
◆ Integrati on Level
◆ CAN Controller Architecture
◆ Message Handling
◆ Acceptance Filtering
◆ Optional FunctionalityCA

N
Implementation

© CiA

Several companies have implemented in silicon the international
standardized Controller Area Network (ISO 11898). The layered data link
layer provides basic communication services such as transmission of data
and requesting of data. The CAN protocol also handles the detection of
failures as well as the error indication. All existing implementations use the
same protocol controller, which has to be compliant with the C or VHDL
reference model from Bosch. The implementation differ in the acceptance
filtering, the frame storage capabilities, and in additional, nice-to-have
features.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Stand-Alone CAN ControllerStand-Alone CAN Controller

¥ CAN Protocol
 Controller
¥ Message Filter
¥ Message Buffer
¥ CPU Interface

¥ CAN Protocol
 Controller
¥ Message Filter
¥ Message Buffer
¥ CPU Interface

¥ Additional
 Message Filter
¥ Higher Layer
 Protocol
¥ Application

¥ Additional
 Message Filter
¥ Higher Layer
 Protocol
¥ Application

¥ Signaling
¥ Bus Failure
 Management

¥ Signaling
¥ Bus Failure
 Management

MicrocontrollerCAN ControllerCAN Transceiver

CAN_H

CAN_L

Rx

Tx

Control and Status Line(s)

© CiA

There are some trade-offs between stand-alone and integrated CAN
peripherals. The integrated CAN peripheral is cheaper not only because of
the chip price itself, the design of the printed circuits boards is easier, and
space requirements and costs are lower. Although the software
development costs are about the same for both solutions, software
reusability may differ. Stand-alone CAN chips are designed to interface
different CPUs allowing the software developed for one system to be reused
in another system, even if the CPU is different. Software developed for an
integrated CAN peripheral may not function on another CPU with on-chip
CAN.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Integrated CAN ControllerIntegrated CAN Controller

¥ Signaling
¥ Bus Failure
 Management

¥ Signaling
¥ Bus Failure
 Management

MicrocontrollerCAN Transceiver

CAN_H

CAN_L

Rx

Tx

CAN Module
¥ Protocol Controller
¥ Message Filter
¥ Message Buffer
¥ CPU Interface

CPU Module
¥ Additional
 Message Filter
¥ Higher Layer
 Protocol
¥ Application

© CiA

Integrated CAN peripherals cause a lower CPU load than do stand-alone
controllers. The most critical factor is the amount of time required to
read/write to the CAN peripheral. In the case of an on-chip CAN controller,
the CAN registers are addressed using the internal address/data bus
designed for high-speed access. In the case of a stand-alone CAN chip the
CPU uses its external address/data bus or a serial communications link,
which of course is slower. The CPU load on an on-chip CAN is
approximately one-half of a stand-alone CAN chip. A CAN node using an
integrated CAN peripheral has a reliability advantage over a system using a
stand-alone CAN chip because of its smaller form factor. CAN chips are
shipped in large numbers and the combined price of a CPU and a stand-
alone CAN chip is still competitive. However, as CAN gains more market
acceptance, CPUs with on-chip CAN will be the solution of choice.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Single-Chip CAN NodeSingle-Chip CAN Node

Microcontroller

CAN_H

CAN_L

Transceiver
¥ Signaling
¥ Bus Failure
 Management

CAN Module
¥ Protocol Controller
¥ Message Filter
¥ Message Buffer
¥ CPU Interface

CPU Module
¥ Additional
 Message Filter
¥ Higher Layer
 Protocol
¥ Application

© CiA

The trend to integrate also the transceiver on the same chip as CAN
controller and microcontroller is becoming reality. First products for the
automotive applications are already designed. The main problem is the
combination of different technologies on one single chip.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Layered Architecture of CANLayered Architecture of CAN
Data Link Layer

Logical Link Control
¥ Acceptance Filtering
¥ Overload Notification
¥ Recovery Management

Medium Access Control
¥ Data En-/De-Capsulation
¥ Frame Coding (De-/Stuffing)
¥ Medium Access Management
¥ Error Detection and Signaling
¥ Acknowledgement
¥ De-/Serialization

Physical Layer

Physical Signaling
¥ Bit En-/Decoding
¥ Bit Timing
¥ Synchronization

Bus Failure
Management
(PLS-LME)

Fault
Confinement
(MAC-LME)

Supervisor

© CiA

Communication is identical for all implementations of the CAN protocol.
There are differences, however, in the extent to which the implementation
takes over message transmission from the microcontrollers. All CAN
controllers have a common structure consisting mainly of a CAN protocol
controller, a hardware acceptance filter, message memory, and a CPU
interface. The CAN protocol controller is responsible for handling all
messages transferred via CAN bus lines. This includes tasks such as
synchronization, error handling, arbitration, parallel/serial and
serial/parallel conversions. There is no difference between the CAN
protocol implementations, provided that they are based on the same
protocol version.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

CAN Controller ArchitectureCAN Controller Architecture

Hardware
Acceptance

Filter

Protocol Controller:
data encapsulation,

frame coding,
error detection
error signaling

acknowledgement
bit encoding

synchronization

Transmit
Message

Buffer

Receive
Message

Buffer

Tx

Rx

Status and Control Lines

C
P

U
 I

n
te

rf
ac

e

© CiA

Besides the protocol controller each CAN controller provides a hardware
acceptance filter to unburden the microcontroller from filtering all
messages. In addition, the CAN controller implements message buffers for
CAN data frames to be transmitted and for those which are received. The
acceptance filter and the message buffers as well as the CPU interface are
implementation-specific. These functions make the difference between the
CAN implementations.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Serial Link I/O ArchitectureSerial Link I/O Architecture

CAN
Protocol Controller

Tx

Rx

Port Controller
with Digital/Analog

Input/Output
Capability

Oscillator
Calibrator

© CiA

So-called Serial Link I/O (SLIO) components are CAN controllers without
programming capabilities. They are pre-configured CAN interfaces that
require a programmable CAN node to control this node.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Dual-CAN ArchitecturesDual-CAN Architectures

CPUCPU CPU with
Bridge Software

CPU with
Bridge Software

CAN
Controller 1

CAN
Controller 1

CAN
Controller 2

CAN
Controller 2

CAN
Controller 2

CAN
Controller 2

CAN
Controller 1

CAN
Controller 1

Hard-
ware

Bridge

Hard-
ware

Bridge

© CiA

Several CAN manufacturers have implemented two CAN modules on one
microcontroller to support bridge gateway developments. There are several
ways of transferring data between different CAN networks. Any realistic,
i.e. efficient solution is located somewhere between the following two
strategies: transfer and filtering of objects is either done entirely by the
microcontroller, or is handled by additional logic. For such double CAN
controllers message storage capability is required not only for data frames
received but also for those to be transmitted. Where both CAN modules use
the same object memory it is possible to receive a message on one network
and to transmit on the other without the interaction of the microcontroller.
This automatic transmission feature is also possible for Remote Frames.
Different identifiers on the source and the destination network are also
supported. Some of these implementations provide totally flexible
allocation of the message mailboxes. Of course, it is possible to run
different baud rates on the networks.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Joint Message MemoryJoint Message Memory

FIFO pFIFO p

FIFO p-1FIFO p-1

FIFO 2FIFO 2

FIFO 1FIFO 1

FIFO qFIFO q

FIFO q-1FIFO q-1

FIFO p+2FIFO p+2

FIFO p+1FIFO p+1

DataID

DataID DataID

DataID

Network 1 Network 2

with optional
acceptance
filter

with optional
acceptance
filter

new identifier
assignment

new identifier
assignment

© CiA

CAN controllers with bridge functionality may have implemented a
configurable data FIFO. The received CAN frames are filtered and
stored in the FIFO, and may be transmitted to the other CAN network
with a different identifier.

When both networks are running different baudrates, the CAN bridge
controller must implement to independent bus timing logic. To avoid
data corruption or loss of data a FIFO structure is a reliable solution.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

CAN Protocol VersionsCAN Protocol Versions

¥ CAN Protocol Specification 2.0 A: CAN Controller
compliant with this standard handles only standard
frames with 11-bit identifiers.

¥ CAN Protocol Specification 2.0 B passive: CAN
Controller compliant with this standard transmit only
standard frames with 11-bit identifiers, but checks
received standard frames as well as extended
frames with 29-bit identifiers (even the Acknowledge
is given).

¥ CAN Protocol Specification 2.0 B active: CAN
Controller compliant with this standard can receive
and transmit standard and extended frames.

© CiA

CAN (Controller Area Network), the serial bus system originally developed
by Bosch has been standardized in ISO 11898. Different versions have been
specified in the course of CAN’s history. The Bosch CAN specification
version 1.1 are upwards compatible to version 1.2, which is now the
current Bosch CAN version 2.0 part A. All these versions describe the
Standard CAN message format with 11-bit identifiers. In contrast to version
1.1, CAN version 1.2 allows the use of low-cost ceramic resonators at a bus
speed of up to 125 kbit/s. A quartz oscillator is required for the full bus
speed range of the CAN protocol (1 Mbit/s). In an existing CAN network
oscillator accuracy is determined by the CAN node with the highest
accuracy requirement. Ceramic resonators can only be used if all the nodes
in the network use the enhanced protocol.

New CAN controller designs must be compliant in minimum with CAN 2.0
B passive.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Classical Message BufferingClassical Message Buffering

Hardware
Acceptance

Filter

Single Transmit Buffer

Status and Control Lines

C
P

U
 I

n
te

rf
ac

e

P
ro

to
co

l
C

o
n

tr
o

lle
r

2nd Receive Buffer

1st Receive Buffer

© CiA

CAN controllers with intermediate buffers (formerly called BasicCAN
chips) have the logic necessary to create and verify the bitstream according
to the CAN protocol implemented as hardware. The simplest CAN
controllers with intermediate buffer have only two reception and one
transmission buffers.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Inner Priority InversionInner Priority Inversion

Hardware
Acceptance

Filter

Status and Control Lines

C
P

U
 I

n
te

rf
ac

e

P
ro

to
co

l
C

o
n

tr
o

lle
r

Low-Prior MessageLow-Prior Message

Receive Buffer(s)

not transmitted because of
higher-prior message traffic

H
ig

h
-P

ri
o

r
M

es
sa

g
e

© CiA

If only a single transmit buffer is used inner priority inversion may occur.
Because of low priority a message stored in the buffer waits until the
”traffic on the bus calms down”. During the waiting time this message
could prevent a message of higher priority generated by the same
microcontroller from being transmitted over the bus.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Three Transmit BuffersThree Transmit Buffers

Hardware
Acceptance

Filter

Status and Control Lines

C
P

U
 I

n
te

rf
ac

e

P
ro

to
co

l
C

o
n

tr
o

lle
r

Receive Buffer(s)

3rd Transmit Buffer

2nd Transmit Buffer

1st Transmit Buffer

Internal
Arbiter

Internal
Arbiter

© CiA

To overcome the inner priority inversion problem some of today's CAN
controllers with an intermediate buffer provide more than one transmit
buffer.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Overrun of MessagesOverrun of Messages

Hardware
Acceptance

Filter

Transmit Buffer(s)

Status and Control Lines

C
P

U
 I

n
te

rf
ac

e

P
ro

to
co

l
C

o
n

tr
o

lle
r

1st Message

2nd Message

3rd message can not be
stored if no buffer is empty

© CiA

Implementing only a few reception buffers may cause the loss of data
frames if the microcontroller is not fast enough to handle the interrupt
requests produced by received messages.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Global Receive BufferGlobal Receive Buffer

Hardware
Acceptance Filter(s)

Transmit Buffer(s)

Status and Control Lines

C
P

U
 I

n
te

rf
ac

e

P
ro

to
co

l
C

o
n

tr
o

lle
r

Global Buffer

© CiA

Receive Buffer(s)

Receive FIFOReceive FIFO

Hardware
Acceptance

Filter

Status and Control Lines

C
P

U
 I

n
te

rf
ac

e

P
ro

to
co

l
C

o
n

tr
o

lle
r Transmit Buffer(s)

Message 1

Message n

Message 2 to Message n-1

Receive FIFO

© CiA

Modern CAN controllers with intermediate message buffering capabilities
use deeper FIFO buffers, e.g. 64-byte. In the case of a data overrun
condition, a CAN controller of this kind can optionally generate an overrun
interrupt.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Classical Message StoringClassical Message Storing

Hardware
Acceptance

Filter

Status and Control Lines

C
P

U
 I

n
te

rf
ac

e

P
ro

to
co

l
C

o
n

tr
o

lle
r Transmit or Receive Message 1

Receive Message n

Transmit or Receive Message 2
to

Transmit or Receive Message
n-1

Dual-Ported RAM

© CiA

CAN controllers with object storage (formerly called FullCAN) function
like CAN controllers with intermediate buffers, but also administer certain
objects. The interface to the following microcontroller corresponds to a
dual-ported RAM. Messages received are stored in the defined memory
area, and only will be updated if a new message with the very same
identifier is received.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Overwriting of DataOverwriting of Data

Hardware
Acceptance

Filter

Status and Control Lines

C
P

U
 I

n
te

rf
ac

e

P
ro

to
co

l
C

o
n

tr
o

lle
r Message 1

Message n

Message 2 to Message n-1

Data m Data m-1

Dual-Ported RAM

Data m overwrites the
data m-1 even it is not
handled

© CiA

No message will be lost, but a newer one may overwrite the previous data.
This dual-ported memory is practically restricted to a limited number of
objects. Implementations are available today for between 16 and 64 object
memories.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Outer Priority InversionOuter Priority Inversion

© CiA

time

transmission requests

Node A

Node B

> 2 tB

high high

low

time
bus high low

Interframe space (IFM)

high

tB = bit-time

The problem of outer priority inversion may occur in some CAN
implementations. Let us assume that a CAN node wishes to transmit a
package of consecutive messages with high priority, which are stored in
different message buffers. If the interframe space between these messages
on the CAN network is longer than the minimum space defined by the CAN
standard, a second node is able to start the transmission of a lower prior
message. The minimum interframe space is determined by the Intermission
field, which consists of 3 recessive bits. A message, pending during the
transmission of another message, is started during the Bus Idle period, at
the earliest in the bit following the Intermission field. The exception is that
a node with a waiting transmission message will interpret a dominant bit at
the third bit of Intermission as Start-of-Frame bit and starts transmission
with the first identifier bit without first transmitting an SOF bit. The
internal processing time of a CAN module has to be short enough to send
out consecutive messages with the minimum interframe space to avoid the
outer priority inversion under all the scenarios mentioned.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Grouping of Message BuffersGrouping of Message Buffers

Hardware
Acceptance

Filter

Status and Control Lines

C
P

U
 I

n
te

rf
ac

e

P
ro

to
co

l
C

o
n

tr
o

lle
r

Message m+1
 to

Message n-1

Dual-Ported RAM

Group 1:
Message 1 to Message m

Group p:
Message n to Message q

© CiA

To optimize transfer of segmented data with the same or consecutive
identifiers some CAN implementations support the grouping of message
buffers.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Separate Transmit BuffersSeparate Transmit Buffers

Hardware
Acceptance

Filter

Status and Control Lines

C
P

U
 I

n
te

rf
ac

e

P
ro

to
co

l
C

o
n

tr
o

lle
r

Transmit Buffer(s)Transmit Buffer(s)
Internal
Arbiter

Receive Message 1

Receive Message n

Receive Message 2
to

Receive Message n-1

Receive Memory

© CiA

For nodes requiring to transmit the complete range of objects, some CAN
implementations provide a separate transmit buffer capability without
loosing the benefits of the advanced acceptance filtering.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

CPU InterfaceCPU Interface

Hardware
Acceptance

Filter

Protocol
Controller

Transmit
Message

Buffer

Receive
Message

Buffer

Tx

Rx

Status and Control Lines

C
P

U
 I

n
te

rf
ac

e

M
ic

ro
co

n
tr

o
ll

er

© CiA

Most of the stand-alone CAN controllers support several modes to connect
the microcontroller. Integrated CAN controllers have only one optimized
CPU interface.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Simple Message StructureSimple Message Structure

ID 10 ID 9 ID 8 ID 7 ID 6 ID 5 ID 4 ID 3
ID 2 ID 1 ID 0 RTR DLC3 DLC2 DLC1 DLC0

Data Byte 1
Data Byte 2
Data Byte 3
Data Byte 4
Data Byte 5
Data Byte 6
Data Byte 7

© CiA

Data Byte 8Data Byte 8

The message buffer structure has to provide in minimum the data
bytes, the 11-bit identifier, and the data length code.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

ID 25ID 25
ID 24 ID 23 ID 22 ID 21 ID 20 ID 19 ID 18 IDE
ID 17 ID 16 ID 15 ID 14 ID 13 ID 12 ID 11 ID 10

Data Byte 1
Data Byte 2
Data Byte 3
Data Byte 4
Data Byte 5
Data Byte 6
Data Byte 7

Advanced Message StructureAdvanced Message Structure

ID 9 ID 8 ID 7 ID 6 ID 5 ID 4 ID 3 ID 2
ID 1 ID 0 SRR RTR DLC3 DLC2 DLC1 DLC0

Control Bits ID 28 ID 27 ID 26

Additional Information
e.g. Time-Stamp

© CiA

Data Byte 8

Implementation-specific, the CAN controller may provide additional
information such control bits, further arbitration bits (29-bit identifiers),
and time-stamps

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Hardware Acceptance FilterHardware Acceptance Filter

Hardware
Acceptance

Filter

Protocol Controller:
data encapsulation,

frame coding,
error detection
error signaling

acknowledgement
bit encoding

synchronization

Transmit
Message

Buffer

Receive
Message

Buffer

Tx

Rx

Status and Control Lines

C
P

U
 I

n
te

rf
ac

e

© CiA

One of the most significant features of a CAN protocol controller is the
acceptance filtering capability. All CAN implementations provide some
hardware acceptance filters to relieve the microcontroller from the task of
filtering those messages which are needed from those which are not of
interest.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Simple Acceptance FilteringSimple Acceptance Filtering

ID 9 ID 8 ID 7 ID 6 ID 5 ID 4 ID 3 ID 2ID 10 ID 0ID 1

Receive Identifier

AC 6 AC 5 AC 4 AC 3 AC 2 AC 2 AC 1AC 7

Acceptance Mask (AC N {0, 1, donÔt care})

© CiA

A very simple hardware acceptance filter is a single 8-bit mask. Each
bit may be set to 0, 1 or donÕt care.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Multiple Acceptance FilterMultiple Acceptance Filter

11- or 29-bit identifier11- or 29-bit identifier RTRRTR

Receive Identifier

Double Filter Mode (2 x 32) Octuple Filter Mode (8 x 8)Quadruple Filter Mode (4 x 16)

8 Filter Masks

© CiA

Most of the modern implementations provide a multiple acceptance
filtering with programming capability, which allows a more flexible
filtering strategy as the simple acceptance filtering.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Single-Message FilteringSingle-Message Filtering

Receive Message 1
Receive Message 2
Receive Message 3
Receive Message 4
Receive Message 5
Receive Message 6
Receive Message 7
Receive Message 8

Receive Any or Some

Mask 1
Mask 2
Mask 3
Mask 4
Mask 5
Mask 6
Mask 7
Mask 8

No or Global Mask

© CiA

The so-called FullCAN implementations allow a single-message
filtering. Each of the receive message buffers is assigned to a specific
identifier. In many implementations one or two message buffers can
be used to receive all data frames (so-called BasicCAN option).

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Remote Frame HandlingRemote Frame Handling

❏ CAN controller with receive buffer or
receive FIFOs answers Remote Frames
only under CPU control.

❏ CAN Controller with standard message
storing answers Remote Frame
automatically without CPU control.

❏ CAN Controller with advanced message
storing answers Remote Frames
automatically and optionally under CPU
control.

© CiA

Most of the so-called FullCAN implementations provide automatic
transmission of remotely requested frames. This is not required in some
applications because there is no control if the data frame is still valid. In
cases where the microcontroller is gone, the CAN controller could transmit
information which is no longer valid. Some CAN chips can therefore
disable the automatic response to Remote frames and the CAN controller
will indicate the reception of a Remote frame by an interrupt. The
microcontroller then has to transmit the requested Data frame.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

DLC > 8 in Transmit MessagesDLC > 8 in Transmit Messages

The behavior of CAN Controllers regarding DLC greater than 8 in
transmitted frames is different:

◆ Some CAN implementations ignore Òout of rangeÓ
DLC, and transmit 8 byte of data and the ãwrongÒ
DLC.

◆ Some CAN implementations ignore not allowed
DLC, and transmit 8 byte of data and a DLC of 8.

◆ Some CAN implementations donÔt transmit any
frame, if they detect not allowed DLC.

© CiA

All these implementations are compliant with the ISO 11898-1 standard.
The CAN protocol allows to use all DLCs without any restrictions, the
DLCs 9 to 15 may be used for application-specific purposes.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Additional FunctionalityAdditional Functionality

❐ Readable Error Counters

❐ Programmable Warning Limits

❐ Interrupt Request Generation

❐ Arbitration Lost Capture

❐ Sleep Mode for Power Reduction

❐ Time-stamp Capability and Frame Counting

© CiA

Readable Error Counters. For diagnostic purposes some of the CAN
controllers provide readable Receive and Transmit Error Counters.

Programmable Warning Limits. An Error Code Capture Register can
distinguish between the different error types.

Interrupt Request Generation. Besides the interrupt requests for reaching
the passive error state and the bus-off state, other interrupt requests are
optionally generated by reaching the warning limit, reception of a message,
successfully transmitting a message etc.

Arbitration Lost Capture. Using this feature in combination with the Single
Shot option (is specified in the ISO 11898 frame scheduling option), the
system designer can check the communication behavior.

Sleep mode for Power Reduction. During sleep mode the clock is switched
off, only the wake-up logic is still active.

Time-stamp Capability and Frame Counting. This is especially useful in
real-time applications. Some CAN chips implement 16-bit frame counters.

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

Scalable Processor ArchitectureScalable Processor Architecture

© CiA
Standardized Connector

ECU

CAN Subsystem

Standard
Vehicle

Processor
CPU Core

And
Peripherals

SVP
I/O Scalable

Memory
Subsystem

SPI
I2C

Optional
SVP

Functions

CAN Transceivers

SVP

The Scalable Processor Architecture allows developing ECUs
(electronic control units) suitable for different applications. They may
be scalable in communication, functionality, and performance. They
should provide several CAN interfaces for different purposes. Such
an Standard Vehicle Processor should be able to handle about
15,000 interrupts per second, which is required when the SVP is
connected to one high-speed, two low-speed, and one multi-media
networks.

CAN License ContractsCAN License Contracts

Performance of Bosch

¥ Delivery of the CAN Protocol specification together with comprehensive explanations
¥ Delivery of a functional model (in C and optionally in VHDL)
¥ Granting the right to use the CAN Know-how and the CAN Patents for manufacturing
 ICs (high-volume license), ASICs (low-volume license), or research purpose only
 (University license)

Compensation of Licensee

¥ Lumpsum payment of 20 000 DM (low-volume), or 5 000 DM (Universities), or 2%
 (maximum of 0,20 DM) of the net sales (high-volume)
¥ optional 20 000 DM (5 000 DM for Universities) for VHDL functional model
¥ Back license for improvements on the CAN Specification (not for Universities)
¥ Must of compatibility (not for Universities)
¥ Use of basic designation ãCANÒ (not for Universities)

© CiA

Bosch holds several patents on the CAN protocol, most of them valid for a
further five to ten years. This means that it is not possible to implement the
CAN protocol in hardware, firmware or software without a license from
Bosch. Bosch provides licensees with the CAN functional model in C or
VHDL and grants the right to use CAN know-how and CAN patents for the
manufacture of integrated circuits or ASICs.

Bosch holds the following patents relevant for the CAN protocol:

DE 35 46 684 22.2.2005

DE 35 46 662 22.2.2005

DE 35 46 664 22.2.2005

US 500 16 42 19.3.2008

US 530 33 48 12.4.2011

US 552 42 13 4.6.2013

JP 198 92 53 17.2.2006

JP 204 11 07 17.2.2006

JP 254 55 08 17.2.2006

FR 851 7780 2.12.2005

© CiA ◆ Am Weichselgarten 26 ◆ D-91058 Erlangen ◆ headquarters@can-cia.de

