НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЕ УЧРЕЖДЕНИЕ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им. Г.И. Будкера СО РАН

А.А. Иванов

К РАСЧЕТУ ИНДУКТИВНОСТИ И ВЗАИМНОЙ ИНДУКТИВНОСТИ КАТУШЕК ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ

ИЯФ-2002-52

НОВОСИБИРСК 2002

К расчету индуктивности и взаимной индуктивности катушек прямоугольного сечения

А.А. Иванов

Институт ядерной физики им. Г.И.Будкера, СО РАН 630090, Новосибирск

To calculation of coil inductance and mutual coil inductance with rectangular cross section

A.A. Ivanov

Budker Institute of Nuclear Physics, SB RAS 630090, Novosibirsk

© Институт ядерной физики им. Г.И.Будкера СО РАН

Расчету индуктивности катушек различной формы посвящено большое количество статей и монографий (см., например, [1]). Особенность этой задачи состоит в том, что даже в простейшем случае катушек с прямоугольной формой сечения имеются только некоторые приближенные способы ее решения. К сожалению, описанные в литературе алгоритмы сложно или даже невозможно использовать, когда возникает необходимость определения индуктивности и взаимоиндукции с высокой, наперед заданной точностью. Примером такого рода может служить задача вычисления собственных частот системы, составленной из близко расположенных катушек [2]. Вместе с тем, прямое вычисление индуктивности с помощью ЭВМ затруднено отсутствием универсального алгоритма, основанного на точных аналитических формулах простого вида.

В принципе, величина индуктивности определяется путем вычисления энергии магнитного поля катушки. Однако исходный интеграл является 6мерным, что сильно затрудняет вычисления. Существенное упрощение можно получить, если свести этот интеграл к одномерному, программы вычислений которого широко доступны и их применение не требуют специальных навыков.

Приведем краткий вывод формул для индуктивности (и взаимоиндукции) круглых катушек прямоугольного сечения в виде одномерного интеграла. Начнем с вычисления индуктивности катушки с однородной плотностью тока, имеющей N витков (Puc.1). Длина катушки – b, внешний и внутренний радиусы обозначим соответственно a₂ и a₁.

Введем, как принято в литературе, следующие безразмерные параметры: $\alpha = a_2/a_1$ и $\beta = b/a_1$. Вычисляя энергию магнитного поля во всем пространстве по известным формулам [3], получим (предполагаем, что по обмотке протекает ток J):

$$\mathcal{E}_m = \frac{1}{8\pi} \cdot \int H^2 dV = \frac{1}{2c} \cdot \int \vec{A} \cdot \vec{j} dV = \frac{LJ^2}{2c^2}$$
(1)

Рис. 1. Катушка прямоугольного сечения (обозначения в тексте).

Подставляя в (1) выражение для векторного потенциала системы токов, получим исходную формулу для вычислений:

$$L = \frac{1}{J^2} \cdot \iint \frac{\vec{j}(\vec{r}')\vec{j}(\vec{r}')dVdV'}{\left|\vec{r} - \vec{r}'\right|}$$
[3] (см. Приложение 1). (2)

К аналогичному выражению приводит и использование часто используемого соотношения $\frac{LJ}{c} = \Phi$, где Φ – потокосцепление катушки (см. Приложение 2).

Переходя в (2) к цилиндрическим координатам, легко свести это выражение после однократного интегрирования по углу к следующему:

$$L = \frac{2\pi N^2}{(a_2 - a_1)^2 b^2} \cdot \int r dr \cdot \int r' dr' \cdot \iint dz \cdot dz' \cdot \int_0^{2\pi} \frac{\cos \varphi d\varphi}{\sqrt{(z - z')^2 + r^2 + r'^2 - 2rr' \cos \varphi}}$$
(3)

Пользуясь известными формулами из теории функций Бесселя (см., например, [4])

$$\frac{1}{\sqrt{r^2 + z^2}} = \int_0^\infty J_0(\lambda r) e^{-\lambda z} d\lambda \qquad \mathsf{м}$$
$$J_0(\sqrt{z^2 + Z^2 - 2zZ\cos\varphi}) = J_0(z) \cdot J_0(Z) + 2\sum_{n=1}^\infty J_n(z) J_n(Z)\cos n\varphi,$$

легко свести интеграл (3) к виду:

$$L = \frac{4\pi^2 N^2}{(a_2 - a_1)^2 b^2} \cdot \int_0^\infty d\lambda \iint dz \cdot dz' e^{-\lambda |z-z'|} \cdot (\int_{a_1}^{a_2} r dr J_1(\lambda r))^2.$$
(4)

Интеграл по радиусу вычисляется (см. например [4,5]), что дает

$$\int r dr J_1(\lambda r) = \frac{\pi r}{2\lambda} \cdot (J_1(\lambda r) H_0(\lambda r) - J_0(\lambda r) H_1(\lambda r)),$$
(5)

где $H_{0,1}$ – функции Струве [5] (см. Приложение 3). Интеграл по длине вычисляется элементарно, что дает

$$\iint dz dz' e^{-\lambda |z-z'|} = 2 \int_{0}^{b} az' \int_{0}^{z'} dz e^{\lambda (z-z')} = \frac{2}{\lambda} \cdot (b - \frac{1 - e^{-\lambda b}}{\lambda}).$$
(5')

После подстановки этих выражений в (4), оно приобретает окончательный вид:

$$L = \frac{2\pi^4 a_1 N^2}{(\alpha - 1)^2 \beta^2} \cdot \int_0^\infty \frac{dx}{x^3} \left\{ \beta - \frac{1 - e^{-\beta x}}{x} \right\}$$

 $\times \left\{ \alpha (J_1(\alpha x) H_0(\alpha x) - H_1(\alpha x) J_0(\alpha x)) - (J_1(x) H_0(x) - H_1(x) J_0(x)) \right\}^2$

Вводя функцию $F(s) = J_1(s)H_0(s) - H_1(s)J_0(s)$, окончательное выражение для индуктивности в виде однократного интеграла можно записать как:

$$L = \frac{2\pi^4 a_1 N^2}{(\alpha - 1)^2 \beta^2} \cdot \int_0^\infty \frac{dx}{x^3} \left\{ \beta - \frac{1 - e^{-\beta x}}{x} \right\} \cdot \left\{ \alpha \cdot F(\alpha x) - F(x) \right\}^2.$$
(6)

Вывод выражения для взаимной индуктивности катушек прямоугольного сечения с совпадающими осями производится аналогично. Окончательное выражение для катушек, расположенных вдоль оси с зазором, имеет вид (использованы обозначения, аналогичные введенным ранее, Δ – зазор между обмотками, величины без верхнего индекса относятся к одной катушке, верхний индекс * – маркирует размеры другой катушки)

$$L_{12} = \frac{\pi^4 N_1 N_2}{(a_2 - a_1)(a_2^* - a_1^*)bb^*} \int_0^\infty \frac{d\lambda}{\lambda^4} (1 - e^{-\lambda b})(1 - e^{-\lambda b^*})$$

× $e^{-\lambda \Delta} (a_2 F(\lambda a_2) - a_1 F(\lambda a_1)(a_2^* F(\lambda a_2^*) - a_1^* F(\lambda a_1^*))$
(6')

Рис. 2. Катушки с совпадающими центрами.

Другой, практически часто встречающийся случай взаимного расположения катушек – это вложенные друг в друга катушки с совпадающими центрами и осями (см. Рис.2).

В этом случае (в тех же обозначениях), взаимоиндукция может быть выражена в виде интеграла (предполагается, что $b^* \leq b$):

$$L_{12} = \frac{2\pi^4 N_1 N_2}{(a_2 - a_1)(a_2^* - a_1^*)bb^*} \int_0^\infty \frac{d\lambda}{\lambda^3} (b^* - \frac{e^{\frac{-\lambda(b-b^*)}{2}} - e^{\frac{-\lambda(b+b^*)}{2}}}{\lambda}) (a_2 F(\lambda a_2) - a_1 F(\lambda a_1)) \times (a_2^* F(\lambda a_2^*) - a_1^* F(\lambda a_1^*))$$
(6'')

Некоторые применения полученных формул

Формально, численные расчеты с использованием полученных формул не вызывают особых проблем. Подынтегральная функция в (6) при $x \to 0$ не имеет особенности, а именно, она стремиться к нулю как ~ x^2 . Если размеры сечения катушки не слишком малы, то на верхнем пределе интеграл быстро сходится, т.к. подынтегральная функция стремиться к нулю как ~ $1/x^4$. С уменьшением размеров сечения сходимость, как и следовало ожидать, ухудшается (подынтегральная функция ведет себя ~ $\frac{1}{x}$) и интеграл

 $\sim \ln(1/\beta)$.

Небезынтересно применить формулы (6), (6') и (6'') к случаям, в которых удается получить приближенные аналитические выражения для индуктивности (взаимоиндукции).

Простейший пример такого рода – вычисление индуктивности L_{∞} тонкого ($\alpha \rightarrow 1$, или $a_1=a_2=a$) и длинного ($\beta \rightarrow \infty$) соленоида. Хорошо известный результат (см., например, [3]), получается, если считать, что поле внутри соленоида однородно и равно $\frac{4\pi NJ}{cb}$, т.е. не учитывать ослабление поля на торцах и поле вне соленоида. В этом случае простейшие вычисления дают: $L_{\infty} = \frac{4\pi^2 N^2}{\beta} \cdot a$. Применение формулы (6) позволяет получить поправки к индуктивности, связанные с указанными эффектами. Для разложения части подынтегральной функции, зависящей от α , проще воспользоваться прямо выражением (5), что дает (пренебрегаем также членом с $e^{-\beta x}$, который дает малые поправки):

$$L \approx 2 \cdot \frac{(2\pi)^2 N^2 a}{\beta^2} \cdot \int_0^\infty \frac{dx}{x} \cdot J_1^2(x) (\beta - \frac{1}{x}).$$

Приведенный интеграл вычисляется точно, что дает хорошо известный результат (см., например, [3] стр. 182)

$$L \approx \frac{4\pi^2 N^2 a}{\beta} \cdot \left(1 - \frac{8}{3\pi\beta}\right) = L_{\infty} \cdot \left(1 - \frac{8}{3\pi\beta}\right). \tag{7}$$

Второй член в скобках представляет собой искомую поправку, связанную с конечностью длины соленоида. Учет члена с $e^{-\beta x}$ в (6) дает окончательный результат в виде ряда (см. [4], стр.58)

$$L = L_{\infty} \cdot \left(1 - \frac{8}{3\pi\beta} + \frac{1}{\beta^2} \cdot \sum_{m=0}^{\infty} \left(\frac{2m!}{m!m+1!}\right)^2 \cdot \frac{2m+1}{m+2} \cdot \left(\frac{-1}{4\beta^2}\right)^m\right).$$
(7)

Интересно заметить, что без этих поправок можно найти индуктивность соленоида произвольной толщины, т.е. при произвольном α . Этот результат легко получается прямым вычислением энергии магнитного поля на единицу длины бесконечного соленоида (внутри обмотки поле равно $\frac{4\pi NJ}{cb} \cdot (1 - \frac{r - a_1}{a_2 - a_1})$, а в полости – такое же, как поле бесконечно тонкого

соленоида). Внутренняя индуктивность, связанная с полем внутри обмотки, получается равной $L_{\infty} \cdot \frac{\alpha^2 + 2\alpha - 3}{6}$, а полная индуктивность соответственно равна

$$L = L_{\infty} \cdot \frac{\alpha^2 + 2\alpha + 3}{6}.$$
(8)

Тот же результат получается и с использованием выражения (4), если переставить порядок интегрирования по λ и радиусу, а в (5') выражение в скобках заменить на β . Интеграл по λ при этом оказывается равен

$$\int_0^\infty \frac{J_1(\lambda r) J_1(\lambda r') d\lambda}{\lambda}$$

Используя подстановку $\frac{2J_1(\lambda)}{\lambda} = J_0(\lambda) + J_2(\lambda)$, можно свести этот

интеграл к сумме интегралов от произведения функций Бесселя, что дает:

$$\int_{0}^{\infty} \frac{J_{1}(\lambda r) J_{1}(\lambda r') d\lambda}{\lambda} = \frac{r}{2r'} \quad r > r'$$
$$\frac{r'}{2r} \quad r < r'$$

Вычисление двукратного интеграла по радиусам в точности приводит к выражению (8).

Достаточно простым оказывается также вычисление взаимной индуктивности двух полубесконечных тонких соленоидов одинакового радиуса, расположенных вдоль оси без зазора. Используя ту же процедуру, что при выводе (7), можно получить

$$L_{12} = \frac{4\pi^2 a^2 N^2}{b^2} \cdot \int_0^\infty \frac{d\lambda}{\lambda^2} \cdot J_1^2(\lambda a) = L_\infty \cdot \frac{4}{3\pi\beta}.$$

Заключение

В работе получены выражения для индуктивности и взаимоиндукции катушек прямоугольного сечения в виде однократных интегралов, пригодные для численных расчетов. Получены аналитические формулы для ряда практически интересных частных случаев.

Приложение 1

Выражение (2) дает полную индуктивность системы проводников с током произвольной конфигурации. Принято разделять эту индуктивность на две части: внутреннюю, которая определяется энергией магнитного поля в пространстве вне проводников. Применяя использованное при выводе (1) векторное тождество $div[\vec{A} \times \vec{H}] = \vec{H} \cdot rot \vec{A} - \vec{A} \cdot rot \vec{H}$, легко получить выражения для внутренней и внешней индуктивности системы токов в виде (ср. [6], стр.30):

$$\begin{split} L_{\rm int} &= \frac{1}{J^2} \cdot \iint \frac{\vec{j}(\vec{r}\,)\vec{j}(\vec{r}\,')dVdV'}{\left|\vec{r}-\vec{r}\,'\right|} + \frac{c^2}{4\pi J^2} \oiint \left[\vec{A} \times \vec{H}\right] \cdot d\vec{S} \ , \\ L_{ext} &= -\frac{c^2}{4\pi J^2} \oiint \left[\vec{A} \times \vec{H}\right] \cdot d\vec{S} \ . \end{split}$$

В этих выражениях поверхностный интеграл берется по поверхности проводника, так что единичный вектор нормали к поверхности направлен вне него.

Приложение 2

Альтернативное выражение для полной индуктивности катушки цилиндрической симметрии может быть получено из закона сохранения энергии электромагнитного поля катушки при медленном, квазистатическом изменении тока в ней. Энергией возникающего электрического поля можно при этом пренебречь и закон сохранения энергии приобретает вид:

$$\frac{\partial}{\partial t}\frac{H^2}{8\pi} + div\frac{c}{4\pi}\cdot\left[E\times H\right] = -\vec{j}\cdot\vec{E} = -\vec{j}\cdot\left(-\frac{1}{c}\frac{\partial\vec{A}}{\partial t}\right).$$

Интегрируя по всему пространству и пользуясь отсутствием потока вектора Пойтинга через поверхность бесконечно большого радиуса, получим

$$\frac{\partial \varepsilon_H}{\partial t} = \frac{LJJ}{c^2} = \frac{1}{c} \int \vec{j} \cdot \frac{\partial \vec{A}}{\partial t} dV'$$

где интеграл в правой части берется по объему катушки. Очевидным образом полученное выражение сводится к (2). Используя цилиндрическую симметрию, его можно далее преобразовать, вводя поток магнитного поля

$$\Phi(r,z) = \int_{0}^{r} 2\pi r' dr' H_{z}(r',z) = 2\pi r A_{\varphi}(r,z).$$

Тогда, используя очевидную пропорциональность потока току в катушке, получим:

$$\frac{LJ\dot{J}}{c} = \int j \cdot \frac{\partial}{\partial t} \frac{\Phi}{2\pi r'} \, dV' = \int j \cdot \frac{\dot{J}}{J} \frac{\Phi}{2\pi r'} \cdot 2\pi r' dr' dz' \, .$$

Далее это выражение сводится очевидным образом к $\frac{LJ}{c} = \langle \Phi \rangle = \frac{1}{J} \cdot \int_{S} j \Phi dS$, где интеграл берется по поперечному сечению катушки. Для катушки малого сечения и с постоянной плотностью тока получим часто встречающееся выражение $\frac{LJ}{c} = \Phi$, где Φ – поток магнитного поля через площадь сечения катушки.

Приложение 3

В большинстве программ, используемых для математических расчетов, имеется встроенные процедуры для вычисления функций Бесселя. Для вычисления значений функций Струве необходимо использовать ряд [5]:

$$H_{\nu}(x) = \left(\frac{1}{2}x\right)^{\nu+1} \sum_{k=0}^{\infty} \frac{(-1)^{k} \left(\frac{1}{2}x\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma(k+\nu+\frac{3}{2})}$$

При больших значениях аргумента удобно использовать асимптотические выражения [5]

$$H_0(x) = N_0(x) + \frac{2}{\pi} \left[\frac{1}{x} - \frac{1}{x^3} + \frac{1^2 \cdot 3^2}{x^5} - \frac{1^2 \cdot 3^2 \cdot 5^2}{x^7} + \dots \right]$$
$$H_1(x) = N_1(x) + \frac{2}{\pi} \left[1 + \frac{1}{x^2} - \frac{1^2 \cdot 3}{x^4} + \frac{1^2 \cdot 3^2 \cdot 5}{x^6} - \dots \right],$$

где $N_{1,2}$ – функции Неймана. Ошибка в приведенных выражениях не превышает величины первого отброшенного члена и имеет тот же знак. При больших значениях аргумента приведенные формулы позволяют свести выражение $J_1(x)H_0(x) - J_0(x)H_1(x)$

$$\kappa \frac{2}{\pi x} + \frac{2J_1(x)}{\pi} \cdot \left[\frac{1}{x} - \frac{1}{x^3} + \dots\right] - \frac{2J_0(x)}{\pi} \cdot \left[1 + \frac{1}{x^2} - \dots\right]$$

(здесь использовано выражение для вронскиана функций Бесселя).

Приложение 4

Пример программы для MathCad, вычисляющей индуктивность с использованием формулы (6).

Program to calculate a single coil inductance with rectangular cross section

$$HQ(x) := Y0(x) + \left(\frac{2}{\pi}\right) \cdot \left(\frac{1}{x} - \frac{1}{x^3} + \frac{9}{x^5} - 9 \cdot \frac{25}{x^7} + 9 \cdot 25 \cdot \frac{49}{x^9}\right)$$

$$HQQ(x) := YI(x) + \left(\frac{2}{\pi}\right) \cdot \left(1 + \frac{1}{x^2} - \frac{3}{x^4} + 9 \cdot \frac{5}{x^6} - 9 \cdot 25 \cdot \frac{7}{x^8}\right).$$

$$H0(x) := if\left[x \ge 10, HQ(x), \frac{x}{2} \cdot \sum_{k=0}^{50} (-1)^k \cdot \frac{\left(\frac{x}{2}\right)^{2 \cdot k}}{(\Gamma(k+1.5))^2}\right]$$

$$H1(x) := if\left[x \ge 10, HQ(x), \frac{x^2}{4} \cdot \sum_{k=0}^{50} (-1)^k \cdot \frac{\left(\frac{x}{2}\right)^{2 \cdot k}}{(\Gamma(k+1.5)) \cdot \Gamma(k+2.5)}\right]$$

$$F(x) := J1(x) \cdot H0(x) - J0(x) \cdot H1(x) \qquad Int(a,b) := \int_{0}^{200} \left[b - \frac{\left(1 - e^{-bx}\right)}{x}\right] \frac{(a \cdot F(a \cdot x) - F(x))^2}{x^3} dx$$
Parameters of coil
inner radius (cm) A1 := 4 number of turns N := 500

outer radius (cm) A2 := 6

length (cm) B := 20

$$Q := \frac{A2}{A1} \qquad W := \frac{B}{A1}$$
$$L(Q, W, A1) := 2 \cdot \pi^4 \cdot A1 \cdot 10^{-3} \cdot \frac{N^2 \cdot Int(Q, W)}{(Q-1)^2 \cdot W^2}$$

Coil inductance in microH is equal to

 $\mathrm{L}(\mathrm{Q},\mathrm{W},\mathrm{A1}) = \blacksquare$

ЛИТЕРАТУРА

- 1. П.Л.Калантаров, Л.А.Цейтлин. Расчет индуктивностей, Л.: Энергоатомиздат, 1986.
- 2. *М.А. Тиунов*. Расчет квазистационарных магнитных полей в аксиально-симметричном случае методом эквивалентных контуров, Препринт ИЯФ 82-59, 1982.
- 3. *Л.Д.Ландау, Е.М.Лифшиц.* Электродинамика сплошных сред, М.: Наука, 1982.
- 4. Г.Бейтмен, А. Эрдейи. Высшие трансцендентные функции, М.: Наука, 1974.
- M.Abramowitz, and I.A.Stegun. (Eds.), Handbook of Math. Functions with Formulas, Graphs and Math. Tables, 9th printing, New York: Dover, p.496-498, 1972; Справочник по спец. функциям с формулами, графиками и мат. таблицами, под ред. М.Абрамовица и И.Стиган, M.: Наука, стр.313-321, 1979.
- 6. Г.Бухгольц. Расчет электрических и магнитных полей, М:, Издательство иностранной литературы, 1961.