Плазма в космосе

Лекция №11 Солнце, ч.3: вспышки

Анненков Владимир, с.н.с. лаб. 9-1

25 ноября 2021

Запуск космического телескопа имени Джеймса Уэбба отложен до 22 декабря 2021 года.

Содержание лекции

- 1 Наблюдение короны Солнца
- 2 Солнечные вспышки
- 3 Корональные выбросы массы (СМЕ)
- 4 «Стандартная» модель вспышки
- 5 Солнечный ветер
- 6 Солнечные радиовсплески
- 🕡 Моделирование излучения из пучково плазменной системы
- 8 Солнечные космические лучи

Наблюдение короны Солнца

Наблюдение короны Солнца

- Наблюдение короны Солнца стандартными методами невозможно, ввиду значительно большего потока излучения от основной части солнечного диска.
- Невооружённым глазом короны можно увидеть во время солнечного затмения, когда диск Луны закрывает диск Солнца.
- Если при наблюдении в телескоп закрыть диск Солнца непрозрачным препятствием, «искусственной Луной», то ничего хорошего не получится: из-за дифракции света на оправе объектива возникнет ореол, который затмит корону.
- В 1931 году французский оптик-экспериментатор Бернар Лио (1897—1952) создал внезатменный коронограф.

CORONA OF 16TH APRIL 1893, AS PHOTO-GRAPHED BY SCHAEBERLE

О Для его постройки он взял простой однолинзовый объектив (1).

- После него идёт экран (2), затмевающий изображение Солнца в фокусе (по понятным причинам, его называют «искусственной Луной»).
- О Часто в качестве «искусственной Луны» используют зеркало (для уменьшения перегрева), а отражённый световой поток выводят из трубы.
- О Далее в схеме стоит линза поля (3), которая собирает лишь слабый рассеянный свет и строит изображение объектива на диафрагме (4), с отверстием, меньшим, чем изображение объектива.
- О Её отверстие позволяет срезать дифрагированный свет на краях объектива.
- И наконец, в схеме стоит второй объектив (5), строящий изображение солнечной короны. Далее уже может стоять какой-либо светоприемник (6).

Наблюдение короны Солнца

- Многочисленные наблюдения солнечных вспышек начаты около 60 лет назад, когда стали широко использоваться интерференционно-поляризационные фильтры.
- Эти явления называли хромосферными, поскольку они наблюдались в линии водорода Hα и реже в линиях H и K ионизованного кальция.
- Вспышки проявляются как внезапное увеличение яркости малого участка хромосферы активной области, который быстро превращается в две светящиеся ленты.
- Вспышки возникают в группах пятен, но в нескольких процентах случаев появляются в центрах активности, лишенных пятен.
- На заключительных стадиях вспышки развиваются системы петель, заполненных холодной (с $T \sim 10^4$ K) плазмой.

- Начавшиеся с середины 60-х гг. ХХ в. рентгеновские наблюдения сразу продемонстрировали, что основной процесс при вспышке – это формирование системы корональных петель, заполненных горячей плазмой с температурой от нескольких до десятков МК.
- В большинстве случаев соответствующие временные изменения потока мягкого рентгеновского излучения похожи друг на друга и характеризуются быстрым подъемом и медленным спадом.
- Эти первые регистрации вспышек в мягком рентгеновском диапазоне сделали очевидными два вывода: первый — вспышка развивается в основном в короне, а не в хромосфере, и второй — о том, что основное энерговыделение происходит на начальной стадии процесса, а затем идет процесс постепенного остывания горячей плазмы.
- Вспышку стали отождествлять с системой петель, заполненных плазмой с температурой от 5 до 20 МК.

- Мощная солнечная буря 14-16 июля 2000 года во время солнечного максимума 23-го солнечного цикла.
- Это была солнечная вспышка, выброс солнечных частиц и корональный выброс массы, которые вызвали сильную геомагнитную бурю.
- Наблюдалось незначительные повреждения спутниковых и наземных силовых трансформаторов.

Video: Событие Дня Бастилии с SOHO 195 Ангстрем

https://youtu.be/OuBemvFyHUM

Video: Солнечная вспышка класса М5, 24 августа 2014 г.

https://www.youtube.com/watch?v=OvEKT8X3Bko

- Вспышки на Солнце оказывают сильное воздействие на ионосферу, вызывая нарушения радиосвязи, работы радионавигационных устройств и т. д. Вспышки существенно влияют на состояние околоземного космического пространства. В связи с пилотируемыми космическими полётами возникла серьёзная задача защиты космонавтов от ионизирующего излучения вспышек и заблаговременного прогнозирования возможной радиационной опасности.
- О График вспышечной активности Солнца по данным спутника GOES-14 https://tesis.lebedev.ru/sun_flares.html

Сценарий солнечной вспышки

- Внезапный нагрев плазмы и ускорение некоторого количества частиц происходит на небольшой высоте в области, непосредственно примыкающей к солнечному пятну.
- Основная масса ускоренных частиц и горячая плазма быстро распространяются по тем силовым линиям, которые связывают область первичного энерговыделения с другим основанием корональной петли.

Сценарий солнечной вспышки

- Эта достаточно высокая вспышечная петля, заполненная испарившейся из ее оснований очень горячей плазмой и ускоренными частицами, отчетливо наблюдается как область развития высокоэнергичных процессов.
- Далее процесс переходит в корональные слои, где происходит дополнительное выделение энергии, сопровождающееся формированием аркады высоких петель, располагающихся над нейтральной линией.
- Потоки мягкого рентгеновского излучения возрастают, достигая максимальных значений уже при сформировавшейся арочной системе во всей активной области.

Схематическое представление взаимодействия двух магнитных петель.

Разница между СМЕ и солнечными вспышками

https://www.nasa.gov/content/goddard/the-difference-between-flares-and-cmes

Коронограф	OSO-7	«Skylab»	«Solwind»	SMM	LASCO
Период наблюдений	1971	1973-1974	1979–1985	1980, 1984–1989	1996-2003
Поле зрения (R_{\odot})	2,5-10	1,5-6	3-10	1,6-6	1,2-32
Число зарегистрированных СМЕ	27	115	1607	1206	8008
Средняя скорость (км/с)		470	460	350	489
Средний размер (град.)		42	43	47	47
Масса (10 ¹⁵ г)	_	6,2	4,1	3,3	1,6

Некоторые статистические свойства СМЕ, определенные по наблюдениям коронографами на КА (из работы Gopalswamy, 2004).

- Источники СМЕ на Солнце. На Солнце СМЕ возникают в магнитных структурах с закрытыми силовыми линиями. Наиболее мощные СМЕ возникают в активных областях, содержащих пятна противоположной полярности. Энергия, необходимая для выброса массы СМЕ в корону и гелиосферу, обеспечивается магнитным поле.
- Частота появления СМЕ. По наблюдениям на ИСЗ OSO-7 частота появления СМЕ составляла 0.5 СМЕ/день, на «Skylab» 0.74 СМЕs/день, на ИСЗ SMM 0.87 СМЕs/день. За период 1979–81 гг. она равнялась 1.8 СМЕ/день. Исправленные значения с учетом скважности наблюдений, чувствительности инструментов и геометрических факторов по наблюдениям на ИСЗ SMM и P78-1 составили соответственно 1.5 СМЕ/день и 2.1 СМЕ/день (Webb, 1991). Имеет место хорошая корреляция частоты появления СМЕ с числом солнечных пятен, однако, СМЕ возникают не только в областях с солнечными пятнами, но и в областях без пятен.

- О Широты появления СМЕ. СМЕ возникают в области активных широт, чье расположение определяется распределением активных областей с закрытыми силовыми линиями магнитного поля. В период минимума солнечной активности СМЕ появляются на широтах < 45°, в период максимума СМЕ возможны на широтах > 45°. В 1973–74 гг. распределение СМЕ по широте ограничивалось 45° и имело максимум вблизи экватора.
- о **Физические** параметры в СМЕ

Структуры СМЕ	Τ, К	N , см $^{-3}$	В, Гс
Фронтальная область	$\sim 10^{6}$	10 ⁸ –10 ⁹ см ⁻³ нижняя корона (1–3) · 10 ⁷ см ⁻³ корона	\sim 1–5 ($Rpprox 2R_{\odot}$)
Полость	$\sim 10^{6}$	$< 10^{8}$	< 1-10
Ядро (протуберанец)	4000-8000	$10^{10} - 10^{11}$	1-100

Источник вспышечной энергии

- Считается, что источником энергии для солнечных вспышек и корональных выбросов массы служит конверсия энергии непотенциальных магнитных полей в энергию потоков плазмы, ускоренных частиц и различных типов излучения.
- Наиболее вероятным механизмом конверсии называют процесс магнитного пересоединения. Оно происходит в областях нарушения вмороженности магнитного поля в плазму и изменяет конфигурацию магнитного поля в строну уменьшения его энергии.
- Избыточная энергия магнитного поля (избыточная по отношению к потенциальному магнитному полю, созданному теми же источниками) связана с токами, текущими в атмосфере Солнца. Эти токи генерируются благодаря конвективным движениям в хромосфере, таким как всплытие магнитных структур или сдвиговые движения магнитных структур активных областей. И процесс вспышки есть процесс быстрого изменения этих токов.

- Рассматривается вертикальный токовый слой, разделяющий области корональной плазмы с противоположно направленными магнитными полями, направление которых близко к радиальному.
- Перед вспышкой в окрестности формирующегося токового слоя накапливается непотенциальная энергия магнитного поля.
- Вспышечное энерговыделение с ускорением частиц и потоков плазмы начинается с началом взрывного пересоединения в X-точке.
- О Характерная плотность плазмы в области ускорения 10⁹ см⁻³. Потоки электронов, движущиеся вверх из этой области, генерируют узкополосные, дрейфующие к низким частотам всплески излучения, а потоки электронов вниз – излучение, дрейфующее к высоким частотам.

- О В процессе пересоединения формируются замкнутые магнитные петли, которые заполняются плотной плазмой из хромосферы и ускоренными частицами. Такие петли являются резервуарами нетепловых частиц и источниками вспышечного радио и мягкого рентгеновского излучения.
- О Потоки электронов, движущиеся вниз, теряют энергию и рассеиваются на кулоновский столкновениях в хромосфере, в слоях с плотностью $\sim 10^{12} {\rm см}^{-3}$
- Если мощность потока достаточно велика, то хромосферная плазма в области высыпания резко нагревается с формированием скачка плотности, движущегоя вверх.
- Последующие потоки электронов генерируют в тонком фронте такой волны короткие узкополосные всплески радиоизлучения в полосе 1-2 ГГц.

- Такая модель используется для интерпретации солнечных вспышек, была разработана *Carmichael, 1964; Sturrock, 1966; Hirayama, 1974; Корр, Рпеитапп, 1976* и часто называется CSHKP-модель (по первым буквам авторов).
- Как правило, длительность вспышек не превышает часа, и они явно выделяются на фоне спокойного Солнца.
- Эффективная температура интенсивных вспышек может на порядки превышать температуру плазмы, что указывает на их нетепловое происхождение.

О Разным высотам отвечают всплески с разным спектром излучения.

Солнечный ветер

Анимация солнечного ветра

https://www.youtube.com/watch?v=GX5FbXX-hks

Солнечный ветер

- Нелучистая энергия поступает в корону значительно выше $r = R_{\odot}$, теплопроводность газа велика, а потери на излучение относительно невелики.
- Таким образом, на протяжении нескольких солнечных радиусов от поверхности Солнца тепловая энергия частиц короны остаётся высокой и сравнимой с гравитационной энергией.
- Это порождает непрерывный направленный наружу поток солнечной плазмы, который был назван «солнечным ветром».
- Энергия, поддерживающая этот поток, поставляется нелучистым нагреванием газа.

Солнечный ветер

Основные параметры плазмы солнечного ветра вблизи орбиты Земли имеют следующие характерные значения:

- О скорость $V = 300 \div 800$ км/с;
- концентрация *n* в среднем $5 \div 10$ см⁻³;
- \circ индукция магнитного поля B в среднем около $5\cdot 10^{-5}$ Гс;
- О температура протонов $T_p = 10^4 \div 10^5$ К;
- \circ температура электронов T_e около 10^5 К.
- Поток плазмы является сверхзвуковым и сверхальвеновским, направление скорости близко к радиальному.

Корональные дыры

SDO/AIA 0193A 2017-08-31T00:47:04.840

Video: Корональные дыры

Корональные дыры

https://www.youtube.com/watch?v=3GC06rRX9oU

Корональные дыры

- О Корональные дыры представляют собой области короны, лишенные петель.
- Для них характерна открытая магнитная конфигурация с замыканием силовых линии далеко в межпланетном пространстве.
- Вещество дыр уже не удерживается магнитными силами и беспрепятственно истекает в межпланетное пространство.
- Плотность в этих областях короны уменьшается, и, ввиду больших энергетических потерь на формирование потока плазмы, температура оказывается несколько ниже, чем в обычных корональных петлях.
- Это объясняет пониженную яркость дыр в рентгеновском диапазоне по сравнению со спокойной короной.

Солнечные радиовсплески

- Радиоволны излучаются горячими, сильно ионизованными газами внешней атмосферы Солнца. В зависимости от концентрации электронов и температуры такая среда способна пропускать радиоволны лишь определенных длин волн.
- Хромосфера имеющая достаточно высокую концентрацию свободных электронов и температуру 5-15 тыс. К не пропускает дециметровые и метровые радиоволны. Поскольку волны разной длины приходят от разных слоев солнечной атмосферы, это позволяет исследовать свойства хромосферы и короны по их радиоизлучению.
- Радиоизлучение Солнца включает тепловую и нетепловую составляющие. Тепловое радиоизлучение обусловлено столкновениями электронов и ионов, движущихся с тепловыми скоростями.
- Интенсивность радиоизлучения приятно характеризовать величиной яркостной температуры T_b . В случае излучения «спокойного» Солнца на сантиметровых волнах $T \sim 10^4$ K, а на метровых $T \sim 10^6$ K.

- Над центрами активности (факелами, пятнами) происходит формирование корональных конденсаций. Магнитное поле в этих областях выше, чем в окружающих областях. Наблюдается тормозное и магнитотормозное излучение.
- Такие радиопятна появляются и медленно исчезают вместе с видимыми пятнами. Их называют медленно меняющимся компонентом. В основном они имеют тепловое происхождение.
- О В области корональных конденсаций могут наблюдаться внезапные всплески излучения на тех же длинах волн. Их длительность меняется от нескольких до десятков минут или даже часов.
- О Такие радиовсплески связаны с быстрым нагревом плазмы $(T_b \sim 10^7 10^8 \text{ K})$ и ускорением частиц в области солнечной вспышки.

- Более интенсивные всплески на сантиметровых волнах обусловлены, по-видимому, циклотронным или плазменным излучением субрелятивистских электронов с энергией от десятков до сотен кэВ во вспышечных магнитных арках.
- Выше над корональными конденсациями могут наблюдаться всплески на метровых волнах – шумовые бури; они могут наблюдаться в течение чаосв и даже дней.
- О Метровые всплески с длительностью ~ 1 сек. в узких интервалах частот и без дрейфа частоты, обусловленны плазменной турбулентностью, которая возбуждается в короне над развивающимися активными областями, содержащими крупные пятна – радиовсплески I типа.

- Радиовсплески III типа: частота радиоизлучения в этих всплесках меняется со временем, излучение возникает на двух гармониках ω, 2ω. Всплеск начинается на частоте ~500МГц, а затем частота его обеих гармоник быстро уменьшается, примерно на 20 МГц/сек. Весь всплеск длится ~ 10 сек.
- О Создаются потоком частиц, выброшенным вспышкой и движущимся через корону со скоростью $\sim 0.3c$. В результате развития пучково-плазменной неустойчивости возбуждаются плазменные волны (на локальной ω_p), способные генерировать электромагнитное излучение в результате (наиболее вероятно) каскадного трёхволнового взаимодействия.
- Как показали наблюдения на КА, потоки электронов, распространяясь в межпланетном пространстве, генерируют радиовсплески III типа вплоть до частот 30 кГц.

- Вслед за радиовсплесками III типа в 10% случаев наблюдается радиоизлучение в широком интервале частот с максимумом интенсивности на частоте $\sim 100 \text{ MFg}$ ($\lambda \approx 3$ м). Это излучение называется радиовсплесками V типа, всплески длятся $\sim 1-3$ мин. По-видимому, обусловлены генерацией плазменных волн.
- При очень сильных вспышках происходит расширение газа, формирующее ударную волну. На фронте этой образуются плазменные волны, способные генерировать излучение – всплески II типа. Похожи на всплески III типа: меняется частота, наблюдается две гармоники. Длительность примерно 5-30 мин, диапазон частот – 200-30 МГц.
- При распространении в межпланетном пространстве вспышечная ударная волна продолжает генерировать радиовсплеск II типа на волнах гектометрового (100 м) и километрового диапазонов.

- Когда сильная ударная волна достигает верхней части короны, появляется непрерывное радиоизлучение в широком диапазоне частот радиоизлучение IV типа. Оно похожи на радиовсплески V типа, но отличается от последних большей длительностью.
- Радиоизлучение IV типа генерируется субрелятивистскими электронами в плотных облаках плазмы с собственным магнитным полем, которые выносятся в верхние слои короны. Обычно источники радиоизлучения IV типа поднимаются в короне со скоростью нескольких сотен км/с и прослеживаются до высот ~5R_☉ над фотосферой.
- Вспышки, с которыми связаны интенсивные сантиметровые всплески и радиоизлучение II и IV типов на метровых волнах, часто сопровождаются геофизическими эффектами повышением интенсивности потоков протонов в околоземном космическом пространстве, прекращением радиосвязи на коротких волнах через полярные области, геомагнитными бурями и т.д.

- Тип І. Шумовая буря, состоящая из большого числа коротких узкополосных всплесков в метровом диапазоне (300 - 50 Мгц).
- О Тип II. Узкополосное излучение, которое начинается в метровом диапазоне (300 Мгц) и медленно, десятки минут, сдвигается в декаметровый диапазон (10 Мгц). Длительность всплесков II типа порядка 2-10 мин, иногда до 20-30 мин. Эти всплески появляются только после мощных хромосферных вспышек и ассоциируются с распространением ударной волны в короне и солнечном ветре. Обычно считают, что эти всплески генерированы потоками электронов, ускоренных на фронте ударной волны.
- О Тип III. Уэкополосные всплески, быстро, за секунды, проскакивают от дециметрового в декаметровый диапазон (500 - 0.5 Мгц). Они часто наблюдаются в виде серий и приурочены к процессам в активных областях на Солнце. Создаются узконаправленным потоком (пучком) электронов, движущихся в короне. Частота всплеска уменьшается по мере движения пучка в область меньшей корональной плотности. Радиовсплески III типа тесно связаны с выходом электронов на открытые силовые линии и убеганием их в межпланетное пространство. Иногда наблюдают всплески U- и J- типов, названных так за форму их изображений на динамических

- О Тип IV. Гладкий континуум широкополосных всплесков в метровом диапазоне (300-30 Мгц), начинающихся через 10-20 минут после максимума некоторых сильных вспышек и продолжающихся иногда несколько часов. Полагают, что длительные всплески возникают, если осуществляется захват быстрых электронов в стабильные магнитные ловушки, которые могут быть либо неподвижными, либо перемещаться с небольшой скоростью, При этом считается, что механизм излучения всплесков IV типа синхротронный, т.е. предполагают захват электронов с энергией не менее нескольких сот кэВ.
- **Тип V.** Всплеск V типа часто возникает вместе с всплесками III типа, немного запаздывая по отношении к ним. Длительность всплесков V типа достигает минут, в то время как длительность всплесков III типа (в том же интервале частот) - всего нескольких секунд, а иногда и долей секунд. Всплеск V типа объясняется захватом части ускоренного пучка электронов в арку магнитного поля и удержанием в магнитной ловушке.

Model with continuous injection

- Continuous injection of "fresh"particles into the system;
- Special open boundary conditions to ensure the departure of particles from the system and the arrival of new ones to create the correct compensation curren.

Different implementations:

- O Sigov Y. S. and Levchenko V. D.// Plasma Physics and Controlled Fusion. - 1996. - T. 38, 12A. - A49-A65.
- FT. Umeda et al. // Journal of Geophysical Research: Space Physics. – 2002. – T. 107, A12. – SMP 19-1-SMP 19–16
- Mandrake L. et al. // Geophysical Research Letters. 2000. – T. 27, No 18. – C. 2869–2872.
- Timofeev I. V. and Terekhov A. V. // Physics of Plasmas.
 2010. T. 17, No 8. C. 83111.

Релаксация электронного пучка в приближении бесконечной плазмы и в модели с непрерывно инжектируемым пучком

https://www.youtube.com/watch?v=rbDYTrgGb1A

Main features of the model

- Strong localization of plasma oscillations of greater 0 amplitude than in infinite plasma;
- The evolution of ion density is significantly different; 0

- In a homogeneous plasma, the beam relaxation region is quite close to the injection region;
- Significant disruption of instability and displacement of the relaxation region is possible due to:
 - large-scale density gradients;
 - small-scale density inhomogeneities, including those formed during beam relaxation.

from: Annenkov, V. V. et al. Physics of Plasmas 26, 063104 (2019).

- The spectrum of plasma oscillations excited in the linear stage corresponds with good accuracy to the predictions of linear theory.
- For counterstreaming beams with density $n_b = 0.005n_0$ we found a regime in which $2\omega_p$ EM radiation generation in the three-wave process $L + L' \rightarrow T_{2\omega_p}$ occurs at the linear stage of the instability.

(a) The growth rate map for the beam-plasma instability $\Gamma(k_{\parallel}, k_{\perp})$ in the efficient regime. The green line $k_{\perp} = k_{\perp}(k_{\parallel})$ mark the maximal growth rate achieved for each k_{\perp} . (b) $\Gamma(k_{\perp})$ along the green line (red points indicates the region of the three-wave interaction).

from: Annenkov, V. V. et al. The Astrophysical Journal 904, 88 (2020).

ЭМ Генерация излучения на второй плазменной гармонике частоты встречными электронными пучками в режиме, когда наиболее неустойчивые моды плазменных колебаний пучковые трёхволновом участвовать могут в процессе слияния в ЭМ волну.

https://www.youtube.com/shorts/6BZBTfj50Qc

Солнечные космические лучи

Солнечные космические лучи

- О Солнечные космические лучи энергичные частицы, наблюдаемые в межпланетном пространстве в результате взрывных энерговыделений на Солнце — после вспышек, в результате выброса корональной массы, иногда после исчезновения солнечного волокна.
- О В иностранной литературе принят термин энергичные солнечные частицы (Solar Energetic Particles, SEP).
- Более 90% СКЛ протоны, поэтому появление СКЛ и дальнейшую эволюцию их потоков часто называют солнечным протонным событием.
- Длительность события зависит от энергии: в релятивистской области она обычно составляет несколько часов, при энергиях ~ 10 МэВ – до нескольких суток.
- Элементный состав СКЛ не постоянен, для больших событий он соответствует составу солнечной короны, для малых обогащен тяжелыми элементами и, в некоторых событиях, изотопом ³Не.
- О Элементный состав СКЛ, так же, как и их зарядовое состояние, отражает условия, в которых происходит ускорение, и является хорошим инструментом для изучения происхождения СКЛ.

Тип связи	Воздействие	Технологии		
Boorgeneouro	Генерация индукционных	Линии электропередач Длинные линии коммуникаций		
возмущение магнитного поля Земли	полеи	Трубопроводы		
		Мониторинг траектории на		
	Возмущения направления	космических аппаратах		
		Компас		
Ионосферные возмущения	Отражения, затухание при	Беспроводные системы		
	распространении	коммуникаций		
	Torrow house and	Спутники связи		
	помехи, флуктуация шума	Геофизическое просвечивание		
Солнечные радиовсплески		Беспроводные системы связи		
	Повышение радиошумов	Радарные системы		
		Спутниковая навигация		
Потоки частиц	Повреждение ячеек			
	солнечных батарей	Электроснабжение космических		
	Повреждение	аппаратов		
	полупроводниковой	Управление космическим		
	элементной базы Ложные	аппаратом		
	команды в	Мониторинг траектории на		
	полупроводниковых	космических аппаратах		
	системах			
	Зарядка поверхностей и	Электроника космических		
	внутренних материалов	аппаратов		
		Космонавты		
	Радиационное облучение	Пилоты и пассажиры полярных		
		рейсов		

