Прецизионное измерение R в эксперименте КЕДР в диапазоне энергии от 3.08 до 3.72 ГэВ.

Корнелий Тодышев

КЕДР, ВЭПП-4М

Измерение R(s)

ВЭПП-4М и КЕДР

Эксперименты с детектором КЕДР

Область набора	Период времени	∫ Ldt, пкб ⁻¹ Статус результата			
Сканирование J/ψ , ψ (2 S)	06/02/01-18/05/01	0.13	опубликован		
Сканирование $\psi(2S),\psi(3770)$	09/02/04-20/06/04	0.7	опубликован		
Набор в пике $\psi($ 3770 $)$	30/10/04-02/01/05	0.9	опубликован		
Набор в пике $\psi(2S)$	03/01/05-15/03/05	0.7	опубликован		
Набор на пороге рождения $ au$	16/03/05-08/04/05	0.6	опубликован		
Сканирование J/ψ	09/04/05-25/04/06	0.2	опубликован		
Набор на пороге рождения $ au$	26/04/05-25/04/06	5.2	опубликован		
Сканирование $\psi(2S), \psi(3770)$	18/04/06-25/05/06	1.7	опубликован		
Набор в пике $\psi(2S)$	26/05/06-01/06/06	0.6	опубликован		
Сканирование $\psi(2S), \psi(3770)$	02/06/06-15/06/06	0.5	опубликован		
Набор на пороге рождения $ au$	07/10/06-01/02/07	5.9	опубликован		
Набор в $\psi(2S)$	11/10/07-17/12/07	2.2	опубликован		
Набор в J/ψ	18/12/07-27/01/09	2.3	опубликован		
Поиск узких резонансов	27/01/09-02/04/09	0.35	опубликован		
R ниже J/ψ	18/01/10-24/05/10	0.65	опубликован		
Набор в $\psi(2S)$	29/05/10-11/01/11	2.4	опубликован		
R выше J/ψ	14/01/11-20/02/11	1.4	опубликован		
ремонт детектора					
Набор в J/ψ	09/05/14-20/05/14	0.1	-		
R выше J/ψ	17/10/14-08/01/15	1.3	подготовка публикации		

Прецизионное измерение R в эксперименте КЕДР в диапазоне энергии от 3.08 до 3.72 ГэВ.

Процедура определения *R*

Способ измерения R:

$$R = \frac{\sigma_{obs}(s) - \sum \varepsilon_{\psi}^{tail}(s) \sigma_{\psi}^{tail}(s) - \sum \varepsilon_{bg}^{i}(s) \sigma_{bg}^{i}(s)}{\varepsilon(s)(1 + \delta(s))\sigma_{\mu\mu}^{0}}$$

где $\sigma_{obs}(s) = \frac{N_{mh} - N_{res.bg.}}{\int \mathcal{L}dt}$, $\sigma_{\mu\mu}^{0}(s) = \frac{4\pi\alpha^{2}}{3s}$, N_{mh} - число событий, прошедших условия отбора, $N_{res.bg.}$ – ускорительный фон, $\varepsilon(s)$ – эффективность регистрации, $\sum \varepsilon_{\psi}^{tail}(s)\sigma_{\psi}^{tail}(s)$ – вклад J/ψ и $\psi(2S)$ резонансов, $\sum \varepsilon_{bg}^{i}(s)\sigma_{bg}^{i}(s)$ – вклад процессов: $e^{+}e^{-} \rightarrow l^{+}l^{-}$, $e^{+}e^{-}X$ -процессы. $1 + \delta(s) = \int \frac{dx}{1-x} \frac{\mathcal{F}(s,x)}{|1-\tilde{\Pi}((1-x)s)|^{2}} \frac{\tilde{R}((1-x)s)\varepsilon((1-x)s)}{R(s)\varepsilon(s)}$

 $\mathcal{F}(s,x)$ — функция радиационных поправок (Э.А.Кураев, В.С.Фадин Sov.J.Nucl.Phys.41(466-472)1985) Здесь $\tilde{\Pi}$ и \tilde{R} не включают вклад J/ψ и $\psi(2S)$ резонансов.

Измеряемая величина R_{uds} !

Условия отбора адронных событий

Критерии отбора адронных событий

Параметр	Допустимый		
	интервал		
$N_{\text{particles}} \geq 3$	${\sf OR} \; ilde{N}_{\sf track}^{\sf IP} \geq 2$		
N ^{IP} _{track}	≥ 1		
E _{obs}	> 1.6 ГэВ		
$E_{\gamma}^{\rm max}/E_{\rm beam}$	< 0.82		
E _{cal}	> 0.65 ГэВ		
H_2/H_0	< 0.9		
$ P_z^{miss}/E_{obs} $	< 0.6		
$E_{\rm LKr}/E_{\rm cal}$	> 0.15		
$ Z_{\text{vertex}} $	< 15.0 см		

 $ilde{N}^{
m IP}_{
m track}$ — число треков, удовлетворяющих условию E/p < 0.6.

Измеренная энергия *E*_{obs} определена как сумма энергий фотонов в калориметре и энергии заряженных частиц в предположении, что они пионы.

 E_{γ}^{\max} энергия наиболее энергичного фотона.

 H_2 and H_0 моменты Фокса-Вольфрама.

P^{miss} – сумма z компонент импульсов частиц

Моделирование: JETSET и LUARLW

Прецизионное измерение R в эксперименте КЕДР в диапазоне энергии от 3.08 до 3.72 ГэВ.

Систематические неопределённости R_{uds} для точек по энергии

	1	2	3	4	5	6	7	8
Светимость	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Радиационные поправки	0.8	0.8	0.5	0.7	0.6	0.5	0.7	0.5
Мод. <i>uds</i> континуума	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Реконструкция треков	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
e ⁺ e ⁻ X	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
1+1-	0.4	0.4	0.4	0.3	0.3	0.3	0.4	0.4
Эффективность триггера	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Ядерное взаимодействие	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Вариации условий отбора	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Вклад J/ψ и $\psi(2S)$	0.1	1.8	0.4	0.2	0.1	0.1	0.1	1.1
Ускорительный фон	0.4	0.8	0.5	0.6	0.5	0.4	0.4	0.6
Квадратичная сумма	1.9	2.7	1.9	1.9	1.8	1.8	1.9	2.2

 $e^+e^- o e^+e^-(\gamma)$ события зарегистрированные LKR калориметром 44° <heta <136°

Вычисление радиационных поправок

		II(<i>s</i>)	ðR	$\delta \varepsilon$	δ_{calc} .	
1	1.1091 ± 0.0089	0.7	0.2	0.4	0.1	0.8
2	1.1108 ± 0.0089	0.7	0.1	0.4	0.1	0.8
3	1.1120 ± 0.0056	0.2	0.1	0.4	0.1	0.5
4	1.1130 ± 0.0078	0.5	0.1	0.4	0.1	0.7
5	1.1133 ± 0.0067	0.4	0.1	0.4	0.1	0.6
6	1.1151 ± 0.0056	0.2	0.1	0.4	0.1	0.5
7	1.1139 ± 0.0078	0.5	0.1	0.4	0.1	0.7
8	1.1137 ± 0.0056	0.1	0.2	0.4	0.1	0.5

Вычисление $\Pi(s)$

Точка	Вклад в наблюдаемое сечение в %		
	e^+e^-	$\mu^+\mu^-$	$ au^+ au^-$
1	5.06 ± 0.24	1.29 ± 0.27	
2	1.67 ± 0.09	0.42 ± 0.12	
3	3.34 ± 0.17	0.72 ± 0.19	
4	4.03 ± 0.19	0.72 ± 0.15	
5	4.01 ± 0.20	0.69 ± 0.16	
6	$\textbf{3.42}\pm\textbf{0.19}$	0.49 ± 0.16	
7	4.14 ± 0.21	0.53 ± 0.15	3.37 ± 0.17
8	2.34 ± 0.13	0.33 ± 0.11	4.05 ± 0.20

Вклад $e^+e^- \to e^+e^-X$ в сечение *uds* континуума $\sim 0.5\%$, неопределённость в R 0.2%

Остаточный фон накопителя

- Вклад остаточного фона накопителя оценивался на основе данных с заходов с разведёнными e⁺- и e⁻-сгустками.
- Основной способ: вычисление в предположении пропорциональности фона интегралу произведения тока на остаточное давление в вакуумной камере.

Альтернативный способ: вычисление в предположении пропорциональности фона заряду.

Остаточный фон накопителя в наблюдаемом сечении, %.

Точка	Вариант 1	Вариант 2
1	1.35 ± 0.27	1.29 ± 0.27
2	0.65 ± 0.14	$\textbf{0.80}\pm\textbf{0.15}$
3	0.81 ± 0.20	$\textbf{0.86} \pm \textbf{0.21}$
4	$\textbf{3.80} \pm \textbf{0.35}$	4.08 ± 0.36
5	2.33 ± 0.30	2.19 ± 0.29
6	1.09 ± 0.23	1.15 ± 0.24
7	0.75 ± 0.17	0.76 ± 0.18
8	1.82 ± 0.25	1.94 ± 0.26

Моделирование пространственного разрешения ДК

Расколлинеарность по ϕ и по θ для треков событий $e^+e^- \to e^+e^-$. Использовалось два способа моделирования пространственного разрешения.

Разница в определяемом значении R 0.3%.

Влияние вариации условий отбора

Критерий	Вариация	Изменение R %
$N_{\text{particles}} \ge 3 \text{ OR}$	$N_{ m particles} \ge 4 \ m OR$	0.1
$ ilde{N}_{track}^{IP} \geq 2$	$ ilde{N}_{track}^{IP} \geq 2$	
$N_{ m track}^{ m IP}$	\geq 1 OR no cut	0.1
E _{obs}	$>$ 1.4 \div 1.8 ГэВ	0.3
$E_{\gamma}^{\max}/E_{\text{beam}}$	$< 0.6 \div 0.9$	0.3
E _{cal}	> 0.5 ÷ 0.75 ГэВ	0.2
H_2/H_0	$< 0.7 \div 0.93$	0.2
$ P_{\rm z}^{\rm miss}/E_{\rm obs} $	$< 0.6 \div 0.8$	0.2
$E_{\rm LKr}/E_{\rm cal}$	$> 0.15 \div 0.25$	0.1
Z _{vertex}	$< 20.0 \div 13.0$ см	0.2
Квадратич	іная сумма	0.6

Систематические неопределённости R_{uds} для точек по энергии

	1	2	3	4	5	6	7	8
Светимость	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Радиационные поправки	0.8	0.8	0.5	0.7	0.6	0.5	0.7	0.5
Мод. <i>uds</i> континуума	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Реконструкция треков	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
e ⁺ e ⁻ X	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
1+1-	0.4	0.4	0.4	0.3	0.3	0.3	0.4	0.4
Эффективность триггера	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Ядерное взаимодействие	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Вариации условий отбора	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Вклад J/ψ и $\psi(2S)$	0.1	1.8	0.4	0.2	0.1	0.1	0.1	1.1
Ускорительный фон	0.4	0.8	0.5	0.6	0.5	0.4	0.4	0.6
Квадратичная сумма	1.9	2.7	1.9	1.9	1.8	1.8	1.9	2.2

Измеренные значения $R_{uds}(s)$

Данные 2011		Д	анные 2014
<i>√s</i> , МэВ	$R_{uds}(s)$	<i>√s</i> , МэВ	$R_{uds}(s)$
-	_	3076.7 ± 0.2	$2.188 \pm 0.056 \pm 0.042$
3119.9 ± 0.2	$2.215 \pm 0.089 \pm 0.066$	3119.2 ± 0.2	$2.211 \pm 0.046 \pm 0.060$
3223.0 ± 0.6	$2.172 \pm 0.057 \pm 0.045$	3221.8 ± 0.2	$2.214 \pm 0.055 \pm 0.042$
3314.7 ± 0.7	$2.200 \pm 0.056 \pm 0.043$	3314.7 ± 0.4	$2.233 \pm 0.044 \pm 0.042$
3418.2 ± 0.2	$2.168 \pm 0.050 \pm 0.042$	3418.3 ± 0.4	$2.197 \pm 0.047 \pm 0.040$
-	-	3499.6 ± 0.4	$2.224 \pm 0.054 \pm 0.040$
3520.8 ± 0.4	$2.200 \pm 0.050 \pm 0.044$	-	-
3618.2 ± 1.0	$2.201 \pm 0.059 \pm 0.044$	3618.1 ± 0.4	$2.220 \pm 0.049 \pm 0.042$
3719.4 ± 0.7	$2.187 \pm 0.068 \pm 0.060$	3719.6 ± 0.2	$2.213 \pm 0.047 \pm 0.049$
Коррелированные систематически		е неопределённо	сти <i>R</i> 2011/2014.
	Источник	Неопределённ	ость в %
	Определение светимости		
	Вычисление сечения	0.4	
	Рад. поправки		
П аппроксимация		$0.1 \div 0$.3
	$\delta R(s)$.2
	$\delta\epsilon(s)$		
	Моделирование		
	Вклад e^+e^-X		
	Вклад / ⁺ / ⁻ 0.2		
	Эффективность триггера 0.2		
	Ядерное взаимодействие	0.2	

1.3

Прецизионное измерение R в эксперименте КЕДР в диапазоне энергии от 3.08 до 3.72 ГэВ.

Квадратичная сумма

Результаты КЕДР в области 3.08 – 3.72 ГэВ

Используя параметры J/ψ - и $\psi(2S)$ - резонансов, находим $R_{uds}(s) + R_{J/\psi+\psi(2S)} \Longrightarrow R(s)$

<i>√s</i> , МэВ	$R_{uds}(s)\{R(s)\}$
3076.7 ± 0.2	$2.188 \pm 0.056 \pm 0.042$
3119.6 ± 0.4	$2.212\{2.235\}\pm0.042\pm0.050$
3222.5 ± 0.8	$2.194\{2.195\}\pm 0.040\pm 0.037$
3314.7 ± 0.6	$2.220\{2.220\}\pm 0.035\pm 0.036$
3418.3 ± 0.3	$2.186\{2.186\}\pm 0.032\pm 0.036$
3499.6 ± 0.4	$2.224\{2.224\}\pm 0.054\pm 0.040$
3520.8 ± 0.4	$2.200\{2.201\}\pm0.050\pm0.044$
3618.2 ± 0.7	$2.212\{2.218\}\pm 0.038\pm 0.037$
3719.5 ± 0.5	$2.204\{2.228\}\pm0.039\pm0.043$

 $\overline{R}_{uds} = 2.204 \pm 0.013 \pm 0.030$ $R_{pQCD} = 2.16 \pm 0.01$

Прецизионное измерение R в эксперименте КЕДР в диапазоне энергии от 3.08 до 3.72 ГэВ.

В эксперименте КЕДР на коллайдере ВЭПП-4М проведено измерение величины *R* в девяти точках в диапазоне энергии центра масс от 3.08 до 3.72 ГэВ.

Достигнутая точность измерения в большинстве точек лучше либо равна 2.6% при систематической ошибке 1.9%. В настоящее время это наиболее точное измерение величины *R* для данной области энергии.

Дополнительные слайды

Измерение R от порога рождения $p\overline{p}$ до порога рождения $D\overline{D}$

Измерение *R* ниже 2.2 ГэВ

A.Keshavarzi, D.Nomura, T. Teubner arXiv:1802.02995

Вычисление *R* в рамках pQCD

Аналитическое выражение для R(s), полученное в работе **P.A.Baikov** *et al.* **Nucl. and Part. Phys. Proceed. 261-262(2015)**:

$$R^{n_f=3}(s) = 2\left[1 + \frac{\alpha_s}{\pi} + 1.6398\left(\frac{\alpha_s}{\pi}\right)^2 - 10.2839\left(\frac{\alpha_s}{\pi}\right)^3 - 106.8798\left(\frac{\alpha_s}{\pi}\right)^4\right].$$

 α_s вычислено в работе K.G.Chetyrkin et al. PRL 79 (1997)

$$\begin{aligned} \alpha_{s} &= \frac{1}{\beta_{0}L} - \frac{1}{(\beta_{0}L)^{2}} \frac{\beta_{1}}{\beta_{0}} \ln L + \frac{1}{(\beta_{0}L)^{3}} \Big[\left(\frac{\beta_{1}}{\beta_{0}}\right)^{2} (\ln^{2}L - \ln L - 1) + \frac{\beta_{2}}{\beta_{0}} \Big] \\ &+ \frac{1}{(\beta_{0}L)^{4}} \Big[\left(\frac{\beta_{1}}{\beta_{0}}\right)^{3} \left(-\ln^{3}L + \frac{5}{2}\ln^{2}L + 2\ln L - \frac{1}{2} \right) - 3\frac{\beta_{1}\beta_{2}}{\beta_{0}^{2}} \ln L + \frac{\beta_{3}}{2\beta_{0}} \Big] \\ \text{Для } n_{f} &= 3 \ \beta_{0} = \frac{9}{4}, \beta_{1} = 4, \beta_{2} = \frac{3863}{384}, \beta_{3} = \frac{445}{32}\zeta(3) + \frac{140599}{4608}, L = \ln^{2}\frac{Q^{2}}{\Lambda_{MS}^{2}} \end{aligned}$$

 $\alpha_s(m_{\tau}^2) = 0.331 \pm 0.013$ А.Рісһ Nucl. and Part. Phys. Proceed. 260 (2015) позволяет получить $R_{uds}^{pQCD} = 2.16 \pm 0.01$ в интервале энергии от 3.1 до 3.7 ГэВ.

Условия отбора событий $e^+e^-
ightarrow e^+e^-(\gamma)$.

 $e^+e^- \to e^+e^-(\gamma)$ события зарегистрированные LKR калориметром 44° $<\!\theta\!<\!136^\circ$

- два кластера с энергией более 20% энергии пучка;
- **в** расколлинеарности $\delta\theta$ и $\delta\phi$ углу менее 18° ;
- полная энергия кластеров больше энергии пучка;
- энерговыделение вне данных кластеров не более 20% от полного энерговыделения;
- отношение моментов Фокса-Вольфрама H₂/H₀ > 0.6.

Вариации условия отбора событий ${ m e}^+e^- o e^+e^-(\gamma).$

 $e^+e^- \to e^+e^-(\gamma)$ события зарегистрированные LKR калориметром $30^\circ < \theta < 150^\circ$, $40^\circ < \theta < 140^\circ$ (0.5%)

- два кластера с энергией более 20 ÷ 30% энергии пучка (0.2%)
- в расколлинеарности $\delta\theta$ и $\delta\phi$ углу менее $8^{\circ} \div 20^{\circ}$ (0.2%);
- полная энергия кластеров больше 90 140% энергии пучка (0.2%);
- энерговыделение вне данных кластеров не более 25 ÷ 10% от полного энерговыделения(0.3%);
- отношение моментов Фокса-Вольфрама H₂/H₀ > 0.6 ÷ 0.85 (0.2%).

Моделирование: JETSET и LUARLW

Моделирование адронных событий

- I. Формирование исходной конфигурации партонов.
- II. Излучение жёстких глюонов и/или их конверсия в qq-пары (ТВ КХД).
- III. Фрагментация партонов в адроны (феноменологический подход).
- IV.Распад нестабильных частиц.

 $\sigma^{e^+e^- \rightarrow hadrons}$ and $\sigma^{e^+e^- \rightarrow e^+e^-}$ nearby a narrow resonance

Analytical expression for the annihilation cross section nearby a narrow resonance in the soft photon approximation was first obtained in Ya.I. Azimov *et al.* JETP Lett. 21 (1975) 172

With up-today modifications one has

$$\begin{split} \sigma^{e^+e^- \to hadr}(s) &= \sigma^{e^+e^- \to hadr}_{continuum} + \frac{12\pi}{s} (1+\delta_{sf}) \left[\frac{\Gamma_{ee}\tilde{\Gamma}_h}{\Gamma M} \operatorname{Im} f(s) - \frac{2\alpha\sqrt{R}\Gamma_{ee}\tilde{\Gamma}_h}{3\sqrt{s}} \lambda \operatorname{Re} \frac{f^*(s)}{1-\Pi_0} \right] \\ & \left(\frac{d\sigma}{d\Omega} \right)^{ee \to ee}_{e} = \left(\frac{d\sigma}{d\Omega} \right)^{ee \to ee}_{QED} + \frac{1}{s} \left\{ \frac{9}{4} \frac{\Gamma_{ee}^2}{\Gamma M} (1+\cos^2\theta) (1+\delta_{sf}) \operatorname{Im} f - \frac{3\alpha}{2} \frac{\Gamma_{ee}}{M} \left[(1+\cos^2\theta) - \frac{(1+\cos^2\theta)^2}{(1-\cos\theta)} \right] \operatorname{Re} \frac{f^*}{1-\Pi_0} \right\} \\ & \delta = \frac{3}{4}\beta + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{1}{2} \right) + \beta^2 \left(\frac{37}{96} - \frac{\pi^2}{12} - \frac{L}{72} \right), \quad L = \ln \left(s/m_e^2 \right), \\ & \beta = \frac{2\alpha}{\pi} \left(L - 1 \right), \qquad f(s) = \frac{\pi\beta}{\sin\pi\beta} \left(\frac{s}{M^2 - s - iM\Gamma} \right)^{1-\beta} \end{split}$$

 Γ_{ee} , Γ , M – 'dressed' parameters including corrections to the vacuum polarization, $\Gamma_{ee} = \Gamma_{ee}^{(0)}/|1 - \Pi_0|^2$, λ -parameter controls the resonance-continuum interference, $\tilde{\Gamma}_h \neq \Gamma_h$ Numerical convolution with the collision energy distribution is used to fit resonance.

Interference effects in the inclusive hadronic cross section

If strong and electromagnetic decays of the resonance do not interfere $\lambda = \sqrt{R\mathcal{B}_{ee}/\mathcal{B}_h}$ otherwise for an exclusive mode *m* contributing R_m to the *R* ratio the partial width is

$$\Gamma_m = R_m \Gamma_{ee} + \Gamma_m^{(s)} + 2\sqrt{R_m \Gamma_{ee} \Gamma_m^{(s)}} \left\langle \cos \phi_m \right\rangle_{\Theta},$$

The brackets $\langle \rangle_\Theta$ denote averaging over the phase space.

$$\lambda = \sqrt{\frac{R\mathcal{B}_{ee}}{\mathcal{B}_{h}}} + \sqrt{\frac{1}{\mathcal{B}_{h}}} \sum_{m} \sqrt{b_{m} \mathcal{B}_{m}^{(s)}} \left\langle \cos \phi_{m} \right\rangle_{\Theta}$$

where $b_m = R_m/R$ is the branching fraction for the continuum, $\mathcal{B}_m^{(s)} = \Gamma_m^{(s)}/\Gamma$.

$$\tilde{\Gamma}_{h} = \Gamma_{h} \times \left(1 + \frac{2\alpha}{3(1 - \operatorname{Re}\Pi_{0})\mathcal{B}_{h}} \sqrt{\frac{R}{\mathcal{B}_{ee}}} \sum_{m} \sqrt{b_{m}\mathcal{B}_{m}^{(s)}} \langle \sin \phi_{m} \rangle_{\Theta} \right)$$

 Γ_m ambiguity: fit gives $\tilde{\Gamma}_m$ and $\cos \phi_m$, the sign of $\sin \phi_m$ required for Γ_m determination is not known

Прецизионное измерение R в эксперименте КЕДР в диапазоне энергии от 3.08 до 3.72 ГэВ.

Вклад R в вычисление a_{μ} и $\alpha(M_{Z}^{2})$

