Источники пучков заряженных частиц

Логачев П. В.

2013

Программа курса.

- Источники электронов.
- 1.Процесс эмиссии электронов и формирование пучка. Эволюция функции распределения электронов по энергии при ускорении пучка. Быстрое и адиабатическое ускорение. Определение электронной температуры и процессы температурной релаксации в электронном пучке после ускорения.
- 2. Термоэмиссионные катоды. Термоэлектронная эмиссия с поверхности металлов. Закон Ричардсона-Дэшмана. Эмиссия с активированной поверхности. Эмиссия с поверхности полупроводника (BaO).
- 3. Фотоэлектронная эмиссия. Три стадии фотоэмиссии. Металлические фотокатоды. Полупроводниковые фотокатоды. Фотокатоды с отрицательным электронным сродством.
- 4. Автоэмиссионные катоды. Ферроэлектрические катоды.
- Источники позитронов.
- Источники позитронов для ускорителей на встречных пучках. Выбор материала для конверсионной мишени источника позитронов.
 Энергетическое и угловое распределение позитронов на выходе мишени. Акцептанс соленоида и согласующее устройство.
 Четвертьволновое согласующее устройство. Концентратор потока.

Литература

- П.В. Логачёв. Диссертация на соискание ст. к.ф.-м.н. (http://www.inp.nsk.su/~logatcho/lectures/).
- А.Б. Киселев. Металлооксидные катоды электронных приборов. – М. Издательство МФТИ, 2002, ISBN 5-89155-068-7.
- А.Г. Берковский, В.А. Гованин, Н. Зайдель, Вакуумные фотоэлектронные приборы, Энергия, Москва, 1976 г..
- Я. Браун, Физика и технология источников ионов. Москва, Мир, 1998.
- Физические величины. Справочник. Под ред.
 И.С. Григорьева и Е.З. Мелихова,
 Энергоатомиздат, 1991.

Полупроводниковая модель

$$n(\varepsilon) = rac{1 \cdot n_0}{e \cdot rac{(\varepsilon - \varepsilon_\phi)}{kT} + 1}$$
 —Распределение Ферми:
электронный газ в металле

$$\frac{T_{\parallel}}{2} = \frac{m \delta V_{\parallel}}{2} - \frac{B_{\text{ычисление продольной температуры в}}{C.O. пучка}$$

$$\delta V_{\parallel}^{2} = <\Delta V_{\parallel}^{2} > - <\Delta V_{\parallel} >^{2}$$

 $T_{\parallel} = \frac{T_k^2}{2W}$ – Окончательное выражение для продольной температуры пучка

Поперечно-продольная релаксация

Процесс перехода энергии из поперечного движения в продольное называется поперечно-продольной релаксацией.

В отсутствие магнитного поля *поперечно- продольная* релаксация рассчитывается:

$$\frac{dT_{\parallel}}{dz} = \frac{\pi e^3 j L_c k}{w} \sqrt{\frac{m}{T_{\perp}}}$$

Выражение для поперечно продольной релаксации еще называется эффектов Бурша (Boersch H. Zs. Phys. 139, p115, 1954).

Способ подавления поперечно-продольной релаксации

При достаточно сильном сопровождающем магнитном поле средний ларморовский радиус электронов будет значительно меньше среднего межчастичного расстояния

$$\rho_{\perp} << n^{3}$$

$$\rho_{\perp} = \frac{\sqrt{T_{\perp}mc}}{eB}$$

Кроме того:

 $r_{\min} = \frac{e^2}{T_{\parallel}} -$ Среднее минимальное расстояние сближения двух электронов

Продольно-продольная релаксация

При подавленной поперечно-продольной релаксации, продольная температура пучка определяется продольно-продольной релаксацией!

В приближении пучка как однокомпонентной плазмы, имеем:

$$\frac{T}{2} = U_{\kappa o p} = \frac{e^2}{\langle r \rangle} \qquad \langle r \rangle = \frac{2e^2}{T}$$

Кроме того электронную плазму даже самого холодного катода можно считать "горячей":

$$T_k >> e^2 n^{\frac{1}{3}}$$

При такой температуре расположение электронов в прикатодной плазме можно считать случайным, некоррелированным. Действительно, ведь тепловой энергии вполне достаточно, чтобы минимальное расстояние сближения двух электронов было много меньше величины $n^{1/3}$. Такие флуктуации плотности несут в себе значительный запас потенциальной энергии. А поскольку обычно ускорение пучка происходит быстро по сравнению с периодом плазменных колебаний в пучке, то эти флуктуации практически переносятся в ускоренный пучок и даже переходят в кинетическую энергию.

Установившаяся температура

$$T_{\parallel} = \frac{T_k^2}{2W} + 2e^2 n^{\frac{1}{3}}$$

Этапы развития источников электронов на основе термоэлектронной эмиссии

1883 год - Впервые испускание электронов нагретым телом обнаружил Томас Эдисон.

1896 год - Джозеф Томсон показал, что нагретым катодом испускаются элементарные частицы электричества, несущие отрицательный заряд – электроны.

1901 год - Ученик Томсона, Оуэн Ричардсон исследуя термоэлектронную эмиссию платины, вывел уравнение для тока эмиссии из металлов

$$j_{\text{эмиссии}} = AT_k^2 \exp(-\frac{e\varphi}{kT_k})$$

Этапыразвитияисточниковэлектроновнаосноветермоэлектронной эмиссииоснове1903 год - Немецкий физик Артур Венельтосозналдостоинствананесениянаповерхностькатодоввещества, которое значительно увеличивало эмиссию.

Этапы развития оксидных катодов

Первый этап длился до середины 20-х годов 20го века и представлял собой период накопления научных фактов. К концу Первой мировой войны было выпущено почти полмиллиона радиоламп с оксидным катодом.

Второй этап развития: 30е-40е годы 20 века. Характеризовался совершенствованием катодных материалов, разработкой катодных узлов, развитием СВЧ техники. Крупным достижением тех лет стало создание в США "губчатых" катодов. В них смесь карбонатов бария и стронция втиралась в пористую губку, образованную припеканием никелевого порошка к поверхности подложки • *Третий этап 60-70 годы*. Была осознана особая роль кристалло-окислов щелочноземельных металлов, однако единой и полной теории нет до сих пор. Развитие твердотельной электроники в 60-90 гг. прошлого века сузило область применения катодов.

Оксидные катоды:

Полупроводниковая модель

Важные свойства границы металла:

•Характерный размер области пространственного заряда у поверхности металла порядка размера кристаллической решетки.

•Покрытие поверхности чистых металлов тонкими пленками других металлов и их оксидов позволяет значительно снизить работу выхода частицы из металла.

Уравнение Ричардсона
$$j_e = [AT_k^2 \exp(-\frac{\varphi}{T})] \cdot (1 - r)$$

Пример величины плотности тока для вольфрама:

$$W, T = 2300^{\circ} K \Longrightarrow j_e = 2 \frac{A}{cM^2}$$

Физика оксидного катода

состояниями.

Схематический разрез кристалла ВаО

Ba		Ba		Ba	. /	Ba	Ì.,	Ва
Ö`	Ba	0	Ba	∕ö`	. Ba	$\langle 0 \rangle$	Ba	ö
Ba	ö	ва	ö	ва	ö	Ba	ö	Ba
0	Ba	0	Ba	0	Ba	0	Ba	0
Ba	0	Ва	0	Ba	0	Ba	0	Ba
0	Ba	0	Ba	0	Ва	0	Ba	0
Ва	0 ₁₅	-,Ba	0	Ba	Ξ)	Ba	0	Ba
0	Ba	²⁴ O	Ba	0	ва	0	Ba	0
Ba	0	Ba	0	Ba	0	Ba	0	Ba

Поверхностный слой [Ξ] – F-центры

Выбор катода для конкретного приложения

Факторы влияющие на выбор катода :

- •Вакуумные условия и состав остаточных газов и паров.
- •Плотность тока эмиссии
- •Срок службы катода
- •Требования к экономичности по электроэнергии и
- стоимости катодного узла.

Термоэмиссионные катоды:

- •Катоды из чистых металлов и сплавов
- •Металл-оксидные катоды
- •Катоды из гексаборида лантана

3 стадии фотоэлектронной эмиссии 1

стадия фотонов и фотовозбуждение электронов из валентной зоны в зону проводимости:

$$dN_{\phi} = \alpha_{\phi} N_{\phi} (1-R) e^{-\alpha x} dx$$

 $dN_{\phi_{2}}$ - число фотоэлектронов N_{ϕ} - число падающих фотонов $lpha = rac{1}{e_{no2n}}$ - обратная глубина поглощения $lpha_{\phi_{2}}$ - нормировочный коэффициент

 коэффициент отражения фотонов от поверхности катода.

2 стадия

Второй стадией процесса фотоэмиссии является движение фотоэлектронов к поверхности катода. Вероятность того, что электрон доберется до поверхности с расстояния х из глубины катода:

$$P_r = e^{-\frac{x}{e_{\partial u\phi}}} \qquad e_{\partial u\phi} = \sqrt{D\tau_e}$$

D - коэффициент диффузии

т_e - время жизни фотоэлектрона в зоне проводимости
по процессу рекомбинации с дыркой.

В дополнении к этому, сталкиваясь с решеткой и с другими электронами, фотоэлектроны теряют энергию, опускаясь ниже уровня вакуума, и не могут выйти из катода.

3

Егнедиятадия связана с проходом фотоэлектронов через поверхность катода. На этом этапе, как правило, лишь малая часть (около 1%), имеющих достаточную энергию, сразу выходит в вакуум. Основная же часть электронов захватывается на поверхностные уровни, и, перемещаясь по этим уровням, может рекомбинировать или выйти в вакуум.

Вероятность прохождения фотоэлектрона через поверхность :

Металлические фотокатоды

 $e_{\partial u \phi} << e_{norn}$

Большинство фотоэлектронов теряют энергию при столкновении с электронами из зоны проводимости И приходят к поверхности с энергией меньшей энергии уровня вакуума. Этот процесс значительно уменьшает квантовую аффективность << | УΒ α $\Delta \varepsilon < 0$ ¶ З.П. Это связанно большой С величиной работы выхода,

даже в активированном состоянии и с большой шириной заполненной части

У металлов коэффициент отражения света от поверхности близок к единице:

$$(1-R) << 1$$

В силу вышеизложенных причин, величина квантовой эффективности для металлических фотокатодов составляет:

 $Q \sim 10^{-4} - 10^{-5}$

Полупроводниковые катоды $e_{\partial u \phi} \approx e_{norn}$

а) Зона проводимости почти
чистая (там только
фотоэлектроны) по этому там не
с чем сталкиваться.

б) Столкновения с электронами
 валентной зоны сильно
 подавлены, поскольку
 существует запрещенная зона
 большой величины

в) Столкновения с решеткой почти упругие, и не приводят к

разница в энергиях уровня вакуума и дна зоны проводимости значительно меньше ширины запрещенной зоны. В данном случае основная масса фотоэлектронов имеют энергию выше уровня вакуума

GaAs фотокатод

Превышение уровня энергии вакуума над уровнем дна зоны проводимости не активированного GaAs фотокатода 3,5 эВ, что больше ширины запрещенной зоны (1,37 эВ). Это К отсутствию подавления столкновений приводит фотоэлектронов с электронами валентной зоны, и энергия электронов после столкновения меньше таких уровня вакуума и находится в зоне проводимости, что резко снижает эффективность. Однако квантовую нанесение на поверхность GaAs фотокатода атомарного Cs+O СЛОЯ позволяет "опустить" уровень энергии вакуума ниже уровня проводимости (отрицательное электронное дна ЗОНЫ сродство)

Такие фотокатоды обладают рекордно большой квантовой эффективностью. В качестве основы такого фотокатода часто используют GaAs – р типа

n тип: электроны с донорных уровней в глубине материала свободные переходят на поверхностные уровни И образуют отрицательный пространственный заряд на Это поверхности. препятствует выходу электронов в вакуум.

р тип: электроны с более поверхностных высоких уровней переходят на акцепторные уровни Β запрещенной зоне И создают вблизи поверхности положительный пространственный заряд. Это способствует выходу электронов в вакуум.

Основные законы фотоэмиссии

- 1) Фототок в режиме насыщения прямо пропорционален интенсивности падающего на фотокатод излучения.
- Для каждого вещества существует длинноволновая граница λ₀. При λ > λ₀ фотоэмиссии нет. Соответствующую пороговую энергию кванта называют фотоэлектрической работой выхода.
- Максимальная кинетическая энергия выходящих из фотокатода электронов линейно возрастает с частотой падающего излучения и не зависит от его интенсивности.
 Этот закон нарушается при больших мощностях излучения, когда становятся вероятными многофотонные рассеяния.

Наиболее распространенные фотокатоды и технологии их изготовления

Сурьмяно-цезиевый фотокатод (SbCs₃).

Применяется в фотоэлектронных приборах. Открыт П.Герлихом в 1936 году. *Технология приготовления:*

а) Обезгаживание подложки при 400-420°С, Р=10-6 Торр

б) Напыление *Sb* (5-6 нм, 15-20 атомных слоев)

Полупрозрачный 75-80% пропуск света лампы накаливания

Непрозрачный 150 нм (исчезновение видимого света ламы накаливания)

- в) Реакция пленки Sb с парами Cso
- Пленка приобретает красноватый цвет
- Сопротивление пленки увеличивается на много порядков
- Возникает фотоэмиссия в видимой области спектра

Многощелочной фотокатод

Технология приготовления:

а) Обезгаживание подложки и контейнера (аналогично SbCs3 фотокатоду)

б) Изготовление *K3Sb* фотокатода обработкой слоя *Sb* в парах *Na* при температуре 180-220°С для непрозрачного фотокатода.

в) Обработка *K3Sb* в парах *Na* при температуре 180-230°С, при этом идет замещение части *K* на *Na*. Обработка идет до резкого падения фототока, свидетельствующего об избытке *Na*

г) Для образования соединения *Na2KSb* на температуре 160°С поочередно допыляют *Na* и *K* до достижения максимальной величины тока фотоэмиссии.

д) Na2KSb поочередно обрабатывается небольшим количеством Cs и Sbпри 160°С до получения максимальной фотоэмиссии. $Sb + K \longrightarrow K_3Sb \longrightarrow Na_{>2}K_{<1}Sb + K + Sb \longrightarrow Na_2KSb + Cs + Sb \longrightarrow (Cs)Na_2KSb$

Кислородно-серебряно-цезиевый фотокатод: Адтоста Бриготовления:

Этот фотокатод трудно сделать полупрозрачным, для работы на просвет, из-за разрыва пленки при толщинах менее 20нм. Как правило, такой катод делают в непрозрачном варианте.

а) Обезгаживание бронзовой подложки при температуре 450°С

б) Напыление серебра до исчезновения цвета бронзы (примерно 150 атомных слоев). Бомбардировка серебра ионами кислорода в тлеющем ВЧ разряде.
Сопротивление окисленного поверхностного слоя велико, и растет с окислением.

в) Обработка *Cs* (не очень хороший метод). Избыток *Cs* необратимо портит фотокатод. При этой операции прибор нагревается до 150-200°С, а сам катод остается при комнатной температуре. Сs перегоняется на фотокатод, пока последний не станет темно - коричневым.

Активация катода

Agonecc активации GaAs фотокатода заключается в заранее подготовленную поверхность нанесении на приблизительно одного атомарного слоя Cs и O. Подготовка заключается в предварительном прогреве кристалла до Т~ 635°С с одновременным прогревом цезиевых испарителей и генератора кислорода до номинальных температур в течение 10 минут. Затем 0,5 часа прогревают кристалл на T~ 635°C . Далее дают кристаллу остыть (около часа). Вакуум при прогреве должен быть не хуже Р=10-9 Торр.

В процессе активации необходимо контролировать вакуум и эмиссионную способность катода, и иметь мощную геттерную откачки. На рисунке изображены зависимости фототока (пунктирная линия) и вакуума (сплошная линия) от времени в процессе активации арсенид-галлиевого фотокатода.

Эмиссия поляризованных электронов

Освещение арсенид-галиевого фотокатода светом с круговой поляризацией и соответствующей длиной волны приводит к ориентации спина фотоэлектронов в направлении падения излучения. На рисунке приведена схема оптических переходов GaAs фотокатода, задействованных в процессе фотоэмиссии. Максимальная возможная степень поляризации определяется:

Основные параметры широко используемых фотокатодов

	Металлы	Полупроводники и изоляторы	GaAs с отрицательным электронным сродством
Основной типстолкновений	Электрон- электронный	Электрон-фотонный	Электрон- фотонный
Положение уровня вакуума относительно дна зоны проводимости	выше	выше	выше
Красная граница фотоэмиссии	Cs - Pt 689нм - 219нм 1.8эВ - 6.65эВ	Cs3 - SbNa2K(Cs) 652нм - 826нм 1.9эВ - 1.6эВ	GaAs(Cs,O) 992нм - 652нм 1.25эВ - 1.9эВ
Квантовая эффективность	$8 \cdot 10^5 - 4 \cdot 10^{-4}$	0.05-0.25	0.01-0.6
Время отклика фотокатода	$10^{-15} - 10^{-14}c$	$10^{-13} - 10^{-12}c$	$2 \cdot 10^{-10} - 7 \cdot 10^{-9} c$
Максимальный импульсный ток и длительность импульса	Более 1 кА/см Менее 30 пс	Более 200 А/см Менее 100 пс	Более 4 А/см 2 пс
Особые условия	$10^{-8} - 10^{-9} Topp$	$10^{-10} - 10^{-11}Topp$	$10^{-10} - 10^{-11}Topp$

Полевая электронная эмиссия

Явление полевой эмиссии заключается в испускании электронов телами под действием внешнего электрического поля у их поверхности.

При этом:

$$E \ge 10^9 \frac{B}{M}$$

$$j(\frac{A}{cM^{2}}) = 1,54 \cdot 10^{-6} \frac{E^{2}}{\varphi} \exp\{-\frac{6,79 \cdot 10^{7}(\varphi)^{\frac{3}{2}}}{E} \times \theta(\frac{3,62 \cdot 10^{-4} E^{\frac{1}{2}}}{\varphi})\}$$

$$\varphi \to (\Im B), E \to (\frac{B}{cM}), \theta(x) \to \phi y$$
нкция_Нордгейна

Можно отметить, что полевая эмиссия зависит от электрического поля так же, как термоэмиссия зависит от температуры. Полевая эмиссия используется в электронной и ионной микроскопии, в сильноточных ускорителях электронов и в импульсных источниках рентгеновского излучения высокой интенсивности.

эмиттера.

Зависимость критической (наибольшей неразрушающей эмиттер) плотности тока ПЭ металлического острия от угла раствора конуса катода. Материал катода – вольфрам, длительность импульсов тока 3.5 мкс, частота повторения 50 Гц. Кружки – эксперимент, заштрихованная полоса - расчет

Источники позитронов

В настоящее время известно два процесса, практически пригодных для массового производства позитронов, — это β^+ распад радиоактивных изотопов и рождение электрон-позитронных пар при прохождении релятивистского фотона в поле ядра атома. Источники позитронов, основанные на β^+ распаде, плохо подходят для ускорительных систем из-за относительно невысокой интенсивности рождения частиц, а также по причине сложности сбора полученных позитронов в короткие узконаправленные сгустки.

В случае рождения электрон-позитронных пар при прохождении релятивистского фотона в поле ядра атома есть несколько способов получить этот фотон:

а) Тормозное излучение электрона высокой энергии в поле ядра;

б) Комптоновское рассеяние мягких фотонов на электроне высокой энергии;

в) Излучение электрона высокой энергии в спиральном ондуляторе с возможностью получить поляризованные позитроны. Наиболее часто в ускорительной технике для производства позитронов используется процесс рождения электрон-позитронных пар в электромагнитном ливне.

Лавинообразное размножение частиц происходит до тех пор, пока электроны и позитроны не замедлятся настолько, что потери энергии на тормозное излучение сравняются с ионизационными потерями. Эта критическая энергия для разных веществ может быть приблизительно подсчитана по формуле:

$$E_c = \frac{800 \ M \Im B}{Z + 1.2},$$

Типичный продольный размер, на котором развивается электромагнитный ливень, называется радиационной длиной, которая приближенно равна:

$$X_0(cM) = \frac{716, 4 A}{\rho(\frac{2}{cM^3})Z(Z+1)\ln(\frac{287}{\sqrt{Z}})},$$

Полное число позитронов в максимуме электромагнитного ливня, рожденного электроном с энергией Е, дается выражением:

$$N_{e^+} \approx \frac{0.15}{\sqrt{\ln(E/E_c) - 0.37}} \cdot \frac{E}{E_c},$$

При этом выход позитронов (positron yield): $Y = \frac{1}{E} \cdot \frac{N_+}{N_-}$,

мишени. Спектры получены с помощью программы GEANT [Geant] (кол-во падающих на мишень электронов — 2·10³, энергия электронов — 280 МэВ, длина танталовой мишени — 12 мм). Общее число вышедших из мишени позитронов — 2,4·10³ (расхождение с формулой 2 объясняется тем, что приблизительно половина родившихся в ливне позитронов аннигилирует внутри мишени). Спектры слабо зависят от энергии первичного электронного пучка при оптимальной толщине мишени.

30

Е, ГэВ

Выбор конверсионной мишени

Как правило, в качестве мишени используют тантал или сплав вольфрама с рением.

Выход позитронов, пригодных к дальнейшему ускорению в линейном ускорителе, при оптимальной длине мишени

Для коротких интенсивных электронных сгустков был экспериментально установлен предел по разрушению Вольфрам-Рениевой мишени:

$$\rho = \frac{N_E_{-}}{\pi r_n^2} < 2 \cdot 10^{12} \frac{\Gamma \Im B}{M M^2}$$

Итак, для оптимальной длины мишени:

$$E_{-} = 0.3 \Gamma \ni B : \begin{cases} 30\% \to mепло \\ 50\% \to фотоны \\ 20\% \to e^{+}e^{-} \end{cases}$$

Сравним сгустки энергией 0.3 и 30 ГэВ при оптимальной толщине мишени:

	%E(<u>hv</u>)	%E(e+e)	N _e -
			N_{e^+}
0.3 ГэВ	50%	20%	2
30 ГэВ	45%	20%	1.5

Почему начальный этап ускорения позитронов выгодно проводить в

доленоведе:ноида.

чтобы увеличить Для того сбор позитронов, нужно по возможности $\frac{eB}{\gamma mc} \cdot \frac{r}{2} = \beta_{\perp} c \Longrightarrow p_{\perp} = \frac{eBr}{2c}$ эффективно согласовать позитронного фазовый пучка С Функцию акцептансом соленоида. такого согласования выполняет «Согласующее устройство» «matching device».

Итого, акцептанс соленоида:

Не зависит от продольного импульса Пропорционален квадрату радиуса соленоида Линейно растет с ростом поля.

Типы согласующих устройств <u>1) Четвертьволновой трансформатор.</u>

Четвертьволновый трансформатор представляет собой короткий импульсный соленоид. Конверсионная мишень располагается в начале этого соленоида, а его длина и магнитное поле подбираются таким образом, чтобы поперечный импульс позитронов компенсировался частицы получают на выходе ударом, который соленоида. Четвертьволновый трансформатор хорошо фокусирует позитроны $\frac{2\pi}{T_t} = \frac{eB_T}{\gamma mc} \Longrightarrow \frac{T_t}{2} = \frac{\pi \gamma mc}{eB_T}$ **B** 1 $2R - 2r = R_0$ $L = c\beta_z \frac{\pi\gamma mc}{eB_x} \qquad \beta_z \approx 1$ Вт R₀ 2r $L \Box \frac{\pi \gamma mc^2}{eB_{\tau}} r = \frac{p_{\perp}c}{eB_{\tau}} R = \frac{p_{\perp}c}{eB_{s}}$ 2Ŕ Bs $\mathbf{z} \qquad R_0 = \frac{2p_\perp c}{e} (\frac{1}{B_c} - \frac{1}{B_T})$ L

2) Концентратор потока.

В согласующем устройстве на основе концентратора магнитного потока используется фокусировка частиц в спадающем магнитном поле. Позитронный пучок в этом устройстве расширяется в магнитном поле, спадающем от максимального значения вблизи конверсионной мишени до минимального в ускоряющей структуре. Преимущество данного устройства заключается в меньшей зависимости его фокусирующих Свойств от энергии позитронов поле подчиняется следующей зависимости: $B \cdot r^2 = const$

Это справедливо, если:

$$\frac{dB_z}{dz} \frac{1}{B_z} \Box \frac{eB_z}{2p_\perp c}$$

Такое согласующее устройство лучше согласует в более широком

диапазоне импульсов позитронов

Величина:

$$\frac{dB_z}{dz}\frac{1}{B_z}$$

принимает минимальное значение при:

$$B_z = \frac{B_c}{1 + gz}$$

где

$$g = \frac{1}{L} \left(\frac{r_{cmpykm}^2}{r_{Muuehu}^2} - 1 \right)$$

Максимальный продольный импульс:

$$p_c = \frac{eB_c}{2gc}$$

магнитного поля концентратора. Сплошная линия — продольное поле, пунктирная — поперечное

Релятивистская разностная схема

1. Базовая система единиц: CGSE.

В начальный момент времени t=0 задаются декартовы координаты x,y,z и импульсы Px, Py, Pz частиц

2. Преобразование величин полей из СИ в CGSE:

$$E_{CGSE} = \frac{E_{CH}}{30000}$$

$$H_{CGSE} = H_{CH} \cdot 1.2566 \cdot 10^{-2}$$

Движение идет во внешних полях:
 $E_x, E_y, E_z, H_x, H_y, H_z$

3. Внутренняя система единиц разностной схемы:

$$\begin{split} \Delta t - \text{минимальный временной шаг разностной схемы} \\ x(cm) &\to \frac{x(cm)}{c\Delta t}; \ x_{enymp} = \frac{x(cm)}{c\Delta t} = x(cm) \cdot fl; \ \text{где} \ fl = \frac{33.35640952}{step(nc)} \\ p_x &\to \frac{p_x}{m_0 c}; \ p_{x \text{ enymp}} = \gamma \beta_x; \\ \gamma &= \frac{1}{\sqrt{1 - \beta_x^2 - \beta_y^2 - \beta_z^2}}; \gamma = \sqrt{1 + p_{x \text{ enymp}}^2 + p_{y \text{ enymp}}^2 + p_{z \text{ enymp}}^2} \\ E_{enymp} &\to \frac{E_{CGSE}e}{m_0 c} \Delta t; \\ H_{enymp} &\to \frac{H_{CGSE}e}{m_0 c} \Delta t; \\ \frac{e\Delta t}{m_e c} = 1.758820175 \cdot 10^{-5} \cdot \Delta t(nc) \text{ (электроны)} \\ \frac{e\Delta t}{m_p c} = 9.578834102 \cdot 10^{-9} \cdot \Delta t(nc) \text{ (протоны)} \end{split}$$

4. Алгоритм работы разностной схемы: один цикл соответствует

временному интервалу длительностью 2Δt

Внутреннее устройство одного цикла:

1) Расчет электрических полей Ex, Ey, Ez в точках, где находятся частицы; заполняются массивы Ex_j, Ey_j, Ez_j, *j* – номер частицы.

3) Вычисляется у по формуле:

$$=\sqrt{1+p_{xj}^{2}+p_{yj}^{2}+p_{zj}^{2}}$$

4) Вычисляются новые скорости по новым импульсам

5) По новым скоростям вычисляются новые координаты

Здесь приращение координат за промежуток времени:

γ

$$\Delta t \begin{cases} x_j = x_j + v_x \\ y_j = y_j + v_y \\ z_j = z_j + v_z \end{cases}$$

6) По новым координатам частиц ведется расчет магнитных полей H_{xj}, H_{yj}, H_{zj}, в местах расположения частиц, *j* – номер частицы.

7) По новым импульсам вычисляются новые значения ү. Вычисляются значения скоростей (после поворота в магнитном поле)

Скорости до поворота в магнитном поле:

$$v_x = \frac{P_{x_j}}{\gamma}$$
 $v_y = \frac{P_{y_j}}{\gamma}$ $v_z = \frac{P_{z_j}}{\gamma}$

Расчет магнитных полей:

$$H_{x'} = \frac{H_{x_j}}{\gamma} \qquad \qquad H_{y'} = \frac{H_{y_j}}{\gamma} \qquad \qquad H_{z'} = \frac{H_{z_j}}{\gamma}$$

$$b_{2} = 1.0 + H_{x'^{2}} + H_{y'^{2}} + H_{z'^{2}}$$

$$b_{1} = 2.0 - b_{2}$$

$$b_{3} = 2.0(v_{x} \cdot H'_{x} + v_{y} \cdot H'_{y} + v_{y} \cdot H'_{y})$$

$$f_{x} = 2.0(v_{y} \cdot H'_{z} - v_{z} \cdot H'_{y})$$
$$f_{y} = 2.0(v_{z} \cdot H'_{x} - v_{x} \cdot H'_{z})$$
$$f_{z} = 2.0(v_{x} \cdot H'_{y} - v_{y} \cdot H'_{x})$$

Новые значения скоростей после поворота в магнитном поле:

$$v_{x} = \frac{v_{x} \cdot bl + f_{x} + H'_{x} \cdot b_{3}}{b_{2}}$$
$$v_{y} = \frac{v_{y} \cdot bl + f_{y} + H'_{y} \cdot b_{3}}{b_{2}}$$

$$v_z = \frac{v_z \cdot b\mathbf{1} + f_z + H_z' \cdot b_3}{b_2}$$

8) По скоростям рассчитывается второе за цикл половинное приращение координат:

$$x_{j} = x_{j} + v_{x}$$
$$y_{j} = y_{j} + v_{y}$$
$$z_{j} = z_{j} + v_{z}$$

9) По новым скоростям рассчитываются новые значения импульсов:

$$p_{xj} = v_x \cdot \gamma$$
$$p_{yj} = v_y \cdot \gamma$$
$$p_{zj} = v_z \cdot \gamma$$

Далее цикл повторяется.

Билеты к экзамену

- Билет № 1.
- Эволюция функции распределения электронов по энергии при ускорении пучка.
- Акцептанс соленоида и согласующее устройство.
- Билет № 2.
- Быстрое и адиабатическое ускорение.
- Энергетическое и угловое распределение позитронов на выходе мишени.
- Билет № 3.
- Определение электронной температуры и процессы температурной релаксации в электронном пучке после ускорения.
- Выбор материала для конверсионной мишени источника позитронов.
- Билет № 4.
- Закон Ричардсона-Дэшмана Термоэлектронная эмиссия с поверхности металлов.
- Четвертьволновое согласующее устройство. Концентратор потока.
- Билет № 5.
- Эмиссия с активированной поверхности. Эмиссия с поверхности полупроводника (BaO).
- Источники позитронов для ускорителей на встречных пучках.
- Билет № 6.
- Фотоэлектронная эмиссия. Три стадии фотоэмиссии.
- Металлические фотокатоды. Полупроводниковые фотокатоды.
- Билет №7.
- Процесс эмиссии электронов и формирование пучка.
- Фотокатоды с отрицательным электронным сродством.