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1 Introduction
The BFKL (Balitsky-Fadin-Kuraev-Lipatov) approach [1] was formulated in
momentum space. In this space the kernel of the BFKL equation was cal-
culated in the next-to-leading order (NLO) long ago, at first for forward
scattering (i.e. for t = 0 and color singlet in the t-channel) [2] and then for
any fixed (not growing with energy) momentum transfer t and any possible
two-gluon color state in the t-channel [3]. Unfortunately, the NLO kernel is
rather complicated. In the colour singlet case at t �= 0 it consists of numerous
intricate two-dimensional integrals.

In the case, most interesting for phenomenological applications, of colour-
less particles scattering, leading order (LO) BFKL kernel has a remarkable
property [4]. In the Möbius representation, i.e. in the space of functions van-
ishing at coinciding transverse coordinates (impact parameters) of Reggeons,
it is invariant with regard to conformal transformations of these coordinates.
Moreover, in this representation the kernel coincides [5] with the kernel of
the colour dipole model [6] formulated in the impact parameter space.

In the NLO one could expect that in the Möbius representation the BFKL
kernel would be quasi-conformal, i.e. its conformal invariance would be vio-
lated only by terms proportional to β-function, so that it would remain un-
broken in N=4 supersymmetric Yang-Mills theory (N=4 SUSY). However,
the direct transformation of the known QCD kernel from the momentum into
the impact parameter space, with subsequent transition into the Möbius rep-
resentation, gives a kernel which is not quasi-conformal [5, 7, 8]. In N=4
SUSY the conformal invariance of the kernel obtained in such a way is also
broken [9]. Then, the kernel of the colour dipole model was calculated in the
NLO directly in the impact parameter space [10, 11]. It turned out that the
result differs from the one obtained by transformation from the momentum
space.

However there is an ambiguity in the definition of low-x evolution ker-
nels at NLO. It is analogous to the well-known ambiguity of NLO anomalous
dimensions and it follows from the possibility to redistribute radiative cor-
rections between kernels and impact factors. This ambiguity was discussed
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in detail in Ref. [12]. It has been shown recently [13] that it permits one
both to reach agreement with the colour dipole model (with account of the
improvement of the result in Ref. [11] made in Ref. [14]) and to obtain quasi-
conformal shape for the kernel in the Möbius representation. This shape
appears to be quite simple. It is unbelievably simple in comparison with the
known shape of the kernel in the momentum space. We will call “standard”
the kernel and the impact factors defined in the NLO in Ref. [15] in the space
of transverse momenta of two interacting Reggeons. Evidently, the question
arises about the relation between these two shapes.

Transfer from the “complete” to the Möbius representation means restric-
tion of the complete space of functions where the kernel is defined to the space
of functions which are equal to zero at coinciding values of Reggeon impact
parameters. Therefore, the interrelation between the latter representation
and the complete one is not obvious. In particular, the possibility to restore
the complete representation from the Möbius one is questionable. Our paper
is devoted to the discussion of this problem. It is organized as follows. In the
next Section all necessary notations and definitions are given. In Section 3
the equivalence of complete and Möbius representations for gauge invariant
operators is proven. In Section 4 the complete representation of the operator
connecting standard and quasi-conformal kernels is restored from its Möbius
representation. In Section 5 the interrelation of complete and Möbius rep-
resentations is illustrated on the example of this operator. Conclusions are
drawn in Section 6.

2 Notation and definitions
For brevity we will use, as in Ref. [5], states |�q〉 with definite two-dimensional
(we will not use dimensional regularization and put space-time dimension
D = 4) transverse Reggeon momentum �q and states |�r〉 with definite Reggeon
impact parameter �r normalized as follows:

〈�q|�q ′〉 = δ(�q − �q ′) , 〈�r|�r ′〉 = δ(�r − �r ′) , 〈�r|�q〉 = ei�q �r

2π
. (1)

The kernel defined in Ref. [15] is represented by an operator K̂. It is given by
the sum of virtual (related to the gluon Regge trajectory) and real (related
to real particle production in Reggeon collisions) parts, so that

K̂ = ω̂1 + ω̂2 + K̂r . (2)
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Here 1 and 2 are Reggeon indices,

〈�qi|ω̂i|�q ′
i 〉 = δ(�qi − �q ′

i )ω(−�q 2
i ) , (3)

ω(t) is called the gluon trajectory (although, in fact, the trajectory is 1+ω(t)),
and

〈�q1, �q2|K̂r|�q ′
1 , �q

′
2 〉 = δ(�q1 + �q2 − �q ′

1 − �q ′
2 )

1√
�q 2
1 �q

2
2

Kr(�q1, �q
′
1 ; �q)

1√
�q ′2
1 �q ′2

2

, (4)

where �q = �q1+ �q2 and Kr(�q1, �q
′
1 ; �q) is defined in Ref. [15]. The appearance of

square roots can seem strange to an experienced reader; these square roots
are connected with the normalization (1) and can be removed by passing to
states |�q〉 normalized as 〈�q|�q ′〉 = �q 2δ(�q − �q ′). In the LO

K(B)
r (�q1, �q

′
1 ; �q) =

αsNc

2π2

(
�q 2
1 �q

′ 2
2 + �q ′ 2

1 �q 2
2

�k 2
− �q 2

)
, (5)

where �k = �q1 − �q ′
1 = �q ′

2 − �q2 and the superscript (B) denotes leading order.
In terms of the kernel K̂, the s-channel discontinuities of scattering am-

plitudes for processes A+B → A′ +B′ are presented as

−4i(2π)2δ(�qA − �qB)discsAA′B′
AB = 〈A′Ā|

(
�̂q 2
1 �̂q

2
2

)− 1
2

eY K̂
(
�̂q 2
1 �̂q

2
2

)− 1
2 |B̄′B〉 ,

(6)
where Y = ln(s/s0), s0 is an appropriate energy scale, qA = pA′ − pA,
qB = pB − pB′ . The states 〈A′Ā| and |B̄′B〉 are normalized in such a way
that

〈�q1, �q2|B̄′B〉 = 4p−Bδ(�qB − �q1 − �q2)ΦB′B(�q1, �q2) , (7)

〈A′Ā|�q1, �q2〉 = 4p+Aδ(�qA − �q1 − �q2)ΦA′A(�q1, �q2) , (8)

with p± = (p0 ± pz)/
√
2 and the impact factors Φ expressed through the

Reggeon vertices according to Ref. [15].
The kernel K̂ is symmetric, as it can be seen from Eqs. (2)–(5), i.e.

K̂ = K̂T or
〈�q1, �q2|K̂|�q ′

1 , �q
′
2 〉 = 〈�q ′

1 , �q
′
2 |K̂|�q1, �q2〉 . (9)

However, the kernel which is conformally invariant in the Möbius represen-
tation in the LO [4, 16] is not K̂, but the non-symmetric kernel

K̂ =
(
�̂q 2
1 �̂q

2
2

)− 1
2

K̂
(
�̂q 2
1 �̂q

2
2

) 1
2

. (10)
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The transition to this kernel is possible thanks to the invariance of the dis-
continuity (6) with respect to the transformation

K̂ → Ô−1K̂Ô , 〈A′Ā|
(
�̂q 2
1 �̂q

2
2

)− 1
2 → 〈A′Ā|

(
�̂q 2
1 �̂q

2
2

)− 1
2 Ô ,

(
�̂q 2
1 �̂q

2
2

)− 1
2 |B̄′B〉 → Ô−1

(
�̂q 2
1 �̂q

2
2

)− 1
2 |B̄′B〉 , (11)

with any nonsingular operator Ô. Taking Ô =
(
�̂q 2
1 �̂q

2
2

)1/2
we get (10) and

the right-hand side of the discontinuity (6) becomes

〈A′Ā|
(
�̂q 2
1 �̂q

2
2

)− 1
2

eY K̂
(
�̂q 2
1 �̂q

2
2

)− 1
2 |B̄′B〉 = 〈A′Ā|eY K̂

(
�̂q 2
1 �̂q

2
2

)−1

|B̄′B〉 .
(12)

It is important, that, after setting the kernel K by Eq. (10), which provides
conformal invariance of its Möbius representation in the LO, an additional
transformation with Ô = 1 − αsÛ is still possible. With NLO accuracy it
gives

K̂ → K̂ − αs[K̂(B), Û ] , 〈A′Ā| → 〈A′Ā| − (〈A′Ā|)(B)
αsÛ ,(

�̂q 2
1 �̂q

2
2

)−1

|B̄′B〉 →
(
�̂q 2
1 �̂q

2
2

)−1

|B̄′B〉+ αsÛ
(
�̂q 2
1 �̂q

2
2

)−1 (|B̄′B〉)(B)
. (13)

It was shown [13] that the transformation (13) permits one to remove the
discrepancy between the BFKL and the colour dipole kernels (with account
of the correction of the result of Ref. [11] made in Ref. [14]), and to obtain
the kernel

K̂QC = K̂ − αs[K̂(B), Û ] (14)

which is quasi-conformal in the Möbius representation.
The operator Û was found as the sum of two pieces, Û = Û1 + Û2. The

first piece was found in the momentum space,

〈�q1, �q2|αsÛ1|�q ′
1 , �q

′
2 〉 =

αsNc

2π2

[
−δ(�q − �q ′)

(
�k

�k 2
− �q1
�q 2
1

)(
�k

�k 2
+
�q2
�q 2
2

)
ln�k 2

+δ(�q1 − �q ′
1 )δ (�q2 − �q ′

2 )

(∫
d2l

(
1

�l 2
−

�l(�l − �q1)

2�l 2(�l − �q1)2
−

�l(�l − �q2)

2�l 2(�l − �q2)2

)
ln�l 2

− πβ0
4Nc

ln
(
�q 2
1 �q

2
2

))]
, (15)
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where �q = �q1 + �q2, �q
′ = �q ′

1 + �q ′
2 , β0 is the first coefficient of the β-function,

and �k = �q1 − �q ′
1 . Note that the integral over �l diverges in �l = 0, and, strictly

speaking, the term with 1/�l 2 must be regularized. But in fact we need the
action of the operator U1 on some state, i. e. the integral over �k of the
product of the matrix element and a function of �k, rather than the matrix
element itself. In this integral the singularities at �l = 0 and �k = 0 cancel
and we get a finite result (evidently, the terms with 1/�l 2 and 1/�k 2 must be
regularized in the same way). The second part

〈�r1�r2|αsÛ2M |�r ′
1�r

′
2 〉 =

αsNc

4π2

∫
d�r0

�r 2
12

�r 2
01�r

2
02

ln

(
�r 2
12

�r 2
01�r

2
02

)

×
[
δ(�r11′ )δ(�r02′ ) + δ(�r01′ )δ(�r22′ )− δ(�r11′)δ(r22′ )

]
, (16)

was found in the impact parameter space and in the Möbius representation,
which is indicated by the subscript M (hereafter �rij′ = �ri − �r ′

j ).

Thus, the quasi-conformal kernel K̂QC determined by Eqs. (14)–(16) was
found in the impact parameter space and Möbius representation. Now its ex-
plicit form is known in this space and this representation for theories contain-
ing fermions and scalars in arbitrary representations of the colour group [17].

Remind that transfer to the Möbius representation means truncation of
the space of states. Therefore, the connection between operators in this
representation and in the complete space of states (i.e. in the “complete”
representation) is not obvious. In particular, it is not clear if it is possible
to restore Û2 (and consequently K̂QC) in the complete representation in the
momentum space from Eq. (16). In the next section we prove the possibility
of such restoration.

3 Interrelation between complete and Möbius
representations

The possibility to rebuild the complete kernel from its Möbius representation
is based on the gauge invariance of the kernel. Note that this property, to-
gether with the gauge invariance of impact factors for colourless particles, was
used for the transition to the Möbius representation in Ref. [4]. Only thanks
to this property the discontinuity (6) can be written using the Möbius repre-
sentation of K̂. Let us remind how the passage to the Möbius representation
was done.
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Gauge invariance of impact factors means that

〈A′Ā|�q, 0〉 = 〈A′Ā|0, �q〉 = 〈�q, 0|B̄′B〉 = 〈0, �q|B̄′B〉 = 0 , (17)

while gauge invariance of the kernel K̂ implies the property

Kr(�q1, �q
′
1 ; �q)|�q1=0 = Kr(�q1, �q

′
1 ; �q)|�q ′

1 =0

= Kr(�q1, �q
′
1 ; �q)|�q1=�q = Kr(�q1, �q

′
1 ; �q)|�q ′

1 =�q = 0. (18)

As we may easily see from Eqs. (2), (4), and (6), just these properties guar-
antee the absence of Coulomb divergences in the discontinuities.

From Eqs. (10), (4) and these properties, it also follows that

〈A′Ā|eY K̂|�q, 0〉 = 〈A′Ā|eY K̂|0, �q〉 = 0 . (19)

It means that 〈A′Ā|eY K̂|Ψ〉 = 0 if 〈�r1, �r2|Ψ〉 does not depend either on �r1, or
on �r2. Then, Eq. (12) shows that one can make the replacement

〈�r1, �r2|
(
�̂q 2
1 �̂q

2
2

)−1|B̄′B〉 → 〈�r1, �r2|
((
�̂q 2
1 �̂q

2
2

)−1|B̄′B〉
)
M
= 〈�r1, �r2|

(
�̂q 2
1 �̂q

2
2

)−1|B̄′B〉

−1

2
〈�r1, �r1|

(
�̂q 2
1 �̂q

2
2

)−1|B̄′B〉 − 1

2
〈�r2, �r2|

(
�̂q 2
1 �̂q

2
2

)−1|B̄′B〉 , (20)

retaining the discontinuity (6). Evidently, this substitution transfers the
state

(
�̂q 2
1 �̂q

2
2

)−1|B̄′B〉 into the Möbius representation. Note that with the
requirement of symmetry of the state with respect to the Reggeon exchange
this transformation is unique. In the momentum space it reads

〈�q1, �q2|
(
�̂q 2
1 �̂q

2
2

)−1|B̄′B〉M = 〈�q1, �q2|
(
�̂q 2
1 �̂q

2
2

)−1|B̄′B〉

−1

2
(δ(�q1 − �qB)δ(�q2) + δ(�q2 − �qB)δ(�q1))

∫
d�l1d�l2〈�l1,�l2|

(
�̂q 2
1 �̂q

2
2

)−1|B̄′B〉. (21)

Then one can transfer from K to KM without changing the discontinuity.
This is done omitting in K both the terms which are zero in the Möbius
subspace and the terms whose action on any state in the Möbius subspace
puts it out of this subspace. Note that the last procedure is not unique.
Indeed, the kernel 〈�r1, �r2|K̂M |�r ′

1 , �r
′
2 〉 in the impact parameter space can be

written as

〈�r1, �r2|K̂M |�r ′
1 , �r

′
2 〉 = 〈�r1, �r2|K̂|�r ′

1 , �r
′
2 〉t − f1(�r11 ′ , �r12 ′)− f2(�r21 ′ , �r22 ′) , (22)
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where the subscript t means omitting the terms proportional to δ(�r1′2′), and
functions f1 and f2 are restricted ( besides absence of the terms proportional
to δ(�r1′2′)) by the requirement

f1(�r01 ′ , �r02 ′) + f2(�r01 ′ , �r02 ′) = 〈�r0, �r0|K̂|�r ′
1 , �r

′
2 〉t . (23)

But the uncertainty in the choice of f1 and f2 plays no role due to the
symmetry of the impact factors 〈A′Ā| with respect to the Reggeon exchange.
Indeed, if we have two sets of functions f (1)

i and f (2)
i , i = 1, 2, satisfying (23),

then the difference[
f
(1)
1 (�r11 ′ , �r12 ′) + f

(1)
2 (�r21 ′ , �r22 ′)

]
−
[
f
(2)
1 (�r11 ′ , �r12 ′) + f

(2)
2 (�r21 ′ , �r22 ′)

]
is antisymmetric with respect to replacement �r1 ↔ �r2. In fact, this uncer-
tainty can be used for simplification of 〈�r1, �r2|K̂M |�r ′

1 , �r
′
2 〉. On the other hand,

if one does not like the uncertainty, it can be removed imposing the require-
ment of the corresponding symmetry on the kernel, so that in the following
we will not pay attention to it.

Thus, in the impact parameter space the Möbius representation of the
kernel K is unambiguously constructed from the complete one, assuming
the symmetry with respect to the Reggeon exchange (which follows from the
boson nature of Reggeons). Evidently, this statement is valid for any operator
defined both in the momentum and the coordinate spaces.

Note that, strictly speaking, operators in the Möbius representation are
not defined in the momentum space. The reason is that in the impact parame-
ter space they can be singular at �r1′2′ = 0, so that their direct transformation
into the momentum space can be impossible. Using translation invariance,
we can formally write

〈�q1, �q2|K̂M |�q ′
1 , �q

′
2 〉=

∫
d�r1
2π

d�r2
2π

d�r ′
1

2π

d�r ′
2

2π
e−i�q1�r1−i�q2�r2+i�q ′

1 �r
′
1 +i�q ′

2 �r
′
2 〈�r1, �r2|K̂M |�r ′

1 , �r
′
2 〉

= δ(�q1 + �q2 − �q ′
1 − �q ′

2 )KM (�q1, �q2;�k) , (24)

where �k = �q1 − �q ′
1 = �q ′

2 − �q2 and

KM (�q1, �q2;�k) =

∫
d�r11′

2π

d�r22′

2π
d�r1′2′e

−i�q1�r11′−i�q2�r22′−i�k�r1′2′ 〈�r1, �r2|K̂M |�r ′
1 , �r

′
2 〉 ,
(25)

(not to be confused with Kr(�q1, �q
′
1 ; �q)). But the integral over �r1′2′ in (25) can

be divergent because of singularities of the type lnn �r 2
1′2′/�r

2
1′2′ . It is useful to
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understand that singularities at �r1′2′ = 0 are related with growth of operators
in momentum space at large �k 2. Thus, the NLO BFKL kernel in momentum
space contains terms with ln�k 2 and ln2 �k 2 behaviour at large �k 2. At fixed
�r1′2′ �= 0 we have ∫

d�k

2π
ei

�k �r1′2′ ln(�k 2) = − 2

�r 2
1′2′

,

∫
d�k

2π
ei

�k �r1′2′ ln2(�k 2) =
4

�r 2
1′2′

(
ln

(
�r 2
1′2′

4

)
− 2ψ(1)

)
. (26)

This result can be obtained, for example, writing
lnn �k 2 = (−1)n(dn/dαn)(�k 2)−α|α=0 and using the equality∫

d�k

2π
(�k 2)−αei

�k �r =
2

�r 2

Γ(1 − α)

Γ(1 + α)
α

(
�r 2

4

)α

. (27)

In fact, the limits α→ 0 and �r 2 → 0 are not interchangeable. It means that
result (26) cannot be used at arbitrary small �r 2

1′2′ . In the Möbius represen-
tation small �r 2

1′2′ are unimportant and the result (26) is used everywhere.
But in the integral (25) the singularity at �r 2

1′2′ must be regularized. From
the consideration above it is natural to use in (25) instead of (1/�r 2) and
(ln�r 2/�r 2) regularized functions (1/�r 2)R and (ln�r 2/�r 2)R which make pos-
sible the inverse Fourier transform,∫

d�r

2π

(
1

�r 2

)
R

e−i�k �r = −1

2
ln(�k 2) ,

∫
d�r

2π

(
1

�r 2
[ln

(
�r2

4

)
− 2ψ(1)]

)
R

e−i�k �r =
1

4
ln2(�k 2) . (28)

Since ∫
d�r

2π

e−i�k �r

�r 2
θ(�r 2 − c2)|c→0 = −1

2

(
ln

(
�k 2

4

)
− 2ψ(1) + ln c2

)
,

∫
d�r

2π

e−i�k �r

�r 2
ln�r 2θ(�r 2− c2)|c→0 =

1

4

⎛
⎝
(
ln

(
�k 2

4

)
− 2ψ(1)

)2

− ln2 c2

⎞
⎠ , (29)

it can be done defining 1/(�r 2)R and (ln�r 2/�r 2) at �r 2 → 0 in the following
way: ∫

d�r

2π

(
1

�r 2

)
R

θ(c2 − �r 2)|c→0 =
1

2

(
ln c2 − 2ψ(1)− ln 4

)
,
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∫
d�r

2π

(
ln�r 2

�r 2

)
R

θ(c2 − �r 2)|c→0 =
1

4

(
ln2 c2 − (2ψ(1) + ln 4)2

)
. (30)

For definiteness, let us accept that (25) is defined with such regularization.
But, in fact, a choice of regularization is not important for restoration of
complete kernel from Möbius one. Indeed, since any regularization concerns
only the region �r1′2′ → 0, any change of regularization has an influence only
on terms not depending on �k. Therefore, denoting

〈�q1, �q2|K̂|�q ′
1 , �q

′
2 〉 = δ(�q1 + �q2 − �q ′

1 − �q ′
2 )K(�q1, �q2;�k) , (31)

we obtain from Eq. (22)

K(�q1, �q2;�k)− = KM (�q1, �q2;�k)−+δ(�q2)
∫
d�r11′d�r12′e

−i(�q1−�k)�r11′−i�k�r12′ f1(�r11′ , �r12′)

+δ(�q1)

∫
d�r21′d�r22′e

−i(�q2+�k)�r22′+i�k�r21′ f2(�r21 ′ , �r22 ′) , (32)

where the subscript K(�q1, �q2;�k)− means K(�q1, �q2;�k) without terms indepen-
dent of the third argument in K(�q1, �q2;�k).

As was stated before, the Möbius representation of the BFKL kernel is
unambiguously constructed from the complete one, by requiring the symme-
try with respect to the Reggeon exchange. But the inverse statement is also
valid. The Möbius representation of the BFKL kernel totally defines the com-
plete kernel symmetric with respect to Reggeon exchange. For the validity
of this statement two properties of the complete BFKL kernel are important.
The first one is its gauge invariance which gives (see Eqs. (10), (18) and (31))

Kr(�q1, �q2; �q1) = Kr(�q1, �q2;−�q2) = 0 . (33)

And the second one is the absence of terms proportional to δ(�q1) or δ(�q2) in
the kernel. It fixes the residual freedom connected with such terms.

These properties provide (with account of the symmetrization discussed
above) the uniqueness of the restoration of the total kernel from its Möbius
representation. Indeed, if there were two different complete kernels K(1) and
K(2) with the same Möbius representation, then the Möbius representation
for their difference would be zero. It follows from Eq. (32) that in this case
it must be

K(1)(�q1, �q2;�k)− −K(2)(�q1, �q2;�k)− = 0, (34)

i.e. they can differ only in terms independent of �k. On the other hand, gauge
invariance requires turning the difference K(1)(�q1, �q2;�k)− − K(2)(�q1, �q2;�k)−
into zero at �k = �q1 and at �k = −�q2. Therefore, it is zero identically.
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Thus, uniqueness of restoration of K̂ from K̂M is proven. This proof and
(32) give the way to perform the restoration.

4 Restoration of the operator U2 from its
Möbius form

Let us demonstrate the restoration of the complete operator from its Möbius
form on the example of the operator U2 given in Eq. (16). First of all, it is
necessary to note that Û in the transformation (13) cannot be arbitrary if we
want to conserve the possibility to use the Möbius representation after this
transformation. Indeed, in this case the transformation (13) must conserve
the gauge invariance of the impact factor 〈A′Ā| and kernel K̂. Therefore,
Û must be gauge invariant in the same way as K̂. Moreover, without any
loss of generality we can consider that it has no terms proportional to δ(�q1)
or δ(�q2) in the momentum space, since such terms do not contribute to the
discontinuity (6). In other words, Û has the same properties as K̂. For the
part Û1 these properties are easily seen from Eq. (15). It means that Û2

has the same properties and therefore can be unambiguously restored from
Eq. (16).

To do that, let us first transfer Eq. (16) into the momentum space. As
was pointed above, generally an operator Ô in the Möbius representation
in the impact parameter space can contain non-integrable singularities at
�r1′2′ = 0 which require regularization. But, as we may notice from Eq. (16),
〈�r1�r2|Û2M |�r ′

1�r
′
2 〉 does not have explicit singularities at �r1′2′ = 0, though its

separate parts are divergent. Therefore we will treat the sum of these parts
and calculate directly 〈�q1�q2|Û2M |�q ′

1 �q
′
2 〉.

Here we meet technical problems related to the separation of real and
virtual parts, as usually occurs when one operates with the BFKL kernel.
Again looking at Eq. (16), we observe that there are terms in 〈�r1�r2|Û2M |�r ′

1�r
′
2 〉

which have ultraviolet singularities at �r01 = 0 and �r02 = 0 that cancel in their
sum. We will treat them together. But this is not the only problem. Another
problem is that, quite analogously to K(�q1, �q2;�k), U2(�q1, �q2;�k) (defined by
Eq. (31) with the substitution K → U2) contains singularities at �k = 0 in the
virtual (proportional to δ(�k)) and the real parts. They cancel each other; but
to make this cancellation evident one needs to write the coefficient of δ(�k) in
an integral form.

Defining U2M (�q1, �q2;�k) according to Eqs. (24) and (25) with the substi-
tution K̂M→ Û2M , using Eq. (16), and integrating the delta-functions, we
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obtain

αsU2M (�q1, �q2;�k) =
αsNc

4π2

∫
d�r1
2π

d�r2
2π

�r 2
12

�r 2
1 �r

2
2

ln

(
�r 2
12

�r 2
1 �r

2
2

)

×
[
e−i�k �r1−i�q2 �r2 + e−i�q1 �r1+i�k �r2 − e−i�k �r12

]
. (35)

Let us divide Û2 into two pieces, Û2 = Û r
2 + Ûv

2 ; making in Eq. (35) the
following decomposition:

�r 2
12

�r 2
1 �r

2
2

ln

(
�r 2
12

�r 2
1 �r

2
2

)
=

1

�r 2
1

ln

(
�r 2
12

�r 2
2

)
+

1

�r 2
2

ln

(
�r 2
12

�r 2
1

)
− 2

�r1�r2
�r 2
1 �r

2
2

ln

(
�r 2
12

�r 2
1 �r

2
2

)

+
1

�r 2
1

ln

(
1

�r 2
1

)
+

1

�r 2
2

ln

(
1

�r 2
2

)
, (36)

the first three terms in the decomposition correspond to Û r
2 and the last two

ones correspond to Ûv
2 . Then U r

2M (�q1, �q2;�k) is calculated using the integrals

∫
d�r1
2π

d�r2
2π

1

�r 2
1

ln

(
�r 2
12

�r 2
2

)
e−i�a�r1−i�b �r2 =

1

�b 2
ln

(
(�a+�b)2

�a 2

)
,

∫
d�r1
2π

d�r2
2π

�r1�r2
�r 2
1 �r

2
2

ln

(
�r 2
12

�r 2
1

)
e−i�a �r1−i�b �r2 = − �a�b

�a 2�b 2
ln

(
(�a+�b)2

�b 2

)
,

∫
d�r

2π
e−i�a�r �r

�r 2
=

−i�a
�a 2

, (37)

∫
d�r

2π
e−i�a �r �r

�r 2
ln(�r 2) =

−i�a
�a 2

(
2ψ(1)− ln

(
�a 2

4

))
,

with the result

αsU
r
2M (�q1, �q2, �k) =

αsNc

4π2

[
2

�k 2
ln(�k 2) +

1

�q 2
1

ln

(
�q ′ 2
1

�k 2

)

+
1

�q 2
2

ln

(
�q ′ 2
2

�k 2

)
+

1

�k 2
ln

(
�q ′ 2
1 �q ′ 2

2

�q 2
1 �q

2
2

)
− 2

�q1�k

�k 2�q 2
1

ln
(
�q ′ 2
1

)
+ 2

�q2�k

�k 2�q 2
2

ln
(
�q ′ 2
2

)

−2 (ψ(1) + ln 2)

(
2

�k 2
− 2�q1�k

�q 2
1
�k 2

+
2�q2�k

�q 2
2
�k 2

)]
, (38)

where �q ′
1 = �q1 − �k, �q ′

2 = �q2 + �k.
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The last two terms into the decomposition (36) after integration (35) give
contributions proportional to δ(�q1), δ(�q2) and δ(k) with divergent coefficients.
The terms proportional to δ(�q1) and δ(�q2) can be omitted. The coefficient of
δ(k) is presented in an integral form using the trick [5]∫

d�r
1

�r 2
ln

(
1

�r 2

)(
ei�q1 �r + ei�q2 �r − 2

)

=

∫
d�l
d�r1
2π

d�r2
2π

�r1�r2
�r 2
1 �r

2
2

e−i�l (�r1+�r2)
[
ei�q1 �r1 ln(�r 2

2 ) + ei�q2 �r2 ln(�r 2
1 )− ln(�r 2

1 �r
2
2 )
]

=

∫
d�l
[
2ψ(1) + ln 4− ln(�l 2)

]( 2

�l 2
−

�l(�l − �q1)

�l 2(�l − �q1)2
−

�l(�l − �q2)

�l 2(�l − �q2)2

)
. (39)

At last, the real part (38) must be changed by adding terms independent of
�k in such a way that it becomes zero at �q ′

1 = 0 and �q ′
2 = 0. The result is

〈�q1, �q2|αsÛ2|�q ′
1 , �q

′
2 〉 = δ(�q11′ + �q22′)

αsNc

4π2

[
2

�k 2
ln(�k 2) +

1

�q 2
1

ln

(
�q ′ 2
1 �q 2

2

�k 2�q 2

)

+
1

�q 2
2

ln

(
�q ′ 2
2 �q 2

1

�k 2�q 2

)
+

1

�k 2
ln

(
�q ′ 2
1 �q ′ 2

2

�q 2
1 �q

2
2

)
− 2

�q1�k

�k 2�q 2
1

ln
(
�q ′ 2
1

)
+ 2

�q2�k

�k 2�q 2
2

ln
(
�q ′ 2
2

)

−2
�q1�q2
�q 2
1 �q

2
2

ln(�q 2)

]
− αsNc

4π2
δ(�q22′ )δ (�q11′)

∫
d�l ln�l 2

(
2

�l 2
−

�l(�l − �q1)

�l 2(�l − �q1)2

−
�l(�l − �q2)

�l 2(�l − �q2)2

)
− (ψ(1) + ln 2) 〈�q1, �q2|K̂B |�q ′

1 , �q
′
2 〉 , (40)

where

〈�q1, �q2|K̂(B)|�q ′
1 , �q

′
2 〉 = δ(�q11′ + �q22′)

αsNc

2π2

[
2

�k 2
− 2

�q1�k

�k 2�q 2
1

+ 2
�q2�k

�k 2�q 2
2

−2
�q1�q2
�q 2
1 �q

2
2

− δ(�k)

∫
d�l

(
2

�l 2
−

�l(�l − �q1)

�l 2(�l − �q1)2
−

�l(�l − �q2)

�l 2(�l − �q2) 2

)]
. (41)

Evidently, the last term in Eq. (40) does not contribute to the commutator
[K̂(B), Û2], and therefore can be omitted.
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For the full operator Û = Û1 + Û2 we have from Eqs. (15) and (40)

〈�q1, �q2|αsÛ |�q ′
1 , �q

′
2 〉 = δ(�q11′ +�q22′)

αsNc

4π2

[
1

�q 2
1

ln

(
�q ′ 2
1 �q 2

2

�k 2�q 2

)
+

1

�q 2
2

ln

(
�q ′ 2
2 �q 2

1

�k 2�q 2

)

+
1

�k 2
ln

(
�q ′ 2
1 �q ′ 2

2

�q 2
1 �q

2
2

)
− 2�q1�k

�k 2�q 2
1

ln

(
�q ′ 2
1

�k 2

)
+

2�q2�k

�k 2�q 2
2

ln

(
�q ′ 2
2

�k 2

)
− 2�q1�q2
�q 2
1 �q

2
2

ln

(
�q 2

�k 2

)]

−αsβ0
8π

ln
(
�q 2
1 �q

2
2

)
δ(�q11′)δ(�q22′ )− (ψ(1) + ln 2) 〈�q1, �q2|K̂(B)|�q ′

1 , �q
′
2 〉 . (42)

Note that, except the term with K̂(B) (which can be omitted), it does not
have the virtual part at all.

5 Möbius representation for the operator Û

We have restored the complete operator Û2 from its Möbius form and have
obtained the total operator Û in the momentum space. But sometimes the
Möbius representation can be more convenient than the complete one. There-
fore in this Section we will construct the Möbius representation for Û . Since
Û2 was originally written in this representation (16), we have to find the
Möbius form for Û1. As was already mentioned, Û1 has the same properties
(gauge invariance and absence of terms proportional to δ(�q1) or δ(�q2)) as K̂.
According to the prescription (22), first we need to find

〈�r1, �r2|αsÛ1|�r ′
1 , �r

′
2 〉 =

αsNc

4π2

∫
d�q1
2π

d�q2
2π

d�k

(2π)2
ei�q1�r11′+i�q2�r22′+i�k�r1′2′

[
− 2

�k 2
ln�k 2

+2

(
�k�q1
�k 2�q 2

1

−
�k�q2
�k 2�q 2

2

+
�q1�q2
�q 2
1 �q

2
2

)
ln�k 2 + δ(�k)

(
− πβ0
2Nc

ln
(
�q 2
1 �q

2
2

)

+

∫
d2l

(
2

�l 2
−

�l(�l − �q1)

�l 2(�l − �q1)2
−

�l(�l − �q2)

�l 2(�l − �q2)2

)
ln�l 2

)]
. (43)

Since in the integrand (in the square brackets) there are no terms indepen-
dent of �k, after the integration there will be no terms proportional to δ(�r1′2′)
which should be omitted. In principle, the next steps are defined in the pre-
scription (22). But as in the preceding section, one must face the technical
problems of separation of real and virtual parts, since they are separately
singular. In Eq. (43) the first term in the square brackets and the first term
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in the integral over �l are separately infrared singular and must be treated
together. These and only these terms give a contribution proportional to
δ(�r11′)δ(�r22′ ) in the impact parameter space (and can be called “virtual” in
this space). But the second of them is not only infrared, but also ultravio-
let divergent, so that the coefficient of δ(�r11′)δ(�r22′ ) contains an ultraviolet
singularity. Therefore, it must be written in an integral form using the same
trick as before:∫

d�q1
2π

d�q2
2π

d�k

(2π)2
ei�q1�r11′+i�q2�r22′+i�k�r1′2′

(
− 2

�k 2
ln�k 2 + δ(�k)

∫
d2l

2

�l 2
ln�l 2

)

= −δ(�r11′)δ(�r22′ )
∫

d�k

�k 2
ln�k 2

(
2ei

�k�r1′2′ − 2
)
= δ(�r11′)δ(�r22′ )

∫
d�r0

d�k1
2π

d�k2
2π

×
�k1�k2
�k 2
1
�k 2
2

(
ei

�k1�r01+i�k2�r02 ln(�k 2
1
�k 2
2 )− ei(

�k1+�k2)�r01 ln(�k 2
1 )− ei(

�k1+�k2)�r02 ln(�k 2
2 )

)

= δ(�r11′)δ(�r22′ )

∫
d�r0

[
�r 2
12

�r 2
01�r

2
02

(2ψ(1) + ln 4)

+
�r01�r02
�r 2
01�r

2
02

ln
(
�r 2
01�r

2
02

)− 1

�r 2
01

ln
(
�r 2
01

)− 1

�r 2
02

ln
(
�r 2
02

)]
, (44)

where we used the integrals (37). Evidently, the representation (44) is not
unique. Using the equality∫

d�r0

[ �r 2
12

�r 2
01�r

2
02

ln

(
�r 2
01�r

2
02

(�r 2
12)

2

)
−
(

1

�r 2
01

− 1

�r 2
02

)
ln

(
�r 2
01

�r 2
02

)]
= 0 , (45)

we come to the representation

∫
d�q1
2π

d�q2
2π

d�k

(2π)2
ei�q1�r11′+i�q2�r22′+i�k�r1′2′

(
− 2

�k 2
ln�k 2 + δ(�k)

∫
d2l

2

�l 2
ln�l 2

)

= δ(�r11′)δ(�r22′ )

∫
d�r0

�r 2
12

�r 2
01�r

2
02

[
(2ψ(1) + ln 4) + ln

(
�r 2
12

�r 2
01�r

2
02

)]
. (46)

The ultraviolet divergence in this (virtual in impact parameter space) con-
tribution must cancel analogous divergences of the other terms. Their calcu-
lation does not require any trick. Using the integrals (37), we obtain
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∫
d�q1
2π

d�q2
2π

d�k

(2π)2
ei�q1�r11′+i�q2�r22′+i�k�r1′2′

[
2�q1�k

�q 2
1
�k 2

ln�k 2+δ(�k)

∫
d2l

(�q1 −�l)�l
(�q1 −�l)2�l 2

ln�l 2

]

= δ(�r22′ )

[
− �r 2

12

�r 2
11′�r

2
21′

(
2ψ(1) + ln 4− ln

(
�r 2
21′
))

+
1

�r 2
11′

ln

(
�r 2
11′

�r 2
21′

)

+
1

�r 2
21′

(
2ψ(1) + ln 4− ln(�r 2

21′)
)]

. (47)

As follows from the representation (22), terms in the last line do not con-
tribute to the Möbius representation and can be omitted. The terms in
Eq. (43) corresponding to those in the square brackets at the L.H.S. of
Eq. (47) after the substitution �q1 ↔ �q2, �k ↔ −�k give a contribution equal to
the R.H.S. of Eq. (47) after the substitution �r1 ↔ �r2, �r

′
1 ↔ �r ′

2 . To calculate
the remaining terms of (43), one needs, besides the integrals (37), only the
Fourier transform of ln �q 2. Since it is singular, it requires regularization (i.e.
extension of the definition). It was considered in detail in Section 3. Choos-
ing the functions f1 and f2 in Eq. (22) from consideration of simplicity, we
obtain

〈�r1�r2|αsÛ1M |�r ′
1�r

′
2 〉=

αsNc

4π2

∫
d�r0

{
δ(�r11′ )δ(�r02′ )

[
�r 2
12 ln

(
�r 2
01

)
�r 2
01�r

2
02

+
1

�r 2
02

ln

(
�r 2
02

�r 2
01

)]

+δ(�r22′)δ(�r01′ )

[
�r 2
12 ln

(
�r 2
02

)
�r 2
01�r

2
02

+
1

�r 2
01

ln

(
�r 2
01

�r 2
02

)]
+δ(�r11′ )δ(r22′ )

�r 2
12 ln

(
�r 2
12

�r 2
01�r

2
02

)
�r 2
01�r

2
02

}

+
1

π�r 2
1′2′

[
2�r11′�r22′

�r 2
11′�r

2
22′

− �r11′�r12′

�r 2
11′�r

2
12′

− �r21′�r22′

�r 2
21′�r

2
22′

]
− (ψ(1) + ln 2) 〈�r1, �r2|K̂(B)

M |�r ′
1 , �r

′
2 〉

+
αsβ0
8π2

[
δ(�r11′ )

(
1

(�r 2
22′ )R

− 1

�r 2
12′

)
+ δ(�r22′)

(
1

(�r 2
11′ )R

− 1

�r 2
21′

)]
, (48)

where (1/�r 2)R is defined as in (28), (30) and K̂(B)
M is the leading order BFKL

kernel in the Möbius representation

〈�r1�r2|K̂(B)
M |�r ′

1�r
′
2 〉 =

αsNc

2π2

∫
d�r0

�r 2
12

�r 2
01�r

2
02

×
[
δ(�r11′ )δ(�r02′ ) + δ(�r01′ )δ(�r22′ )− δ(�r11′)δ(r22′ )

]
. (49)
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The Möbius form of the total operator Û is given by the sum of the two
pieces expressed in Eqs. (48) and (16):

〈�r1�r2|αsÛM |�r ′
1�r

′
2 〉 =

αsNc

4π2

∫
d�r0

{
δ(�r11′)δ(�r02′ )

[
�r 2
12

�r 2
01�r

2
02

ln

(
�r 2
12

�r 2
02

)

+
1

�r 2
02

ln

(
�r 2
02

�r 2
01

)]
+ δ(�r22′ )δ(�r01′ )

[
�r 2
12

�r 2
01�r

2
02

ln

(
�r 2
12

�r 2
01

)
+

1

�r 2
01

ln

(
�r 2
01

�r 2
02

)]}

+
1

π�r 2
1′2′

[
2�r11′�r22′

�r 2
11′�r

2
22′

− �r11′�r12′

�r 2
11′�r

2
12′

− �r21′�r22′

�r 2
21′�r

2
22′

]
− (ψ(1) + ln 2) 〈�r1, �r2|K̂B

M |�r ′
1 , �r

′
2 〉

+
αsβ0
8π2

[
δ(�r11′ )

(
1

(�r 2
22′ )R

− 1

�r 2
12′

)
+ δ(�r22′)

(
1

(�r 2
11′ )R

− 1

�r 2
21′

)]
. (50)

It is worthwhile to mention that transferring Eq. (42) into the Möbius rep-
resentation in the impact parameter space in accordance with the prescrip-
tion (22 ) gives exactly the result (50).

6 Conclusion
We investigated the connection between the complete and Möbius representa-
tions of gauge invariant operators, taking particular care of the BFKL kernel
for scattering of colourless particles. Following Ref. [16] we call Möbius rep-
resentation (form) of some two-particle (or two-Reggeon, as in the case of
BFKL kernel) operator its form in the space of functions vanishing at coin-
ciding impact parameters of these particles. In this representation the BFKL
kernel has remarkable properties. In the leading order it is invariant with
respect to the group of Möbius transformations of impact parameters [4],
and in the NLO it can be transformed into a simple quasi-conformal shape.
An important question is the possibility of restoration of the complete ker-
nel from this shape. In the general case, it is evident that operators cannot
be completely restored from their Möbius representation, since in this repre-
sentation operators act in a truncated space of functions. Moreover, in the
general case their explicit form in this representation can be written only in
the coordinate space. The transformation into the momentum space can be
impossible because of the singularity at coinciding impact parameters. How-
ever, for the BFKL kernel both Möbius and complete representations are
equivalent. The reason is the gauge invariance of the kernel.

18



In this paper it has been shown that for any gauge invariant two-particle
operator it is possible to restore the complete operator from its Möbius repre-
sentation. We have shown that the restoration is unique up to terms propor-
tional to δ(�q1) or δ(�q2) and symmetry with respect to the Reggeon exchange.
It was explicitly demonstrated for the operator responsible for the transfor-
mation of the standard BFKL kernel to the quasi-conformal shape. Originally
this operator was presented as a sum of two pieces, one of them was found
acting in the complete representation in the momentum space and the other
in the Möbius representation in the coordinate space. We found both Möbius
and complete representations of the full operator.
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