Экспериментальные методы исследования плазмы, ч. 1

Электронный лекционный курс* Судников А. В.

Лекция 7

Активная корпускулярная диагностика

© Новосибирский государственный университет 2013 г. Редакция 2017 г. * Курс подготовлен в рамках реализации Програмыы развития НИУ НГУ на 2009–2018 годы

Активная корпускулярная диагностика плазмы (часть 2)

- о Основы метода
 - Взаимодействие диагностического пучка с плазмой
 - Источники диагностических атомарных пучков (обзорно)
- о Многохордовое ослабление пучка
- Резерфордовское рассеяние быстрых атомов
- о Регистрации вторичных ионов
- о Зондирование пучками тяжелых ионов или атомов
- о Пучково-спектроскопические диагностики
 - Собственное свечение пучка
 - Динамический эффект Штарка (MSE)
 - Перезарядно-рекомбинационная спектроскопия (CHERS)

Активная корпускулярная диагностика плазмы

Параметры плазмы определяются в результате взаимодействия диагностического пучка частиц с плазмой.

Общая схема измерений:

Измерения профиля плазмы методом регистрации вторичных ионов

Диагностика локальной плотности ионов. Перезарядка и ионизация атомов диагностического пучка приводит к возникновению быстрых ионов с ларморовским радиусом, сравнимы с размером камеры.

Измерения профиля плазмы методом регистрации вторичных ионов

Зондирование пучками тяжелых ионов (heavy ion beam probe)

Измеряет потенциал внутри плазмы за счёт анализа двукратно ионизированных ионов. Не вносит возмущений в плазму. Точка измерения определяется наклоном и энергией пучка. Измеряется малое изменение большой величины → требуется стабильность пучка и качество измерения

E_i – кинетическая энергия иона
 eU – энергия ионов пучка
 φ – потенциал плазмы в

 потенциал плазмы в данной точке пространства
 До ионизации (*Cs*⁺):

 $E_i = e(U - p)$ После ионизации (Cs^{++}): $E_i = e(U - p)$

На выходе из плазмы:

 $E_i = e(U - \boldsymbol{\varphi}) + 2e \boldsymbol{\varphi} = \frac{e(U + \boldsymbol{\varphi})}{e(U + \boldsymbol{\varphi})}$

Зондирование пучками тяжёлых ионов

Барнет К., Харрисон М. Прикладная физика атомных столкновений. Плазма. М: Энергоатомиздат, 1987
 Бондаренко И.С., Губарев С.П., Крупник Л.Н. и др. // Физика плазмы. 1992. Т. 18. С. 208

Зондирование продольными пучками ионов

Специфический метод измерения продольного профиля электрического потенциала в амбиполярной ловушке

M. Yoshikawa, T. Imai et al. Simultaneous evaluation of potential fluctuation from the core plasma to the end region in GAMMA 10 // Nuclear Fusion, Vol. 53, N. 7, 14 June 2013

Зондирование продольными пучками ионов

Специфический метод измерения продольного профиля электрического потенциала в амбиполярной ловушке

Ионы Не⁺ не проходят, если их энергия $E_i < e \mathbf{q}_{\kappa}$ Ионы Не⁺⁺ в основном образуются в промежуточной области и не выходят из потенциальной ямы при условии $E_i < e (2\mathbf{q}_{\kappa} - \mathbf{q}_{0})$.

📖 Давыденко В.И. и др. // Диагностика плазмы, М.: Энерго-атомиздат, 1986. Вып. 5.

Метод искусственной мишени.

Анализатор атомов перезарядки совмещен с камерой-обскурой.

Метод искусственной мишени

Сигнал с каналов анализатора

Результат: локальная F_i(E)

Активная корпускулярная диагностика плазмы (часть 2)

- о Основы метода
 - Взаимодействие диагностического пучка с плазмой
 - Источники диагностических атомарных пучков (обзорно)
- Многохордовое ослабление пучка
- Резерфордовское рассеяние быстрых атомов
- Регистрации вторичных ионов
- о Зондирование пучками тяжелых ионов или атомов
- о Пучково-спектроскопические диагностики
 - Собственное свечение пучка
 - Динамический эффект Штарка (MSE)
 - Перезарядно-рекомбинационная спектроскопия (CHERS)

Диагностика профиля интенсивности свечения пучка в плазме

Излучение возбуждённых атомов пучка смещено за счёт эффекта Доплера — излучение фонового нейтрального газа может быть отфильтровано. Доплеровский сдвиг линии H_a :

 $\Delta \lambda = \frac{v_b}{c} \cos(\theta) \lambda \approx 5 \cdot 10^{-3} \lambda \approx (2 - 3) \, hm$

При $E_{n_p
m wea}$ з 30:50 каВ основной вклад в сечение возбуждения атомов пучка дают столкновения с протонами плазмы. $J(x) \propto n_p$

 $J(X) \ll n$

Динамический эффект Штарка (Motional Stark Effect, MSE)

Диагностика локального магнитного поля. Эффект Штарка — исчезновение вырождения уровней энергии атома во внешнем электрическом поле H_a — линия излучения водорода с переходом (n=3)→(n=2) π-компонента — поляризация ⊥ E, Δm = 0 о-компонента — поляризация ⊥ E, Δm = 1

Упрощенный спектр мультиплета H_a (не показаны компоненты $\pm 5\pi,\pm 6\pi,\pm 7\pi).$

Динамический эффект Штарка

При движении атома в поперечном магнитном поле в сопутствующей CO возникает эл. поле $E=(v{\times}B).$

Если атом водорода в пучке имеет энертию 30 къВ, что соответствует скорости у $_{hram} \approx 3.100$ см/с, то в магнитном поле B = 5 Т величина электрического поля в системе отсчета атома составит $E = 1.5 \cdot 10^5$ В/см. Величина расцепления для $H_a = 656.3$ ви и E = 30 къВ пучка Н°:

 $\Delta \lambda = \frac{3a_0 e \lambda_0^2 v_{beam}}{2hc} B$ $\Delta \lambda [nm] = 6.6 \times 10^{-2} B[T]$

Динамический эффект Штарка

Динамический эффект Штарка. Пример диагностической системы

Модель распределения интенсивности переходов в мультиплете H_α для общих условий MSE-эксперимента

Требование к временному разрешению диагностики: $200{-}300~{\rm {\rm Mkc}}$ (т $\approx 750~{\rm {\rm Mkc}}$

Требование к точности измерения |B|: ≈5% (для вычисления β) Интервалы тонкой структуры составляют ~10% от штарковского расщепления для 40 юВ пучка атомов Н при движении в поле 0.2 Т Для интерпретации результатов в слабых полях и для повышения точности вычисления |B| актуальна точная модель спектра.

Расчет спектра для энергии пучка 40 кэВ, поля 0.2 T и $O = 22.5^{\circ}$

Численная модель включает • MSE

- Эффект Зеемана
 Спин-орбитальное
- спин-ороитальное взаимодействие
- 15 . Лэмбовский сдвиг уровней

Пример результатов MSEдиагностики на ГДЛ

Радиальный профиль |B| в области точки остановки быстрых ионов. Горизонтальные "усы" показывают пространственное разрешение диагностики. Радиальный профиль β⊥ в точке остановки быстрых дейтонов. Максимальное значение на оси 0.4, радиус ≈8 см

Пример результатов MSEдиагностики на MST

Перезарядно-рекомбинационная спектроскопия (*Charge-exchange recombination spectroscopy, CHERS*)

Локальные измерения плотности, скорости и температуры полностью ободранных ионов примеси. Атом пучка отдаёт *(нерезонансно)* электрон иону примеси с зарядом Z. Образуется возбуждённый ион с зарядом (Z-1): $\mathrm{H}^0 + \mathrm{A}^{Z^*} \to \mathrm{H} + \mathrm{A}^{(Z_4)^*}(n,l)$

•

Возбуждённый ион излучает фотон: $\mathbf{A}^{(\mathbb{Z}\cdot 1)+}(n,l)\to \mathbf{A}^{(\mathbb{Z}\cdot 1)+}(n',l')+hv$

 \bigcirc hv _____ We observe this!

По материалам: D. A. Ennis, B. E. Chapman, D. Craig, D. J. Den Hartog, G. Fiksel, D. J. Holly. CHERS measurements in MST. University of Wisconsin-Madison

Перезарядно-рекомбинационная спектроскопия

Эффект Доплера приводит к смещению центра линии (направленная скорость) и уширению её контура (телловая скорость). Интенсивность свечения пропорциональна концентрации примеси:

 CHERS gives impurity (Carbon) density, velocity, and temperature

Перезарядно-рекомбинационная спектроскопия

All of These Are Localized Measurements

Observation volume is intersection of beam path and viewing sightline.

Перезарядно-рекомбинационная спектроскопия

• The total detected signal is given by: $\begin{array}{c} \text{Teom. partop} & \text{Усреднённое сечение} \\ \text{Усиление оптики} & \text{перезарядки} \\ V \approx G \cdot T \cdot E \cdot \frac{1}{4\pi} \langle \sigma v \rangle_{CX}^{\lambda} n_C \cdot n_{beam} \cdot W \cdot \Delta t \end{array} \\ \begin{array}{c} \text{Время накопления} \\ \text{Кооффициент} & \text{Концентрация} & \text{Плотность Ширина пучка} \\ прокуссания оптики примеса \\ пучка \end{array}$

• Plugging in all the numbers, with $\sim 0.1~V$ signal gives $n_C\approx 1\%~n_e$ in rough agreement with other measurements

Boron impurities provide a consistency check of measurement and analysis at a different wavelength (298.1 nm)

Пример комбинированного использования активных корпускулярных диагностик: MST

On MST, two-pronged approach to advancing beam-based diagnostics:

- compact, high-brightness diagnostic neutral beams

- custom high-throughput spectrometers

New physics (some unexpected) already obtained

- impurity, majority ion heating differ

Diagnostic	Plasma parameters measured	Spatial and temporal resolution
CHERS	Impurity (C) T_i and v_i	2 cm, 100 kHz
Rutherford scattering	Majority (D) <i>T_i</i> and <i>v_i</i>	~14 cm, 100 kHz
Spectral MSE	IBI ≥ 0.2 T, ~2% precision	~8 cm, 10 kHz

CHERS and Rutherford scattering measurements show that ions are strongly heated during a reconnection event.

Majority T_i increase is less than impurity

 implies Z or mass dependence to heating mechanism

