(in which case the roles of s and t are exchanged). The contribution from the
exchange of a colour triplet state and of positive signature i.e. even under
s ↔ t exchange Reggeises, so that the virtual radiative corrections to the
quark-gluon scabfering amplitude with the colour triplet state and positive
signature in the limit s� |u| can be obtained, to all orders in αS and to LL
accuracy in ln(s/|u|), by the replacement [11]

√
s

−u → 1
2

√
s

−u

[(
s

−u
)δT (u)

+
(−s
−u
)δT (u)

]
, (5)

where the quark Regge trajectory is jQ(u) = δT (u)+1/2. δT (u) is related to
a one-loop transverse-momentum integration, which, for massless quarks and
up to replacing the colour factor CA with CF , is the same as for the gluon
trajectory. Thus in dimensional regularization δT (u) can be wribfen as,

δT (u) = −g2
S CF

2
ε

(
µ2

−u
)−ε

cΓ , (6)

with CF = (N2 − 1)/(2N), and cΓ given in Eq. (4). This is similar to what
happens in QED, where the electron also Reggeizes [1, 2]. Analogously to
the gluon case, an equation was derived [11] to resum the real and virtual
radiative corrections to exchanges with arbitrary colour state and signature.
However, unlike from the BFKL equation for gluon exchange, that equation
has not been solved.

In this paper we explicitly take the high-energy limit of the one-loop [21,
22] and of the two-loop amplitudes for quark-gluon scabfering [23]. This
allows us to test the validity of the quark Reggeization and to calculate the
two-loop Regge trajectory of the quark.

Our paper is organised as follows. In Sect. 2, we discuss the general
structure of the quark-gluon scabfering amplitudes, we evaluate them at tree
and one-loop level in the limit s� |u| and decompose them according to the
irreducible colour representations exchanged in the u channel. In Sect. 3 we
discuss the Regge ansatz for resumming the LL and NLL and evaluate the
leading and next-to-leading order corrections for the interference of the tree-
amplitude with the Reggeized ansatz in terms of the gluon trajectory and the
impact factors. Sect. 4 is devoted to the analysis of the one- and two-loop
Feynman diagram calculations in the high energy limit and to the extraction
of the LL, NLL and NNLL behaviours. We make a detailed comparison of
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the two approaches and show that the two approaches are compatible at the
LL and NLL level. This allows the determination of the quark trajectory to
two-loop order which we give as an expansion in powers of (D − 4) for the
space-time dimension D tending to the physical value D = 4. Finally, our
findings are summarized in Sect. 5.

2 The structure of the quark-gluon scabfering
amplitude

Let the incoming quark and gluon have momenta pa and pb respectively, and
the outgoing quark and gluon have momenta pa′ and pb′ respectively.

The most general possible colour decomposition for the amplitude M is

M = 2(T bT b′)a′a A + 2(T b′T b)a′a B + δbb′δa′a C, (7)

where b, b′ are the colours of the two gluons and a, a′ are the colours of the
quarks. The factor 2 in Eq. (7) is due to our choice for the normalization of the
fundamental representation matrices, i.e. tr(T aT b) = δab/2. The functions
A, B and C are colour-stripped sub-amplitudes where we have suppressed all
dependence on the particle polarisations and momenta. At lowest order, for
general kinematics, only the first two colour structures are present. They
are related by t ↔ u exchange, thus in the s � |u| limit only one of them
contributes. The third colour structure appears first at one-loop order and
is symmetric under u and t exchange.

2.1 Quark-gluon amplitudes at tree and one-loop level
In the high-energy limit s� |u|, quark-gluon scabfering (or any other crossing
symmetry related process) is dominated by quark exchange. In this limit, at
tree level accuracy only the configuration for which the outgoing gluon has the
same helicity as the incoming quark will contribute. This is equivalent to say
that in the limit s� |u| helicity is conserved in the s channel. Thus, once the
helicity along the quark line is fixed, of the two gluon helicity configurations
allowed at tree level, only one dominates. The only other leading helicity
configuration is the one obtained from this by parity, which flips the helicity
of all the particles in the scabfering.

Using the colour decomposition (7) in the helicity formalism [24], we
note that there is only one independent colour-stripped tree sub-amplitude,
the Parke-Taylor sub-amplitude [25]. Using the spinor products in the limit

6



s � |u| (which can be easily derived from the amplitudes listed in the ap-
pendix of Ref. [26] in the limit s � |t|) in the sub-amplitude for the leading
helicity configuration, we obtain the

A(0)(p−a , p
−
b ; p−a′ , p

−
b′) = −i g2

S

√
s

−u

(
pa′

⊥
|pa′

⊥ |

)2

, (8)

where complex transverse coordinates p⊥ = px + ipy have been used, and the
superscipts in the argument on the left-hand side label the parton helicities1.
Using Eq. (7), the amplitude for quark-gluon scabfering qa gb → qa′ gb′ for a
generic tree-level helicity configuration may be wribfen as,

M(0)(pνq
a , p

νg

b ; pνq

a′ , p
νg′
b′ )

= −2i
[
gS (T b)a′iC

(0)
qg (pνq

a , p
νg′
b′ )
]√ s

−u
[
gS (T b′)i a C

(0)
gq (pνg

b , p
νq

a′ )
]
, (9)

there the ν’s denote the parton helicities, and we have explicitly enforced
helicity conservation along a massless fermion line. From Eq. (8), the tree-
level coefficient function C(0) is,

C(0)
q g (p−a , p

−
b′) = C(0)

g q (p−b , p
−
a′) =

pa′
⊥

|pa′
⊥ |
, (10)

while for s � |u| the unequal helicity coefficient functions of type C(0)(±∓)
are subleading. Squaring and summing Eq. (9) over helicity and colour, we
obtain, ∑

hel, col

|M(0)|2 = 8 C2
F
Nc g

4
S

s

−u =
128
3

g4
S

s

−u . (11)

in agreement with the s � |u| limit of the squared tree quark-gluon ampli-
tudes.

In Ref. [22], the coefficients in the colour decomposition (7) of the one-
loop amplitude for the quark-gluon scabfering have been calculated in the ’t
Hooft-Veltman and in the dimensional reduction infrared schemes. Using the
results of Ref. [22], the sub-amplitude of Eq. (8) and the tree amplitude of
Eq. (9), we can write the unrenormalised one-loop amplitude in the helicity
configuration of Eq. (8), in the ’t Hooft-Veltman scheme and in the limit

1Note that, contrary to the conventions of the helicity formalism where all particles are
taken as outgoing, here we label momenta and helicities as in the physical scabfering.
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s� |u| as,

M(1)(p−a , p
−
b ; p−a′ , p

−
b′) = g̃S

2(u)M(0)(p−a , p
−
b ; p−a′ , p

−
b′) (12)

×
[
2CF

−ε ln
(
s

−u
)
− 2(CA + CF )

ε2
+

3CF

ε
+ (π2 − 7)CF

]

+g̃S
2(u) δbb′δa′a A(0)(p−a , p

−
b ; p−a′ , p

−
b′)

2
ε

ln
(−s
−t
)

+ O(ε) . (13)

to leading accuracy in s/u. Note that on the right hand side the first term,
which is proportional to the tree amplitude Eq. (9), is real. The second
term contains the new colour structure introduced at the one loop level and
is proportional to the tree sub-amplitude (8). It is purely imaginary, since
to this accuracy ln(−s/ − t) � −iπ, where we used the usual prescription
ln(−s) = ln(s) − iπ, for s > 0. In Eq. (13) and further in our paper we have
rescaled the coupling as

g̃S
2(u) = g2

S
cΓ

(
µ2

−u
)−ε

. (14)

In the one-loop amplitude helicity is not conserved in the s channel, thus
the unequal helicity coefficient functions of type C(1)(±∓) are no longer sub-
leading. In fact, from Ref. [22] we obtain

M(1)(p−a , p
∓
b ; p−a′ , p

±
b′) = 2i

g4
S

(4π)2
(CA − CF )

√
s

−u(T bT b′)a′a , (15)

which is finite and can be wribfen in the form of Eq. (9) by replacing the one
of the helicity conserving coefficient functions of type C(0) with the helicity
violating coefficient function of type C(1) where

C(1)
q g (p−a , p

+
b′) = C(1)

gq (p+
b , p

−
a′) = − g2

S

(4π)2
(CA − CF )

|pa′
⊥ |

pa′
⊥

. (16)

Note that in the calculation of a production rate the coefficient function of
type C(1)(±∓) appear only in the square of a one-loop amplitude.

Taking the interference of the one loop amplitude (13) with the tree am-
plitude, (9), and summing over helicity and colour of initial and final states,
we obtain,∑
hel, col

(
M(1)M(0)∗

)
=
∑

hel, col

|M(0)|2 g̃S
2(u) (17)

×
[
2CF

−ε ln
(
s

−u
)
− 2(CA + CF )

ε2
+

3CF

ε
+ (π2 − 7)CF − iπ

ε

1
CF

]
+ O(ε).
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2.2 The colour structure in the u-channel
In order to gain more insight in how the amplitudes in the colour decomposi-
tion (7) are related to the exchange of particular colour states, we decompose
the quark-gluon scabfering amplitudes according to the irreducible colour
representations, 3 ⊗ 8 = 3 ⊕ 6̄ ⊕ 15, exchanged in the u channel,

M =
∑

χ

(P bb′)a′a(χ) Mχ , (18)

where we recall that a and a′ are quark colour indices and b and b′ are gluon
colour indices, and χ = 3, 6̄, 15. Mχ are colour-stripped coefficients and
(P bb′)a′a(χ) are the colour projectors,

(P bb′)a′a(3) =
1
CF

(T bT b′)a′a ,

(P bb′)a′a(6̄) =
1
2
δbb′δa′a − 1

N − 1
(T bT b′)a′a − (T b′T b)a′a ,

(P bb′)a′a(15) =
1
2
δbb′δa′a − 1

N + 1
(T bT b′)a′a + (T b′T b)a′a , (19)

which fulfill the usual property of projectors,

(P bb′)a′a(χ) (P b′b′′)aa′′ (χ′) = δχχ′ (P bb′′)a′a′′(χ) . (20)

We find that

M3 = 2CFA− 1
N

B + C ,
M6̄ = −B + C ,
M15 = B + C . (21)

2.3 Signature of the exchanged state
In addition to having a particular colour, exchanged Reggeons must have a
particular signature. In other words they are either even (positive signature)
or odd (negative signature) under the exchange of s and t. We therefore
define the amplitudes of specific signature to be,

M±
χ =

1
2

(Mχ ±Mχ(s↔ t)) . (22)

Note that only the colour triplet positive signature exchange is expected
to Reggeize. This is the contribution that will generate the LL and NLL
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behaviour of the amplitude. The other positive signature contributions and
all of the negative signature contributions are not given by simple poles. In
the LL approximation they can be obtained using the equation for amplitudes
with fermion exchange derived in [11], but beyond the LL it is not known
how to analyse these structures. Note also that Mχ(s ↔ t) is in fact the
amplitude for quark-antiquark annihilation into gluons.

As mentioned earlier, the colour structure δbb′δa′a occurs first at one-
loop, while the Born contribution to (T b′T b)a′a vanishes in the Regge limit.
Therefore, in the Regge limit, many of the amplitudes M(0)±

χ vanish in the
Born approximation. In fact, from Eqs. (8) and (9) we obtain,

M(0)−
3 = M(0)+

6̄
= M(0)−

6̄
= M(0)+

15 = M(0)−
15 = 0 , (23)

and only M(0)+
3 is non-zero,

M(0)+
3 = 2CFA(0) . (24)

From Eq. (13), for the one-loop coefficient of the positive signature triplet,
we have

M(1)+
3 = g̃S

2(u)M(0)+
3

{
CF

−ε
[
ln
(
s

−u
)

+ ln
(−s
−u
)]

− 2(CA + CF )
ε2

+
3CF

ε
+ (π2 − 7)CF

}
+ O(ε), (25)

while for the higher-dimensional representations we have,

M(1)+

6̄
= M(1)+

15 = 0 . (26)

Thus, the colour representations 6̄ and 15 are not present in the positive
signature, at one-loop level and to leading power accuracy in s/u. In fact, in
the LL approximation [11],

M+
6̄

= M+
15 = 0 (27)

to all orders.
For the one-loop coefficients of negative signature, we obtain,

M(1)−
3 = g̃S

2(u) M(0)+
3

1
ε

×
{
−CF

[
ln
(
s

−u
)
− ln

(−s
−u
)]

+
1
CF

ln
(−s
−t
)}

+ O(ε) ,

M(1)−
6̄

= M(1)−
15 = g̃S

2(u) M(0)+
3

1
ε

1
CF

ln
(−s
−t
)

+ O(ε) . (28)
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Thus in the one-loop amplitude of negative signature all the three represen-
tations exchanged in the u channel contribute, to leading power accuracy in
s/u.

3 Regge Theory Interpretation
Let’s choose, for definiteness, the QCD Compton scabfering process

q(pa) + g(pb) → q(pa′) + g(pb′). (29)

We will use physical polarizations of gluons, so that their polarization vectors
satisfy e(pb) · pb = e(pb) · pb′ = 0 and e(pb′) · pb′ = e(pb′) · pb = 0. Then, for
massless quarks, the contribution of the Reggeized quark to the amplitude
for colour triplet exchange with even signature can be presented [11] as,

R+
3 = ΓQG

−1
� q⊥

1
2

[(−s
−u
)δT (u)

+
(
s

−u
)δT (u)

]
ΓGQ , (30)

where q⊥ is the transverse to the (pa, pb) plane part of the momentum transfer
q = pa′ − pb, u = q2 = q2⊥ in the Regge limit, ΓQG and ΓGQ are the Reggeon
vertices for the G→ Q and Q→ G transitions and δT determines the quark
Regge trajectory. Note that for massless quarks δT depends only on q2⊥,
so that instead of two complex conjugate trajectories with opposite parities
for massive quarks we have a single one. We assume that the quark Regge
trajectory has the perturbative expansion,

δT (u) = g̃S
2(u) δ(1)T + g̃S

4(u) δ(2)T + O(g̃S
6(u)) . (31)

At leading order [11] and in D = 4 + 2ε dimensions,

δ
(1)
T = −2CF

ε
. (32)

This is related to the analogous one-loop gluon trajectory by

δ
(1)
T =

CF

CA

ω(1).

The general structure of the Reggeon vertices is determined by relativistic
invariance and colour symmetry. For the quark-gluon vertices the general
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structure is

ΓQG = −gSū(pa′)T b

[
�e(pb)(1 + δe(u)) +

e(pb) · q �q⊥
q2⊥

δq(u)
]
,

ΓGQ = −gS

[
�e∗(pb′)(1 + δe(u)) +

e∗(pb′) · q �q⊥
q2⊥

δq(u)
]
T b′u(pa) . (33)

Note that it is straightforward to relate this general vertex structure to the
scabfering of particular particle helicities, Section 2.1. The functions δe and
δq represent the radiative corrections to the Born vertices. They are functions
of q2⊥ in the massless case and have the perturbative expansion

δe(u) = g̃S
2(u) δ(1)e + g̃S

4(u) δ(2)e + O(g̃S
6) ,

δq(u) = g̃S
2(u) δ(1)q + g̃S

4(u) δ(2)q + O(g̃S
6) . (34)

In the one-loop approximation the corrections were obtained in [27] and have
the form

δ(1)e = ω(1)

[
CF

2CA

(
1
ε
− 3(1 − ε)

2(1 + 2ε)
+ ψ(1) + ψ(1 − ε) − 2ψ(1 + ε)

)

+
1
2ε

− ε

2(1 + 2ε)

]
, (35)

δ(1)q = ω(1) ε

2(1 + 2ε)

(
1 +

1
N2

)
. (36)

Note, that whereas δ(1)e has a soft (1/ε2) singularity that must be cancelled by
real radiation, δ(1)q is finite as ε → 0, since the corresponding spin structure
is absent at leading order.

There is no ansatz for any of the odd signature exchanges or for the even
signature 6̄ and 15 exchanges. These contributions do not correspond to
simple poles and cannot be described by an ansatz of the form of Eq. (30).
As mentioned earlier, in the LL approximation M+

6̄
and M+

15 are zero to all
orders. The LL negative signature contributions through to O(D−4) can be

12



obtained from the equation derived in [11] and are given by

M−
3 = M(0)+

3 g̃S
2(u)

(
CF +

1
CF

)
1
ε

×
(
−iπ + g̃S

2(u)
CF

ε
(2iπ ln

(
s

|u|
)

+ π2) + O(g̃S
4(u))

)
, (37)

M−
6̄

= M(0)+
3 g̃S

2(u)
1
CF ε

×
(
−iπ + g̃S

2(u)
CA + 2CF − 1

2ε
(2iπ ln

(
s

|u|
)

+ π2) + O(g̃S
4(u))

)
, (38)

M−
15 = M(0)+

3 g̃S
2(u)

1
CF ε

×
(
−iπ + g̃S

2(u)
CA + 2CF + 1

2ε
(2iπ ln

(
s

|u|
)

+ π2) + O(g̃S
4(u))

)
. (39)

Note that at the one-loop level Eqs. (27), (30)-(36) and (38)-(39) give all of
the contributions to the scabfering amplitude that survive in the Regge limit.
They are in agreement with Eqs. (13), (15), (25), (26) and (28) obtained from
exact calculations.

3.1 Projection by tree-level amplitude
Let us denote the projection of the tree amplitude M(0) summed over spins
and colours on a generic amplitude M as,

〈M(0)|M〉 =
∑

spin, col

M(0)†M. (40)

For the Reggeized amplitude we obtain the projection normalised by the
square of the Born amplitude to be,

〈M(0)|R+
3 〉

〈M(0)|M(0)〉 = exp (δT (u)L)

(
1 + exp−iπδT (u)

)
2

×
[
(1 + δe(u))2 +

(1 + δe(u))δq(u)
1 + ε

+
δ2q (u)

4(1 + ε)2

]
, (41)

where L = ln(s/ − u). Note that R(0)+
3 coincides with the Born amplitude

so that sebfing δe = δT = δq = 0 produces unity.
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Writing R+
3 as a perturbative series,

R+
3 =

∑
n

g̃S
2n(u) R(n)+

3 , (42)

and expanding Eq. (41) to first order gives the one-loop contribution to the
Reggeized amplitude R(1)+

3 such that

〈M(0)|R(1)+
3 〉

〈M(0)|M(0)〉 = δ
(1)
T L+ 2δ(1)e +

δ
(1)
q

1 + ε
− i

π

2
δ
(1)
T , (43)

that agrees with the results of [21, 22]. For the two-loop contribution we
obtain

〈M(0)|R(2)+
3 〉

〈M(0)M(0)〉 =
(δ(1)T )2

2
L2 +

[
δ
(2)
T +

(
2δ(1)e +

δ
(1)
q

1 + ε

)
δ
(1)
T

]
L

− π2

4
(δ(1)T )2 + (δ(1)e )2 +

δ
(1)
e δ

(1)
q

1 + ε
+

(δ(1)q )2

4(1 + ε)2
+ 2δ(2)e +

δ
(2)
q

1 + ε

− i
π

2

(
(δ(1)T )2 L+

δ
(1)
q δ

(1)
T

1 + ε
+ 2δ(1)e δ

(1)
T + δ

(2)
T

)
. (44)

Note that the Reggeized form for positive signature colour triplet ex-
change does not saturate the possible contributions to the cross section in
the Regge limit. There is also a contribution from the negative signature ex-
change. This negative signature contribution appears first in the imaginary
part of the (normalized) projection on the one-loop amplitude and also in
the logarithmic imaginary part and non-logarithmic real parts of the two-
loop amplitude.

Therefore, if the statement about the quark Reggeization is valid in the
next-to-leading logarithmic order, the logarithmic terms in the right-hand
side of Eqs. (43) and (44) must coincide with corresponding terms for the total
amplitude, which can be found using the results of [23] in the appropriate
limit.

4 The Regge limit of the one- and two-loop
calculations

The interference of the tree and one-loop amplitudes for quark-gluon scabfer-
ing has been given in [21] while the interference of the tree and two-loop am-
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plitudes has been computed in [23]. Taking the Regge limit or leading power
of s/|u| of these unrenormalised expansions, then we write,

Re〈M(0)|M(n)±
3 〉

〈M(0)|M(0)〉 = g̃S
2n(u)

n∑
m=0

B±
nm lnm

(
s

−u
)
, (45)

Im〈M(0)|M(n)±
3 〉

〈M(0)|M(0)〉 = −π
2
g̃S

2n(u)
n−1∑
m=0

D±
nm lnm

(
s

−u
)
, (46)

where the positive and negative signature pieces are constructed according
to Eq. (22). For n = 0, B+

00 = 1 and B−
00 = 0. In Eq. (46), n ≥ 1. In

both Eqs. (45) and (46) a sum over colours and helicities is implicit. For the
interference of tree with one-loop, the coefficients of the positive signature
amplitudes are,

B+
11 = −2

ε
CF ,

B+
10 = 2CA

(
− 1
ε2

+ ε− 3ε2
)

+ 2CF

(
− 1
ε2

+
3
2ε

+
(π2 − 7)

2
− (ζ3 − 6) ε+

(π4 − 330)
30

ε2
)
,

D+
10 = −2CF

ε
, (47)

and those of negative signature are

B−
11 = 0 ,

B−
10 = 0 ,

D−
10 = +

2
εCF

+
2CF

ε
. (48)

We immediately see that all of the positive signature contributions agree
with the expansion of Eq. (43) about ε = 0. The leading and next-to-leading
logarithmic terms B+

11 and B+
10 precisely match up while the corresponding

negative signature terms are not present. The negative signature contribution
is purely imaginary in this order. It is determined by the LL approximation
and is in accordance with Eq. (38).

At the two-loop level, the amplitude for quark-gluon scabfering is not
known as such, but it has been computed at the level of the interference with
the tree amplitude [23], using conventional dimensional regularization (CDR)
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and renormalised in the MS scheme. In Ref. [23] the divergent contribution
is wribfen in terms of the infrared singularity operators I(1), I(2) and H(2)

introduced by Catani [28] and the tree- and one-loop amplitudes. The finite
remainder is given in terms of logarithms and polylogarithms with arguments
−u/s, −t/s and u/t. Making the same expansion in the high energy limit
and keeping only the leading power of s/|u|, we can extract the two-loop
coefficients of the positive signature amplitudes,

B+
22 =

1
2
(
B+

11

)2
, (49)

B+
21 = B+

11B
+
10 + CFβ0

2
ε2

− CFK
2
ε

+ CFCA

(
404
27

− 2ζ3

)
+ CFNF

(
−56

27

)
+ CF (CF − CA) (16ζ3) , (50)

B+
20 =

1
2
(
B+

10

)2
+ CAβ0

1
ε3

+ CFβ0
1
ε3

+ C2
A

((
−67

18
+
π2

6

)
1
ε2

−
(
−193

27
+

11π2

18
+ ζ3

)
1
ε

+
(
−1736

81
+

67π2

54
+ 4ζ3 +

π4

12

))

+ CACF

((
−83

9
+
π2

6

)
1
ε2

−
(
−3733

108
+

55π2

18
+ 13ζ3

)
1
ε

+
(
−71929

648
+

353π2

54
+

242
3
ζ3 +

7π4

60

))

+ C2
F

(
−
(
−3

4
+ π2 − 12ζ3

)
1
ε

+
(
−9

8
+ 2π2 − 42ζ3 − 28π4

45

))

+ CANF

(
5

9ε2
−
(

19
27

− π2

9

)
1
ε

+
(

173
81

− 5π2

27
− 4ζ3

))

+ CFNF

(
14
9ε2

−
(

317
54

− 5π2

9

)
1
ε

+
(

5993
324

− 25π2

27
− 8

3
ζ3

))

+
CA

CF

(
−π

2

ε2

)

− (CF − CA)2
π2

ε2
, (51)
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D+
21 =

(
B+

11

)2
, (52)

D+
20 = B+

21 , (53)

where

β0 =
(11CA − 2NF )

6
, K =

(
67
18

− π2

6

)
CA − 5

9
NF . (54)

Comparing the leading logarithmic contribution B+
22 (and D+

21) with Eq. (44)
we immediately see that it is exactly as predicted - and is nothing more than
a confirmation of the exponentiation of the leading logarithms. The next-to-
leading logarithmic term B+

21 contains two pieces - one which is an echo of
the one-loop coefficient function and the one-loop quark trajectory B+

10B
+
11,

and the other is the two-loop quark trajectory δ(2)T which appears for the first
time,

δ
(2)
T = CF

[
β0

2
ε2

−K
2
ε

+ CA

(
404
27

− 2ζ3

)
+NF

(
−56

27

)
+ (CF − CA) (16ζ3)

]
(55)

Note that Eq. (55) has the remarkable feature that by mapping CF → CA,
we obtain the two-loop gluon Regge trajectory. The full quark trajectory
through to two-loop order is thus,

jQ(u) =
1
2

+ g̃S
2(u)

ω(1)

N
CF

[
1 + g̃S

2(u)
ω(1)

2N

{
β0 −Kε

+
((

202
27

− 9ζ(3)
)
N − 28

27
NF + 8ζ(3)CF

)
ε2
}]

. (56)

The non-logarithmic term in the real part, B+
20, belongs to the next-to-

next-to-leading logarirhmic contribution and is not expected to match up
with the ansatz of Eq. (30) because of possible Regge cut contribution; con-
versely, the non-logarithmic term in the imaginary part, D+

20, is next-to-
leading and should be given by the anzatz of Eq. (30). Comparing to Eq. (44)
one can easily see that it is the case.

Similarly the negative signature coefficients are given by

B−
22 = 0 ,

B−
21 = 0 ,

B−
20 = (CF − CA)2

π2

ε2
, (57)

D−
21 = − 4

ε2
− 4C2

F

ε2
,
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D−
20 = −

(
1 +

1
C2

F

)
B+

21 +
CA

CF

(
10 − 4π2 − 8ζ3

)
+
NF

CF

12

+ C2
F

(−8 + 8π2 + 16ζ3
)

+ C2
A

(−20 + 8π2 + 16ζ3
)

+ CACF

(
44 − 20π2 − 40ζ3

)
+ 72CFNF − 36CANF . (58)

The coefficients B−
22 and B−

21 vanish simply due to signature; B−
20 and D−

21 are
determined by the LL approximation and are in accordance with Eq. (38).
It is not presently known how to interpret the coefficient D−

20.

5 Conclusions
By taking the high-energy limit of the two-loop amplitudes for quark-gluon
scabfering [23], we have tested the validity of the general form of the high-
energy amplitudes (30) for quark-gluon scabfering, arising from a Reggeized
quark with colour triplet and even signature exchanged in the crossed channel.
The limit is compatible with the Reggeization in the leading and the next-
to-leading orders. We have therefore extracted two-loop Regge trajectory for
the quark, Eqs. (55) and (56), as an expansion in powers of (D − 4) for the
space-time dimension D tending to the physical value D = 4. At present it
is not known how to describe either the next-to-next-to-leading logarithmic
triplet exchange contributions for either the positive signature B+

20 (given in
Eq. (51)) or the negative signature D−

20 (given in Eq. (58)).
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