Экспериментальные методы исследования плазмы, ч. 1

Электронный лекционный курс* Судников А. В.

Лекция 5 Диагностика нейтральных атомов

© Новосибирский государственный университет 2013 г. Редакция 2017 г. * Курс подготовлен в рамках реализации Программы развития НИУ НГУ на 2009–2018 годы

I. Пассивная корпускулярная диагностика плазмы

- Основы метода. Каналы возникновения нейтральных атомов.
- о Обдирочные мишени
- о Анализаторы энергий и импульсов частиц
- о Фокусировка пучков заряженных частиц

Образование нейтральных атомов в плазме

Пассивная корпускулярная диагностика основана на изучении испускаемых плазмой нейтральных атомов

Интерес представляют атомы, возникшие в результате нейтрализации ионов плазмы.

Основной процесс, приводящий к возникновению быстрых нейтралов — резонансная перезарядка на фоновых холодных атомах.

Найдём функцию распределения быстрых нейтралов f_{0} по энергиям.

Функция распределения быстрых нейтралов

Плотность потока нейтралов $\mathrm{d}j_{x}$ в дифференциально малом фазовом объёме $\mathrm{d}^{3}v$:

$$dj_x = f_0 v_x d^3 v = f_0 v_x v^2 dv d\Omega$$

Кинетическое уравнение для функции распределения быстрых нейтралов:

$$\frac{df_0}{dt} = \frac{\partial f_0}{\partial t} + \overline{v} \frac{\partial f_0}{\partial \overline{r}} = St$$

Считаем параметры плазмы стационарными:

$$\frac{\partial f_0}{\partial t} = 0$$

Интеграл столкновений холодных атомов с быстрыми ионами:

$$St(\overline{r}) \approx n_a(\overline{r}) \overline{v} f_i(\overline{v}) \sigma_{cx}(v)$$

Функция распределения быстрых нейтралов

Плотность потока атомов заданной энергии вдоль определённого луча зрения:

$$\frac{dj_x}{dvd\Omega} = f_0 v_x v^2 = v^2 \int v_x \frac{df_0}{dx} dx = v^2 \int St(x) dx =$$

$$= v^2 \int n_a(x) f_i(\overline{v}) \overline{v} \sigma_{cx}(v) dx$$

Функция распределения нейтралов по энергиям. Плазма максвелловская, $T_i = 1$ кэВ; плотности плазмы и нейтрального фона постоянны.

В. А. Курнаев и др. Корпускулярная диагностика лабораторной и космической плазмы.

Пассивная корпускулярная диагностика плазмы

Откуда берётся нейтральный фон?

1. Проникновение с периферии:

$$H_2 + e
ightarrow H_2^+ + 2e$$

$$H_2^+
ightarrow H^0(2 \div 4eV)$$
 франк-кондоновские атомы

Проникновение с периферии:

Оценим глубину проникновения (численные значения вычислены для $n=10^{20}$ м³, $T_c=T_i=1$ кэВ): $\lambda_i\sim 1$ см — длина пробега атома относительно ионизации

 $\dot{\lambda}_{cx} \sim 0.25$ см длина пробега относительно перезарядки

Ионизации предшествует N=актов перезарядки.

После каждой перезарядки атом меняет направление случайным образом, таким образом, проникновение атома внутрь плазмы имеет диффузионный характер

$$l \sim \sqrt{N} \cdot \lambda_{ch} \approx \sqrt{\lambda_i \lambda_{ch}}$$

В плотной горячей плазме проникновение атомов с периферии за счет описанного механизма затруднено

2. Фоторекомбинация

$$H^+ + e \rightarrow H^0 + \gamma$$

Практическое выражение константы фоторекомбинации:

$$k_{\phi.p.}\approx 2.7\times 10^{-13}\,\frac{Z^2}{\sqrt{T_e}}\Bigg[\frac{c{\rm M}^3}{c}\Bigg]$$

Равновесная плотность атомов определяется равенством скоростей фоторекомбинации и ионизации электронным ударом:

$$n_a \approx \frac{\gamma \cdot n_e}{\langle \sigma_i \mathbf{v}_e \rangle}$$

При
$$n_e \approx 10^{14}~{\rm CM}^3$$
 $n_a \approx 10^8~{\rm CM}^3$ $T_e \approx 1~{\rm KpB}$

Что делать с нейтралами?

1. Камера-обскура.

Изображение плазмы в «свете» атомов перезарядки

В качестве приемника используется люминесцентный экран или матрица из детекторов

Что делать с нейтралами?

2. Времяпролётный анализатор. Обычно применяется для атомов низких энергий (<1 кэВ)

1 – прерыватель потока частиц;

2 – вторично-эмиссионный коллектор; 3 – ВЭУ

$$E_{H_0}(\tau) = \frac{ML^2}{2\tau^2}$$

Энергетическое разрешение:

$$\delta E/E \approx 2.\delta \tau/\tau$$

Что делать с нейтралами?

3. Перезарядная мишень.

Преобразовать атомы в ионы

 $\sigma_{\!\scriptscriptstyle 01}$ - полное сечение обдирки σ_{I0} - полное сечение нейтрализации

 $dI_{+} = I_{0}\sigma_{01}ndl - I_{+}\sigma_{10}ndl$ $dI_0 = -I_0 \sigma_{01} n dl + I_+ \sigma_{10} n dl = -dI_+$

$$\boxed{\frac{I_{+}}{I_{0}^{*}} = \frac{\sigma_{01}}{(\sigma_{01} + \sigma_{10})} \cdot \left[1 - e^{-(\sigma_{01} + \sigma_{10})nL}\right]}$$

 $\sigma nL << 1$ - «тонкая» мишень $\sigma nL>>1$ - «толстая» мишень

Газовая обдирочная камера

Для анализа по энергиям выгодно использовать «тонкие» обдирочные мишени с $nL \sim (0.01 \div 0.5)/\sigma$, так как при больших значениях nL сказывается влияние рассеяния.

Сечение обдирки $\sigma_{01} \sim 10^{-16}\,{\rm cm^2} \to$ при $L \sim 30\,{\rm cm}$ оптимальная плотность газа $n \sim 10^{13} \div 10^{14}\,{\rm cm^3}$

При такой плотности истечение газа из трубки является бесстолкновительным.

$$\tau_{2a3} \approx \frac{L^2}{av}$$

где a – диаметр трубки, ν_a – тепловая скорость частиц газа.

Типы обдирочных мишеней:

- Импульсные газовые мишени (электромагнитные и пьезоэлектрические клапаны. Длительность существования мишени ~1–5 мс)
- Стационарные газовые мишени (дифференциальная откачка)
- \circ Плазменные мишени (nl ≥ 10^{14} см $^{-2}$)
- Сверхтонкие пленки (d ~1+10 нм, малое Z: C, Ве, углеводородные соединения и т.д. Флуктуации толщины приводят к уширению спектра энергий)
- Электронный удар (вторично-ионная масс-спектрометрия. Малая эффективность конверсии)

Анализ частиц по энергиям и импульсам (Neutral particle analyzers)

1. Электростатическое поле → энергия:

$$m\frac{d\mathbf{v}}{dt} = m\mathbf{v}(\nabla \mathbf{v}) = e\mathbf{E}$$

$$\nabla \left(\frac{m\mathbf{v}^2}{2} + e\varphi \right) = 0$$

Траектория частицы определяется только ее энергией

2. Статическое магнитное поле → импульс:

$$m\frac{d\mathbf{v}}{dt} = m\mathbf{v}(\nabla \mathbf{v}) = \frac{e}{c}[\mathbf{v} \times \mathbf{H}]$$

$$\mathbf{p}(\nabla \mathbf{p}) = \frac{e}{c} [\mathbf{p} \times \mathbf{F}]$$

Статическое магнитное поле может быть использовано для анализа по *импульсам (массам)*

Электростатический анализатор

Основные характеристики:

- Основная траектория
- Энергия настройки (W_0)
- Дисперсия (D)
- Разрешение анализатора (ρ)
- Разрешающая способность ($R = 1/\rho$)
- Светосила (G)

$$\rho = \frac{\Delta W_{1/2}}{W_{c}}$$

$$D = \left| \frac{dx}{dx} \right|$$

$$G = \frac{\Omega}{4\pi}$$

Плоский конденсатор

Основная траектория:

$$y(x) = \frac{eUx^2}{4E_i d}$$

Энергия настройки:

$$W_0 = E_i = \frac{eUL^2}{4y_0d}$$

Дисперсия:

$$D = \left| \frac{dy_0}{d\Delta W} \right| = \frac{y_0}{W}$$

$$\rho = \frac{\Delta W_0}{W_0} = \frac{S_2}{D} = \frac{S_1 + \delta \alpha L}{y_0}$$

Ширина на выходе: $S_2 = S_I + \delta \alpha \, L$, где $\delta \alpha$ - угловой разброс

Если $\delta \alpha$ большой?

45° – анализатор.

$$x = \frac{2E_i d \sin 2\alpha}{eU}$$

$$\frac{dx}{d\alpha} = \frac{4E_i d \cos(2\alpha)}{aU}$$

При α = 45° $\frac{dx}{d\alpha}$ = 0

$$\rho = \frac{S_1 + S_2}{d} + 2\delta\alpha^2 + \frac{1}{2} \cdot \delta\beta^2$$

где S_P , S_2 — ширина входной и выходной щелей, $\delta \alpha$ и $\delta \beta$ - угловой разброс частиц в плоскости рисунка, и перпендикулярно ей.

45° – анализатор.

Цилиндрический дефлектор (анализатор Юза - Рожанского)

Орбита:

$$r_0 = \sqrt{r_1 r_2}$$

Энергия настройки: $W = \frac{eU}{}$

$$W_0 = \frac{eU}{\ln\left(\frac{r_2}{r_1}\right)}$$

Полупериод радиальных колебаний :

$$\theta = \frac{\pi}{\sqrt{2}} = 127^{\circ}17' \approx 127.3^{\circ}$$

Дисперсия по скоростям:

$$\frac{dr}{dv} = \frac{2r_0}{v_0}$$

где v_{θ} - скорость на основной траектории

Анализатор типа цилиндрическое зеркало (2D фокусировка)

Входное отверстие находится на оси двух μ илиндрических электродов радиусами r_1 и r_2 , между которыми прикладывается анализирующее напряжение.

Угловая фокусировка второго порядка при $\theta_{\rm 0} = 42^{\rm 0}~20^{\circ}$

$$R = \frac{1}{r_1/r_2 + 2.8\delta\alpha^3}$$

В. А. Курнаев и др. Корпускулярная диагностика лабораторной и космической плазмы.

Магнитные анализаторы

180° анализатор с однородным полем:

Размер изображения точечного источника: $S \approx R\delta\alpha^2$

Анализатор с угловой фокусировкой второго порядка:

Анализатор Томсона

Пример одновременного анализа по массам и энергиям: АКОРД-24

Бахарев Н. Н. Поведение быстрых частиц в сферическом токамаке Глобус-М // По материалам диссертации на соискание ученой степени кандидата физико-математических наук

Пример одновременного анализа по массам и энергиям: АКОРД-24

NPA version	ACORD-12		ACORD-24	
Detection row	H row	D row	H row	D row
Overall dimensions	705 x 510 x 360 mm			
Weight	50 kg			
Number of energy channels	6	6	12	12
Minimal particle energy	250 eV	300 eV	250 eV	400 eV
Maximal particle energy	100 keV	50 keV	100 keV	70 keV

Пример анализатора: ИТЭР

Электронно-оптические элементы

Использование фокусировки параллельного пучка ионов после обдирочной камеры электростатическими или магнитными линзами позволяет увеличить поток ионов в анализатор.

1. Электростатическая линза

Электронно-оптические элементы

Где ho — ларморовский радиус ионов в центре линзы, L — характерная длина магнитного поля в линзе.

Независимо от направления магнитного поля короткая магнитная линза всезда фокусирует.