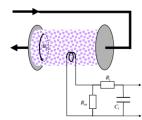
Экспериментальные методы исследования плазмы, ч. 1

Электронный лекционный курс* Судников А. В.

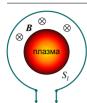
Лекция 3 Магнитные измерения в плазме


© Новосибирский государственный университет 2013 г. Редакция 2017 г. * Курс подготовлен в рамках реализации Программы развития НИУ НГУ на 2009–2018 годы

Магнитные зонды

- о Интегральные магнитные измерения
- о Диамагнитный зонд (диамагнитная петля)
- о Диамагнитная петля с компенсатором
- о Факторы влияющие на измерения
- о Пояс Роговского
- о Локальные магнитные измерения
- о Катушки Мирнова
- Применение магнитных зондов для измерений характеристик колебаний в плазме

2


Простейшая схема магнитного измерения

- Чувствительность:
 - $U_{sam} = NS \frac{dB}{dt}$
- Частота сигнала:

$$\frac{1}{f_{\text{max}}} \cong \tau = \frac{L}{R_{uu}}$$

Диамагнитная петля (Diamagnetic loop)

Пусть плазма находится в ведущем магнитном поле (продольное в открытой ловушке и тороидальное в замкнутой). Плазма — диамагнетик, поле вытесняется наружу

$$B=B_{vac}+\delta B$$
$$\delta B << B_{vac}$$
$$B_{vac}=const$$

$$\begin{split} U_{loop} &= -\frac{\partial \Phi}{\partial t} = -S_{l} \frac{d}{dt} \langle \delta B \rangle_{S_{l}} \left[C \mathcal{U} \right] \\ &\langle \delta B \rangle_{S_{l}} = -\frac{1}{S_{l}} \int U_{loop}(t) dt \end{split}$$

Диамагнитная петля

Найдём изменение поля δB (для удобства в СГС):

$$\begin{split} j_{\phi}(r) &= e \overline{v_{\perp} \left[f(r + \rho_{l}) \right]} - e \overline{v_{\perp} \left[f(r - \rho_{l}) \right]} = \\ &= 2 e \frac{\overline{\partial f}}{\partial r} \rho_{l} v_{\perp} = 2 e \frac{\overline{\partial f}}{\partial r} \frac{m c v_{\perp}^{2}}{\delta B} = \\ &= \frac{2 c}{B} \frac{\partial}{\partial r} \overline{\left(f m v_{\perp}^{2} \right)} \end{split}$$

После интегрирования по скоростям

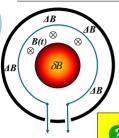
(выражаем $p_{\perp} = p_0 F(r,z)$):

$$j_{\varphi}(r) = \frac{2c}{B} \frac{\partial p_{\perp}}{\partial r} = \frac{2cp_0}{B} \frac{\partial F}{\partial r}$$

Диамагнитная петля

$$\delta B_z = \frac{2\pi}{c} \iint_{z} \frac{j_{\phi}}{r^2 + z^2} r dr dz = \frac{2\pi}{\kappa} \frac{2 kp}{B} \iint_{z} \frac{\partial F(r, z)}{\partial r} \frac{r dr dz}{r^2 + z^2}$$

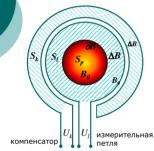
Геометрический фактор


$$\frac{\delta B}{B} = \frac{4\pi p_0}{B^2} A = \frac{1}{2} \beta A$$

$$\beta = \frac{p}{B^2/8\pi}$$

$$U_{loop} = -\frac{AS_1}{2} \frac{\partial}{\partial x} (B \langle \beta \rangle_{S_1})$$

Если учесть электроны, то $p_0 = p_{oi} + p_{oe}$


Факторы, усложняющие измерения

- \circ Часто в плазме $\beta << 1$
- \circ Магнитное поле импульсное B = B(t)
- Влияние стенок вакуумной камеры
- ВЧ колебания плазмы

Как компенсировать $\frac{\partial B_{vac}}{\partial t}$ и избежать влияния Δ В ?

Диамагнитная петля с компенсатором

- $\Phi_l = N(S_l S_p)(B_0 + \Delta B) +$
 - $+S_p(B_0 + \Delta B \delta B)$
- $\Phi_k = N_k S_k (B_0 + \Delta B)$

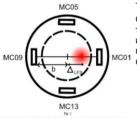
Выполним условие: $N_k S_k = N S_l$

 $\Phi_l - \Phi_k = NS_p \delta B$

 $\delta B = \frac{c}{NS_p} \int (U_l - U_k) dt$

Диамагнитная петля с компенсатором: ГДЛ

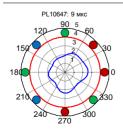
Пояс Роговского (Rogowski coil)


$$L\frac{dI}{dt} + (r + R_{_{H}})I = \mathcal{E}(t) = \frac{L}{N}\frac{dI_{_{o}}}{dt}$$

$$I(t) = \frac{e^{-t/\tau_0}}{L} \int_0^t e^{t/\tau_0} \varepsilon(t) dt$$

$$\begin{split} \text{I:} & \quad \tau << \tau_0 \\ & \quad I(t) \approx \frac{1}{L} \int_0^t \varepsilon(t) dt = \frac{I_0(t)}{N} \\ & \quad U_{\text{max}}(t) = R_n I(t) = \frac{R_n}{N} I_0(t) \end{split}$$

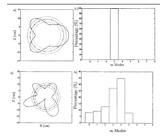
$$\begin{split} &\text{II:} \quad \tau >> \tau_0 \\ &I(t) \approx \frac{\mathcal{E}(t)}{r + R_n} = \frac{\tau_0}{N} \frac{dI_0}{dt} \\ &U_{\text{max}}(t) = R_n I(t) = \frac{L}{N} \frac{R_n}{r + R_n} \frac{dI_0}{dt} \end{split}$$


Катушки Мирнова (Mirnov coils)

Токонесущая плазма Смещение центра тока приводит к изменению магнитного потока в катушках:

11

Катушки Мирнова (Mirnov coils)

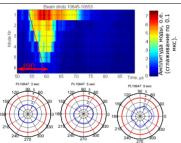


Массив из нескольких зондов позволяет диагностировать изменения формы тока (методы обработки в последних лекциях)

Синий — поле понизилось

Красный — поле возросло Зелёный — поле неизменно

Катушки Мирнова. Модовый состав возмущения



В простейшем случае к сигналам катушек Мирнова можно применить пространственное преобразование Фурье.

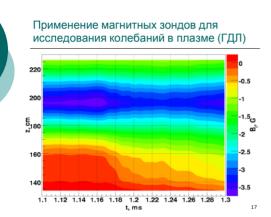
Соответствующие Фурье-компоненты обычно обозначаются как азимутальные (в замкнутых магнитных ловушках полоидальные) моды

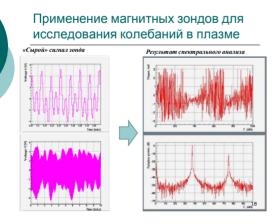
12

Катушки Мирнова. Модовый состав возмущения

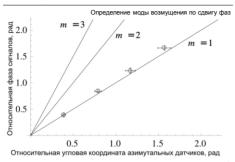
Наблюдение перехода к мелкомасштабным возмущениям в ГОЛ-3

1

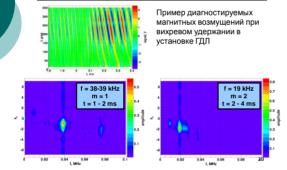

Применение магнитных зондов для исследования колебаний в плазме

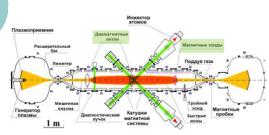


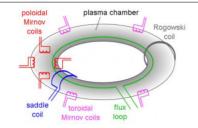
При нулевом токе в плазме зонды Мирнова могут быть использованы для диагностики магнитных колебаний в плазме.


Пространственное распределение также может быть выражено в терминах азимутальных мод.

Применение магнитных зондов для исследования колебаний в плазме ВЧ магнитный зонд ГДЛ зонд состоит из 3-х витков, измеряющих производные 3-х компонент поля: $\frac{\partial B_r}{\partial t}$, $\frac{\partial B_r}{\partial t}$, $\frac{\partial B_r}{\partial t}$ $\frac{\partial B_r$




Применение магнитных зондов для исследования колебаний в плазме


Применение магнитных зондов для исследования колебаний в плазме

Пример: магнитные диагностики, используемые на установке ГДЛ

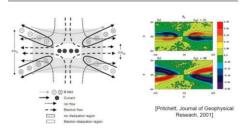
Пример: магнитные диагностики, используемые на установке GOLEM

S. Zurek, Encyclopedia Magnetica, CC-BY-3.0.

22

Пример: магнитные диагностики, планируемые для установке ITER

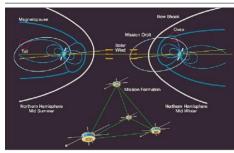
Measurement	Number	Rationale & Risks	
in-vessel inductive probes: equilibrium reconstruction, real-time control	150 Brownia 72 Browni 6 Browni	current standard method long-term folium, drifts, 3D effects (walls), noise	
in-vessel flux loops for equilibrium reconstruction	4 full loops in 9 sectors	current standard method long-term failure, drifts, monufacturing, noise	
and real-time control	120 saddle Soops	current standard method long-term failure, disft, 3D effects (walls), zonse	
in-vessel probes in the divertor region	36 Brogand 36 Brossel 1 Brankl	current standard method long-term failure, drift, 3D effects (divertor), noise	
in-vessel sensees for high- frequency MHD	>300 Bydniki >100 Barnel	current standard method long-term failure, frequency	
in-vessel flux loops for low-frequency MHD	72 saddle Seeps	calification, manufacturing, layout optamization, drifts, noise, 3D effects (passive structures, image currents)	
dismagnetic flux for stored energy	24 leops	current standard method calibration, compensation for passive structures, drift, failure, 1D effects, noise	
Rogowski ceals for halo current measurement	560 blanket 60 divertor	current standard method long-term failure, , none	
en-vessel inductive probes:	180 Browned	current standard method long-term failure, drifts, 3D effects (walls), noise	
equilibrium reconstruction (and real-time control?)	150 B _{screet}		
ex-vessel steady-state	60 B _{massid}	new technology long-term failure, 3D effects (walls), noise	
sensors for reconstruction and real-time control	60 B _{ermel}		
ex-vessel flux loops for equilibrium reconstruction	5 full loops	current standard method long-term folium, drifts, 3D affects (walls), noise	
Rogowski cosh inside TF cod casing	9 couls fitted	current method, new location long-term failure, drifts, direct pick-up from TF	
ex-vessel sensors using Faraday rotation method	4 sensors in 5 sectors	new method, new location long-term failure, noise	



Engage 1. Some of the high frequency amoors being prototyped for ITEE.

LTCC and inser-cut non-conventional tensor, conventional identification of world in imagines and copper theo off, each with different growing).

D.Testa et al. The magnetic diagnostic set for ITER


Пример: магнитные поля в токовом слое при пересоединении

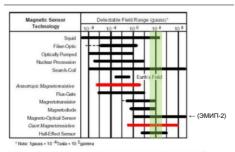
Семинар плазменной лаборатории ИЯФ, 4 сентября 201

Valentin Igochine

Пример: магнитная диагностика спутников CLUSTER

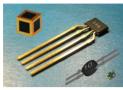
25

Пример: магнитная диагностика спутников CLUSTER


(1)
Located on a five metre long boom to avoid interference from the spacecraft, two fluxgate magnetometers (∂ea феррозон∂a) measure the magnetic fields along the orbit. FGM can take high resolution measurements with up to 67 samples per second.

Date: 03 November 1998 Satellite: Cluster Depicts: FGM Instrument Copyright: ESA

26


Технологии магнитных зондов

http://slideplayer.com/slide/5070113/ EE698A Advanced Electron Devices

--

Холловские датчики

Пример одно-, двух- и трёхкомпонентных холловских датчиков фирмы Hoeben (без усилителей). Основная проблема применения распространённых промышленных холловских датчиков в плазменном эксперименте — встроенные предусилители.
Схема оптимизируется для измерения малых магнитных полей и низких частот.