Экспериментальные методы исследования плазмы, ч. 1

Электронный лекционный курс* Судников А. В.

Лекция 6

Активная корпускулярная диагностика

© Новосибирский государственный университет 2013 г. Редакция 2017 г. * Курс подготовлен в рамках реализации Програмыы развития НИУ НГУ на 2009-2018 годы

Активная корпускулярная диагностика плазмы (часть 1)

- о Основы метода
 - Взаимодействие диагностического пучка с плазмой
 - Источники диагностических атомарных пучков (обзорно)
- Многохордовое ослабление пучка
- Резерфордовское рассеяние быстрых атомов
- Регистрации вторичных ионов
- о Зондирование пучками тяжелых ионов или атомов
- о Пучково-спектроскопические диагностики
 - Собственное свечение пучка
 - Динамический эффект Штарка (MSE)
 - Перезарядно-рекомбинационная спектроскопия (CHERS)

Активная корпускулярная диагностика плазмы

Параметры плазмы определяются в результате взаимодействия диагностического пучка частиц с плазмой.

Общая схема измерений:

Диагностические инжекторы пучков быстрых атомов

- Энергия, $E_b \sim 10-50$ к
эВ
- Плотность тока, $j_0 \sim 0.01..0.2 \, {\rm A/cm^2}$
- Размер пучка, d = 1-10 cm
- Угловая расходимость, $\,\delta \alpha \sim 0.01 ~{\rm rad}$
- Разброс энергии, $\delta E_b/E_b \sim 1\%$

Ток атомарного пучка измеряют в экв. А 1 экв. А $\approx 6 \cdot 10^{18}$ частиц/с

Принцип работы ионного источника

Для создания плазменных эмиттеров ионных источников диагностических инжекторов используются:

- Разряды с накаленными катодами
- о Высокочастотные разряды
- Дуговые генераторы плазмы

 корпус, 2 – газовая трубка, 3 – пермаллоевый экран, 4 – поджиг,
 разрядная камера, 6 – антенна, 7 – стягивающие стержни, 8 – алундовые изоляторы, 9 – нейтрализатор, 10 – ввод воды, 11-14 – электроды ионно-оптической системы, 15 – постоянные магниты, 16 – ввод питания

Требования к плазменным эмиттерам ионных источников

60

40

Чтобы сформировать пучок с малой угловой расходимостью отклонения эмиссио нной плотности тока от оптимальной не должны превышать ± 10 % Эмитирующая плазма

должна содержать малое количество молекулярных ионов $H_{2^{+}}$ и $H_{3^{+}}$:

плазменный электрод вытягивающая сетка запорная сетка выходная сетка 0.85 U -.03 U 0 0 0 \bigcirc 0 1 mm $j = \sqrt{\frac{e}{M}} \frac{U_{\pi}^{3/2}}{9\pi d^2}$

j = 0,2 А/см², U = 30 кВ $\rightarrow d \approx 15$ мм

Диагностические инжекторы пучков быстрых атомов

При формировании ионных пучков форма эмитирующей поверхности плазмы сильно зависит от величины первеанса:

 $P=J/U^{3/2}$ Для достижения малой угловой расходимости ($\delta \alpha \sim 0.01~{\rm rad})$ требуется тщательная оптимизация элементарной ячейки,

формирующей отдельный пучок. R, mm

Электроды ИОС диагностических инжекторов

•RUDI-X (2013) •1057 holes 4mm ID •Beam diameter 20 cm •Grid transparency 42%

•Slit grids for RUDI •Transparency → 67% •Beam divergence: •across the slit - ~0.6°, •along the slit - ~0.35°.

Ion source: Formation of the diagnostic neutral beams

Ballistic beam focusing

Neutral beam current density profile in focal plane:

$$j(r,F) = \frac{I_b e^{-r^2/(\delta \alpha F)^2}}{\pi^2 F^2 \delta \alpha^2}$$

Angular divergence $\delta \alpha \sim 0.5 \div 0.6^{*}$ Emission ion current density $j \sim 110 \div 130 \text{ mA/cm}^2$ I.V.Shikhovtsev et al. 30th ITPA DTG Meeting 21-24 June 2016, Novositirus, Russia

List of DNBI parameters

	Discharge type	Beam energy, keV	Max. extracted current, A	Duration, s	Modulati on	Ion species (by current)	Diagnostic s
TEXTOR RUDI (1996)	RF/ ARC with LaB ₆	20 ÷ 50	2/3	10/8	500 Hz / external	60/20/20 85/5/10	CXRS
TCV DNBI (1999)	RF/ARC	20 ÷ 55	2.7 / 3.2	2/1.5	External 1:1	60/20/20 85/5/10	CXRS, NPA
W7-X RUDI-X (2013)	RF	20 ÷ 60	8.5	10 (2.5 s ON)	external	55/23/22	CXRS
RFX DNBI	ARC	20 ÷ 55	5.5	0.05	external	77/11/12	MSE, BES, CXRS
MST DNBI 2 injectors(2000)	ARC	30/20 H/He	4/4	0.0035	no	90/5/5	MSE,CXRS, RS
MST DINA (2004)	ARC	50	4.5	0.02	no	90/5/5	MSE,CXRS, RS
T-15 DNBI (2016)	ARC	60	6.1	11 (1 s beam on)	from 1:1 to 1:10	85/5/10	CXRS
Alcator C-mod DNBI (2005)	Arc with LaB ₆	20 ÷ 55	8	3 (1.5 s ON)	external	85/5/10	MSE, BES, CXRS

I.V.Shikhovtsev et al. 30th ITPA DTG Meeting 21–24 June 2016, Novosibirsk, Russia

Диагностический инжектор для W7X

Ослабление диагностического пучка в плазме

Ослабление пучка происходит за счет его перезарядки на ионах, а также за счет ионизации электронами и ионами

. $\sigma_{ii} u \sigma_{ie}$ — сечения ионизации атомов пучка ионами и электронами ($\mathrm{H}^0, + \mathrm{i}, \mathrm{e} \rightarrow \mathrm{H}^*, + \mathrm{i}, \mathrm{e} + \mathrm{e}$) (σ_{ex} — сечение перезарядки ($\mathrm{H}^0, + \mathrm{H}^+ \rightarrow \mathrm{H}^*, + \mathrm{H}_0 + \gamma$)

 $dj = -j \cdot n \cdot \left[\left(\sigma_{cx} + \sigma_{ii} \right) \cdot dl + \sigma_{ee} v_e dt \right] = -j \cdot n \cdot \sigma_{eff} \cdot dl$

$$\sigma_{eff} = \left(\sigma_{ch} + \sigma_{ii} + \frac{\langle \sigma_{ie} v_e \rangle}{v_b}\right)$$
$$j = j_0 \cdot e^{-\int \sigma_{ef} n dl}$$

5

Ослабление диагностического пучка в плазме

Эффективные сечения ослабления в зависимости от энергии пучка для плазмы с $T_e = T_i = 1 \, \mathrm{kpB}.$

Легкие атомы (Н) имеют меньшее по сравнению с тяжелыми (Аг) σ_{eff} и часто более предпочтительны для диагностики внутренних областей плазмы.

Обычно параметры диагностического пучка выбирают так, чтобы

 $\int \sigma_{eff} n \cdot dl \leq 1 \div 3$

Многохордовое ослабление пучка

Многохордовое ослабление пучка

Уравнение Абеля: $n(r) = -\frac{1}{\pi} \int_{r}^{a} \frac{\tau'(y)}{\sqrt{y^2 - r^2}} dy$

Математически некорректно поставленная задача. Единственность и устойчивость решения не гарантируется. Необходимо использовать те или иные методы регуляризации (краткий обзор будет е последних лекциях)

NB: Для многохордового зондирования плазмы удобно использовать тонкие ленточные или веерные пучки.

Резерфордовское рассеяние быстрых атомов

В основе метода лежит измерение зависимости энергии атомов пучка, рассеянных на ионах плазмы на малый угол, от температуры ионов плазмы. Считаем, что атом много быстрее иона $(v_b{>>}v_n)$

Резерфордовское рассеяние быстрых атомов

После рассеяния:
$$\begin{split} \overline{p}^{**} &= \mu \sqrt{v_{b,x}^2 + v_{Ti,y}^2} \left(\cos \theta' \overline{e}_x + \sin \theta' \overline{e}_y \right) \approx \\ &\approx \mu v_b \left(\left(1 - \frac{\theta'^2}{2} \right) \overline{e}_x - \theta' \overline{e}_y \right) \\ \overline{p}^* &= \overline{p}^{**} + M_b \overline{U} = \left(p_0 - \frac{\theta'^2}{2} \mu v_b \right) \overline{e}_x + \mu \left(v_{Ti,y} + v_b \theta' \right) \overline{e}_y \\ &\theta' \approx \frac{M_b}{\mu} \theta \\ E_b^* &= \frac{p^{*2}}{2M_b} \approx E_b - \frac{\mu^2}{M_b m_i} E_b^2 \theta'^2 + 2\mu v_{Ti,y} v_b \theta' \\ &\Delta E_b = E_b - E_b^* \approx E_b \frac{M_b}{m_i} \theta^2 \pm 2 \left| \theta \right| \sqrt{\frac{M_b}{m_i} E_b E_i} \end{split}$$

Резерфордовское рассеяние быстрых атомов

$$\Delta E_b \approx E_b \frac{M_b}{m_i} \theta^2 \pm 2 \left| \theta \right| \sqrt{\frac{M_b}{m_i} E_b E_b}$$

Первое слагаемое не зависит от энергии иона. Второе даёт уширение спектра, зависящее от функции распределения ионов плазмы.

Для максвелловкого изотропного распределения ионов ширина спектра рассеянных атомов (по уровню 1/2) :

$$\Delta E_s = 4\theta \sqrt{\frac{M_b}{M_p}T_i E_p \ln 2}$$

 $d\sigma_R \sim \theta^{-4}$

 $d\sigma_R \sim E_b^{-2}$

Резерфордовское рассеяние быстрых атомов

Поток рассеянных атомов пучка: $I=\!I_{0}\!n_{\!i}\sigma_{\!R}\!\left(E_{_{b}},\theta\right)\!l_{\!b}\Omega\,e^{-2a\sigma_{\!e\!f}}$

Дифференциальное сечение резерфордовского рассеяния (на неподвижном центре):

$d\sigma_{R} = \left(\frac{Ze^{2}}{2E_{b}}\right)^{2} \cdot \frac{d\Omega}{\sin^{4}\theta/2}$
Требования к диагностическому пучку:

разрешение $l_b \approx a/\theta$ прозрачность, $\lambda >> d$

энергетический разброс $\delta E_b < \Delta E_s$, расходимость пучка $\delta \theta < \theta$

4

для $T_i \sim 1$ кэВ: $\delta E_b < 0,5$ кэ $B, \ \delta \theta < 1^\circ \ E_b = 20$ кэ $B, \ \theta = 10^\circ$

Резерфордовское рассеяние быстрых атомов

Дифференциальное сечение рассеяния атомов He на протонах при различных T_i/E_b

тижскирусмые атомы.	ne	этол инжекции.	0				
Энергия инжекции:	10 кэВ	Угловой разброс пучка:	0.03 рад				
Ток пучка:	1 A	Число каналов регистрации:	12				
Плотность тока:	20 мА/см ²	Энергетическое разрешение:	20 эВ				
Длительность инжекции:	150 мкс	Температурное разрешение:	10 эB				
Пространственное разрешение: 5x5x10 см3							

Резерфордовское рассеяние быстрых атомов

Обзоры по активной корпускулярной диагностике плазмы (*на 2013 г.*)

- 1) V.V.Afrosimov and A.I.Kislyakov. Proc. of the International school of plasma physics. Varenna, 1982.
- 2) G.V.Roslyakov. Proc. of the International school of plasma physics. Varenna, 1982.
- Р.Дж.Голдстон. Основы физики плазмы. Том 2. М, Энергоатомиздат, 1984.
- В.В.Афросимов, М.П.Петров. Диагностика плазмы. Выпуск 5. М, Энергоатомиздат, 1986.
- 5) А.Н.Зиновьев, В.В.Афросимов. Диагностика плазмы. Выпуск 7. М, Энергоатомиздат, 1990.
- 6) Л.И.Крупник, В.И.Терёшин. Физика плазмы, 1994, т.20, № 2.
- E.Hintz, B.Schweer. Plasma Phys. Control. Fusion, 1995, vol.37.
 В.И.Давыденко, А.А.Иванов, Г.Вайсен. Новосибирск, Издательский центр НГУ, 1999.