Экспериментальные методы исследования плазмы, ч. 1

Электронный лекционный курс* Судников А. В.

Лекция 5 Диагностика нейтральных атомов

© Новосибирский государственный университет 2013 г. Редакция 2017 г. * Курс подготовлен в рамках реализации Программы развития НИУ НГУ на 2009–2018 годы

I. Пассивная корпускулярная диагностика плазмы

- Основы метода. Каналы возникновения нейтральных атомов.
- о Обдирочные мишени
- Анализаторы энергий и импульсов частиц
- Фокусировка пучков заряженных частиц

Образование нейтральных атомов в плазме

Пассивная корпускулярная диагностика основана на изучении испускаемых плазмой нейтральных атомов

Интерес представляют атомы, возникшие в результате нейтрализации ионов плазмы.

Основной процесс, приводящий к возникновению быстрых нейтралов — резонансная перезарядка на фоновых холодных атомах.

Найдём функцию распределения быстрых нейтралов f_0 по энергиям.

Функция распределения быстрых нейтралов

Плотность потока нейтралов dj_x в дифференциально малом фазовом объёме $d^3\nu$:

 $dj_{x}=f_{0}v_{x}d^{3}v=f_{0}v_{z}v^{2}dvd\Omega$ Кинетическое уравнение для функции распределения быстрых нейтралов:

 $\frac{df_0}{dt} = \frac{\partial f_0}{\partial t} + \overline{v} \frac{\partial f_0}{\partial \overline{r}} = St$

Считаем параметры плазмы стационарными: $\frac{\partial f_0}{\partial t_0} = 0$

 $\frac{\partial f_0}{\partial t} = 0$

Интеграл столкновений холодных атомов с быстрыми ионами:

 $St(\overline{r}) \approx n_a(\overline{r})\overline{v}f_i(\overline{v})\sigma_{cx}(v)$

Функция распределения быстрых нейтралов

Плотность потока атомов заданной энергии вдоль определённого луча зрения:

$$\frac{dj_x}{dvd\Omega} = f_0 v_x v^2 = v^2 \int v_x \frac{df_0}{dx} dx = v^2 \int St(x) dx = v^2 \int n_a(x) f_i(\overline{v}) \overline{v} \sigma_{cx}(v) dx$$

Функция распределения нейтралов по энергиям. Плазма максвелловская, *T_i* = 1 кэВ; плотности плазмы и нейтрального фона постоянны.

. В. А. Курнаев и др. Корпускулярная E,кэВ диагностика лабораторной и космической плазмы.

Откуда берётся нейтральный фон? 1. Проникновение с периферии: $\begin{aligned} H_2 + e &\to H_2^+ + 2e \\ H_2^+ &\to H^0(2 \div 4eV) \\ \phi park-кондоновские атомы \end{aligned}$

Проникновение с периферии:

Оценим глубину проникновения (численные значения вычислены для $n = 10^{20}$ м⁻³, $T_c = T_i = 1$ кэВ): $\lambda_i \sim 1 \text{ см}$ — длина пробега атома относительно ионизации $\lambda_{cx} \sim 0.25 \text{ см}$ — длина пробега относительно перезарядки Ионизации предшествует $N = \frac{\lambda_i}{\lambda_{ch}}$ актов перезарядки.

После каждой перезарядки атом меняет направление случайным образом, таким образом, проникновение атома внутрь плазмы имеет диффузионный характер

$$l \sim \sqrt{N} \cdot \lambda_{ch} \approx \sqrt{\lambda_i \lambda_{ch}}$$

В плотной горячей плазме проникновение атомов с периферии за счет описанного механизма затруднено

2. Фоторекомбинация

 $H^+ + e \to H^0 + \gamma$ Практическое выражение константы фоторекомбинации:

$$k_{\phi.p.} \approx 2.7 \times 10^{-13} \frac{Z^2}{\sqrt{T_e}} \left[\frac{cm^3}{c} \right]$$

Равновесная плотность атомов определяется равенством скоростей фоторекомбинации и ионизации электронным ударом:

$$\begin{array}{ll} \label{eq:powerserv} \Pi \textit{pu} & n_e \approx 10^{14} \ \textit{cm}^3 & n_a \approx 10^8 \ \textit{cm}^3 \\ & T_e \approx 1 \ \textit{\kappa} \mbox{s} B \end{array}$$

Что делать с нейтралами?

1. Камера-обскура.

Изображение плазмы в «свете» атомов перезарядки

В качестве приемника используется люминесцентный экран или матрица из детекторов

Что делать с нейтралами? 2. Времяпролётный анализатор. Обычно применяется для атомов низких энергий (<1 кэВ) $\begin{array}{c} & L \\ & &$

Энергетическое разрешение:

$$\frac{\partial E}{E} \approx 2 \cdot \frac{\partial \tau}{\tau}$$

3. Перезарядная мишень. Преобразовать атомы в ионы
$H^{0} \qquad H^{TA3} \qquad H^{+} H^{0} \qquad I_{+}, I_{0} \qquad I_{+} + I_{0} = I_{0}^{*}$
$ \begin{array}{c} \sigma_{01} \cdot \text{ полное сечение обдирки} \\ \sigma_{10} \cdot \text{ полное сечение} \\ \text{нейтрализации} \end{array} \left \begin{array}{c} dI_+ = I_0 \sigma_{01} n dl - I_+ \sigma_{10} n dl \\ dI_0 = -I_0 \sigma_{01} n dl + I_+ \sigma_{10} n dl = -dI_+ \end{array} \right $
$\frac{I_{+}}{I_{0}^{*}} = \frac{\sigma_{01}}{(\sigma_{01} + \sigma_{10})} \cdot \left[1 - e^{-(\sigma_{01} + \sigma_{10})nL}\right]$ опL<<1 - «тонкая» мишень опL>>1 - «толстая» мишень

Что делать с нейтралами?

Газовая обдирочная камера

Для анализа по энергиям выгодно использовать «тонкие» обдирочные мишени с $nL\sim(0.01{+}0.5)/\sigma_{\rm r}$ так как при больших значениях nL сказывается влияние рассеяния.

Сечение обдирки $\sigma_{01} \sim 10^{-16} \text{ см}^2 \rightarrow \text{при } L \sim 30 \text{ см}$ оптимальная плотность газа $n \sim 10^{13} \div 10^{14} \text{ см}^3$

При такой плотности истечение газа из трубки является бесстолкновительным.

$$\tau_{za3} \approx \frac{L^2}{av_a}$$

где *а* – диаметр трубки, *v_a* – тепловая скорость частиц газа.

Типы обдирочных мишеней:

- о Импульсные газовые мишени (электромагнитные и пьезоэлектрические клапаны. Длительность существования мишени ~1–5 мс)
- о Стационарные газовые мишени (дифференциальная откачка)
- о Плазменные мишени ($nl ≥ 10^{14}$ см⁻²)
- Сверхтонкие пленки (*d* ~1+10 нм, малое Z: C, Be, углеводородные соединения и т.д. Флуктуации толщины приводят к уширению спектра энергий)
- Электронный удар (вторично-ионная масс-спектрометрия. Малая эффективность конверсии)

Анализ частиц по энергиям и импульсам (Neutral particle analyzers)

1. Электростатическое	е поле → эне	ергия:
$m\frac{d\mathbf{v}}{dt} = m\mathbf{v}(\nabla\mathbf{v}) = e\mathbf{E}$	$\xrightarrow{\mathbf{E}=-\nabla\phi}$	$\nabla \left(\frac{m\mathbf{v}^2}{2} + e\varphi\right) = 0$

Траектория частицы определяется только ее энергией 2. Статическое магнитное поле → импульс:

```
m\frac{d\mathbf{v}}{dt} = m\mathbf{v}(\nabla \mathbf{v}) = \frac{e}{c} [\mathbf{v} \times \mathbf{H}] \quad \square
```

```
\mathbf{p}(\nabla \mathbf{p}) = \frac{e}{c} [\mathbf{p} \times \mathbf{H}]
```

```
Статическое магнитное поле может быть использовано для
анализа по импульсам (массам)
```


Основные характеристики:

Электростатический анализатор

- Основная траектория
- Энергия настройки (W₀)
- Дисперсия (D)
- Разрешение анализатора (р)
- Разрешающая способность (R = 1/ρ)
- Светосила (G)

$$\rho = \frac{\Delta W_{\frac{1}{2}}}{W_0} \qquad D = \left| \frac{dx}{d\Delta W} \right| \qquad G = \frac{\Omega}{4\pi}$$

Плоский конденсатор	
+U	Основная траектория:
S_1 d S_2	$y(x) = \frac{eUx^2}{4E_i d}$
δα	Энергия настройки:
	$W_0 = E_i = \frac{eUL^2}{4y_0d}$
	Дисперсия:
Ширина на выходе: $S_2 = S_I + \delta \alpha L$, где $\delta \alpha$ - угловой разброс	$D = \left \frac{dy_0}{d\Delta W} \right = \frac{y_0}{W}$
$\rho = \frac{\Delta W_0}{W_0} = \frac{S_2}{D} = \frac{S_1 + \delta \alpha L}{y_0}$	
Если δα большой?	

eU

Разрешение:

 $\rho = \frac{S_1 + S_2}{d} + 2\delta\alpha^2 + \frac{1}{2}\cdot\delta\beta^2$

где S_{I},S_{2} — ширина входной и выходной щелей, $\delta \alpha$ и $\delta \beta$ - угловой разброс частиц в плоскости рисунка, и перпендикулярно ей.

Анализатор типа цилиндрическое зеркало (2D фокусировка)

 \mathbf{r}_2 θ, r.

Входное отверстие находится на оси двух *цилиндрических* электродов радиусами *r*₁ и *r*₂, между которыми прикладывается анализирующее напряжение.

Угловая фокусировка второго порядка при $\theta_0 = 42^0 \ 20^\circ$

$$R = \frac{1}{r_1/r_2 + 2.8\delta\alpha^3}$$

В. А. Курнаев и др. Корпускулярная диагностика лабораторной и космической плазмы.

Магнитные анализаторы

180° анализатор с однородным полем:

Размер изображения точечного источника: $S \approx R \delta \alpha^2$

Анализатор с угловой фокусировкой второго порядка:

Пример одновременного анализа по массам и энергиям: АКОРД-24

Бахарев Н. Н. Поведение быстрых частиц в сферическом токамаке Глобус-М // По материалам диссертации на соискание ученой степени кандидата физико-математических наук

Пример одновременного анализа по массам и энергиям: АКОРД-24

NPA version	ACORD-12		ACORD-24		
Detection row	H row	D row	H row	D row	
Overall dimensions	705 x 510 x 360 mm				
Weight	50 kg				
Number of energy channels	6	6	12	12	
Minimal particle energy	250 eV	300 eV	250 eV	400 eV	
Maximal particle energy	100 keV	50 keV	100 keV	70 keV	

Пример анализатора: ИТЭР

Электронно-оптические элементы

Использование фокусировки параллельного пучка ионов после обдирочной камеры электростатическими или магнитными линзами позволяет увеличить поток ионов в анализатор.

Электронно-оптические элементы

