Экспериментальные методы исследования плазмы, ч. 1

Электронный лекционный курс* Судников А. В.

Лекция 13 Обработка и интерпретация экспериментальных данных

© Новосибирский государственный университет 2013 г. Редакция 2017 г. * Курс подготовлен в рамках реализации Программы развития НИУ НГУ на 2009–2018 год

Обработка и интерпретация данных

- о Фурье-анализ
- Вейвлет-анализ
- о Корреляции
- о Сингулярное разложение
- Восстановление пространственных распределений

Из чего складывается

Источник шума

强 Приёмник

Каждый источник создаёт свой сигнал, произвольным образом зависящий от времени:

 $F_i(t)$ Каждый из приёмников принимает все источники. Детектируемая амплитуда зависит от расстояния, характеристик источника и приёмника и т.д. Кроме того, приёмники принимают шумы, которые могут быть не скоррелированы между собой $U_j(t) = \Sigma k_{ij} F_i(t') + R_j(t)$

Задача — определить сигнал, создаваемый і-м источником.

Преобразование Фурье. Зависимость от времени

Предполагаем гармоническую зависимость сигнала от времени. Тогда

 $U_f(t) = \Sigma k_{ij} A_i(t) \sin(\omega_f + \varphi_i) + R_f(t)$ Подобное разложение хорошо работает при $\omega_i = const, \varphi_i = const. В противном случае ширина пиков может оказаться меньше расстояния между ними.$

Кроме того, теряется временная зависимость $A_i(t)$.

Преобразование Фурье в эксперименте. ASDEX-U

Пример использования метода для получения спектров мощности колебаний плазмы в токамаке ASDEX-U. Показано возникновение кратных и гибридных частот, стохастизация и переход к хаотическим колебаниям при внутреннем срыве.

U

0.5

Оконное преобразование Фурье (Short time Fourier transform)

Оконное преобразование Фурье. Ширина окна

Разрешение по времени и частоте ограничено соотношением неопределённостей: $\delta f \, \delta t > 1/2$. Подбор длины окна определяется свойствами сигнала.

Оконное преобразование Фурье. Форма окна

Оконная функция может иметь разный вид (слева — прямоугольное окно, окно Хемминга и их применение к sin(t)). Результат свёртки с прямоугольным окном воспринимается преобразованием Фурье как разрывная функция. Сглаженные границы окна уменьшают количество цифровых артефактов.

Оконное преобразование Фурье в эксперименте (Глобус-М)

Пример использования метода для обработки сигналов магнитных зондов на токамаке Глобус-М. Показана эволюция частот неустойчивости в разрядах с различными изотопами мишенной плазмы и пучков.

Бахарев Н. Н. Поведение быстрых частиц в сферическом токамаке Глобус-М // По материалам диссертации на соискание ученой степени кандидата физикоматематических наук

Вейвлет-анализ

Фурье-преобразование в окне даёт одинаковое абсолютное разрешение по частоте во всём частотном диапазоне. На высоких частоттах $\delta f f \sim 2/N$, на низких частотах $\delta f f \sim I. (N$ — число точек окна). Логичным будет использовать разные окна для разных частотных диапазонов. Постоянное $\delta f f$ получается при равном числе периодов в окне $f \tau = const$. Разложение производится по подобным функциям, масштабируемым по времени. Функция (вейвлеты) схожи с

Вейвлеты «мексиканская шляпа» и Мейера. К. Блаттер, Вейвлет-анализ

одним периодом колебаний. Подход хорошо работает с короткими быстро затухающими сигналами.

Вейвлет-анализ в эксперименте (KStar)

Определение частот ELMoв на токамаке Kstar методом вейвлетанализа сигналов магнитных диагностик.

J.W. Ahn et al. Confinement and ELM characteristics of H-mode plasmas in KSTAR // Nuclear Fusion, 2012

Преобразование Фурье. Зависимость от координат

Предполагаем гармоническую зависимость сигнала от координаты (обычно угла φ). Набор функций {sin($m\varphi$), cos($m\varphi$)} является полным базисом. Тогда $U_{j}(t) = \Sigma A_{m} \sin(m\varphi_{j} + \varphi_{0}) F_{m}(t) + R_{j}(t)$ Здесь $\varphi_j = const, \ \varphi_0 = \{0, \pi/2\}$ для каждого датчика. Задача может быть записана в матричном виде:

 $\boldsymbol{U}(t) = \boldsymbol{A} \boldsymbol{F}(t) + \boldsymbol{R}(t)$

 $\boldsymbol{F}(t) = \boldsymbol{A}^{-1} \, \boldsymbol{U}(t) + \boldsymbol{R}'(t)$ Обозначается как разложение по азимутальным модам.

Разложение по азимутальным модам. Системы координат

Использование криволинейных координат, соответствующих физике процесса, позволяет описать один процесс одной модой.

Патров М. И. Диагностика МГД-неустойчивостей на сферическом токамаке Глобус-М // Физика плазмы, т.33, №2, стр. 99-108

R.

 $R_{ii}(\tau) =$

Корреляционные измерения

Здесь <x> — усреднение по времени. Максимум коэффициента корреляции отвечает максимуму скалярного произведения векторов сигналов (и максимальной их схожести). Если источник сигнала является волной с длиной λ и размером когерентности *l*, то коэффициент корреляции зависит от расстояния между приёмниками как

 $R(\tau=0,d)\sim \cos\bigl(2\pi\,d/\lambda\bigr)e^{-\frac{d}{T}}$

Корреляционные измерения

Наилучшим образом метод применим для определения скорости распространения возмущений по временным сдвигам г, отвечающим максимальной корреляции. Оптимально рассматривать корреляцию отрезков сигналов с неизменными параметрами.

Слева: нарастание магнитных островов в токамаке ASDEX-U.

Igochine et.al. Phys. Plasmas 21, 110702 (2014)]

Корреляционные измерения

Взаимная корреляционная функция двух сигналов: $R_{ij}(\tau) = \int\limits_{-\infty}^{+\infty} U_i(t) U_j(t-\tau) dt$

Преобразование Фурье обозначим как

 $\mathbb{F}\left[U_{i}(t)\right] = U_{i}(\omega) = A_{i}(\omega) \cdot \exp[i\theta_{i}(\omega)]$

Найдём преобразование Фурье от корреляционной функции: $\mathbb{R}\left[P_{(\tau)}\right] = P_{(\tau)} = \frac{1}{2} \int_{0}^{+\infty} e^{i\theta t} d\tau \int_{0}^{+\infty} U_{(\tau)}(t) U_{(\tau)}(t-\tau) dt = 0$

$$\begin{split} \mathbb{E}\left[L_{ij}^{t}(\tau)\right] &= P_{ij}\left(\omega\right) = \frac{2\pi}{2\pi} \int_{-\infty}^{\infty} e^{-d\tau} \int_{-\infty}^{\infty} U_{i}(r)U_{2}\left(\tau - \tau\right)dt = \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} d\tau \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} U_{i}(\omega_{i})e^{-i\omega_{i}t}d\omega_{i}\right] \cdot \left\{\int_{-\infty}^{+\infty} U_{j}\left(\omega_{j}\right)e^{-i\omega_{j}t}d\omega_{j}\right\} e^{i\omega\tau}\right]dt \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} U_{i}(\omega_{i})U_{j}(\omega_{j})e^{i\left[i(\sigma\tau - \omega_{i} - \omega_{j} + \omega_{j}\tau)\right]}dt d\tau d\omega_{i}d\omega_{j} = \dots \end{split}$$

Корреляционные измерения

- $$\begin{split} \mathbb{F}\Big[P_{ij}(\tau)\Big] &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}\delta(\omega_i + \omega_j)e^{i\omega\tau + i\omega_j\tau}U_i(\omega_i)U_j(\omega_j)d\tau d\omega_i d\omega_j = \\ &= \int_{-\infty}^{+\infty}U_i(-\omega_j)U_j(\omega_j)d\omega_j\int_{-\infty}^{+\infty}e^{i(\omega+\omega_j)\tau}d\tau = 2\pi U_i(\omega)U_j(-\omega) = \end{split}$$
- $= A_{i}(\omega) A_{j}(\omega) \cdot \exp[i \{\theta_{i}(\omega) \theta_{j}(\omega)\}]$

Сингулярное разложение (Singular value decomposition)

Решается задача разделения сигналов *F_i(t')*, пришедших от *m* различных источников по данным *n* детекторов. Сигналы детекторов могут быть представлены в виде матрицы:

$$M = \frac{1}{\sqrt{nk}} \begin{pmatrix} U_1(t_1) & U_2(t_1) & \cdots & U_n(t_1) \\ U_1(t_2) & U_2(t_2) & \cdots & U_n(t_2) \\ \vdots & \vdots & \ddots & \vdots \\ U_1(t_k) & U_2(t_k) & \cdots & U_n(t_k) \end{pmatrix}$$

Количество использованных точек k > n.

По этой матрице могут быть построены симметричные матрицы $M^T M, M M^T.$

Сингулярное разложение (Singular value decomposition)

Элементы матрицы $(M^{\rm T}M)_{ij}=\Sigma U_i(t_k)U_j(t_k)$ — пространственная корреляция различных датчиков.

Элементы матрицы $(MM^T)_{ij} = \Sigma U_k(t_i)U_k(t_j)$ — временная корреляция полного набора сигналов.

Для этих матриц могут быть найдены собственные числа и собственные вектора.

Собственные вектора матрицы *М*^{*}М описывают временные зависимости, одинаковым образом проявляющиеся на всех датчиках. (Только *F*_i(*r*^{*})). Из них составляем матрицу *V*. Собственные вектора матрицы *М*^{*T*} описывают пространственные распределения, одинаковым образом изменяющиеся во времени. (Только k_i). Из них составляем матрицу *U*. Матрица *M* может быть разложена как

 $M = USV^T$

Сингулярное разложение (Singular value decomposition)

Матрица М может быть разложена как

 $M = USV^T$

Матрица *S* является диагональной (матрицей сингулярных значений). Сингулярные значения отвечают амплитудам, с которыми каждая из компонент входит в сигнал. Ограничения метода:

количество источников меньше количества детекторов, *m < n*;
различные моды возмущений существуют достаточно долго.

Слева: структура пространственных мод на токамаке DIII-D, полученная с помощью SVD.

Сингулярное разложение. Пример с ускорителя Tevatron

Сингулярное разложение. Отделение шумов

Сингулярные значения для шумов из-за их некоррелированности на несколько порядков ниже, чем сингулярные значения для компонент полезного сигнала.

Восстановление пространственных распределений

Математически некорректно поставленная задача. Единственность и устойчивость решения не гарантируется. Необходимо использовать те или иные методы регуляризации

1. Использование априорной информации.

Функциональная зависимость n(r) предполагается известной из физических соображений, неизвестными остаются 1–2 параметра. Распределение I(y) рассчитывается аналитически, подбираются параметры, при которых оно максимально совпадает с измеренным.

Восстановление пространственных распределений

2. Метод Пирса.

Объект разбивается на *m* колец, в каждом из них *n*(*r*) = *n*_i = *const*. Значения *I*(*y*) определяются системой *m* уравнений *c m* неизвестными и постоянными казффициентами, вычисляемыми аналитически:

 $I_j = \sum A_{ij}n_j$ $\vec{n} = A^{-1}\vec{I}$

С ростом количества колец достаточно быстро падает обусловленность матрицы A, что затрудняет поиск обратной матрицы и решения.

Восстановление пространственных распределений

3. Разложение функции n(r) по ортогональным базисным функциям и аналитический расчёт I(y) для каждой базисной функции. Находится вектор в пространстве, образованном базисными функциями, наилучшим образом описывающий измеренные данные.

NB: использование метода не ограничено задачей Абеля.

Figure 6: (Lqt) A sites of the reflections matrix representing a single Green's function. (Right) Forward image produced is matrix multiplication of a random set of Green's functiona. M. Carr et al. Towards integrated data analysis of divertor diagnostics with ray-tracing // 44th EPS Conference on plasma physics, 05.130

Задачи томографии

Задача восстановления пространственных распределений по набору многохордовых, выполненных с различных ракурсов, по многообразию и неоднозначности методов выходит (*пока выходит*?) за рамки курса. Основные подходы: построение обратных (фурье-подобных) операторов, разпожение по базисным функциям либо использование метода Монте-Карло с поиском наиболее вероятного осотояния.

