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Abstract. The space-charge effects in a straight beamline are considered. 

INTRODUCTION 

In these short notes a few simple models are described. They may be useful for  
obtaining rough estimates of space-charge effects, and for testing the numerical results 
provided by computer codes. 

SPACE-CHARGE FORCES 

Coasting Cylindrical Beam 

1. Consider first a round coasting (i. e. unbunched, so the beam parameters do not 
depend on time) cylindrical (i.e. the beam parameters do not depend on the coordinate 
along the beam axis z) beam having charge density ρ(r), where r = 22 yx +  is the 
distance from the beam axis z. Suppose that all the particles are moving along the z 
axis with the same velocity v. Then the electric and magnetic fields have only one 
component in the cylindrical system of coordinates (r, α, z), and we can use Gauss’s 
and Stokes’s theorems to find the fields, respectively: 
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where c is the velocity of light. According to the derivation method, Eqs. (1) and (2) 
are also valid in the presence of a coaxial round cylindrical vacuum chamber. The 
Lorentz force has only a radial component1: 
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1 For the vacuum chamber with finite conductivity there is also the z component of electric field. 



where β = v/c, and γ = (1 –β2)–1/2 is the relativistic factor (the ratio of the particle 
energy to its rest-frame energy mc2). According to Eq. (3), the magnetic part of the 
Lorentz force is subtracted from the electric one, and therefore the net value of the 
Lorentz force decreases significantly with particle energy growth. 

When a particle of a beam passes a length l, the radial component of the momentum 
grows as 
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Since ∆pr is invariant with respect to the boost along the z axis, it is interesting to 
calculate it in the beam rest frame. Here only the electric field induced by the charge 
density ρ/γ, 
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exists. Because of Lorentz contraction, the force acts during a time interval l/γv, and 
we again get the result of Eq. (4). 

For the simplest case of homogeneous charge distribution with beam radius a, 
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where I is the beam current, we have 
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If the beam is propagating inside a conducting round pipe of radius b, we can 

choose the potential to be zero on the inner pipe surface. Then according to Eq. (1) the 
potential inside the beam pipe is 
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For the homogeneous charge distribution given by Eq. (6), we get 
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2. For an elliptical beam cross-section, 
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where 
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is the step function, the electric field inside the beam (x2/a2 + y2/b2 ≤ 1) is also a linear 
function of the coordinates [1]: 
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Using Eq. (10) in the rest frame, and coming back to the laboratory frame, we can 
easily get the magnetic field Bx = – βEy, By = βEx and the Lorentz force 
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Longitudinal Electric Field 

1. Let the beam pipe have different radii b– at z < – Lt and b+ at z > Lt (2Lt is the length 
of the transition region). Then there is a longitudinal electric field Ez(r,z) in the 
transition region, and 
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Note that the voltage U does not depend on r. For b– < b+ particles are decelerated, 
and the beam “loses” corresponding power UI. This power is deposited to the energy 
of the fields. Moving from left to right, the beam induces the fields in additional space, 
contained between the cylinders r = b– and r = b+. The additional power passing 
through the right part of the beam pipe is 
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which is just  IU. To prove energy conservation in the general case, we need to take 
into account the variation of the beam velocity. Then 
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Averaging U(r) over the beam cross-section (<r2/a2> = ½), we get the power 
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It can also be derived from the total energy conservation: 
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2. Now let the beam current depend on time as I(t – z/v). Since 
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for the ideal-conducting round beam pipe the field in the rest frame is purely 
electrostatic. If 
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i. e. the bunch in the rest frame is much longer than the pipe radius, Eqs. (8) and (9) 
are valid approximately. Then the corresponding longitudinal electric field in the beam 
(r ≤ a) is 
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Note that Ez is Lorentz invariant, and therefore Eq. (21) is valid in the laboratory 
frame also. For a thin beam (a << b), the dependence of Ez on the transverse 
coordinate r inside the beam is rather weak, and we can replace r2/a2 by its average 
value ½. Another simplification of Eq. (21) can be obtained for the parabolic 
longitudinal distribution 
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where Q and τ are the charge and the duration of the bunch. Then Ez is a linear 
function of t – z/v inside the bunch (|t – z/v| ≤ τ), 
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3. Let the beam pipe have a small azimuthal groove with depth h and width w, i. e. the 
pipe surface equation is 
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For a long bunch ( 1ln <<⎟
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approximated by Eq. (2). Therefore the magnetic flux in the groove is 
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Another way to obtain this flux is to calculate the magnetic field in the groove from 
the surface density of the image current, i = – I/(2πb): Bα = – 4πi/c, Φ = Bαwh. 
According to Eq. (25), the groove inductance is L = 2wh/b. 

As the flux is time-dependent, the corresponding voltage between the groove banks, 
U, is 
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The longitudinal impedance is defined as Z(ω) = U(ω)/I(ω). In our case 
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Comparing Eqs. (26) and (21) we can say that the Coulomb longitudinal forces are 
equivalent to the effective (negative) inductance per unit length: 
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TRANSVERSE MOTION 

Laminar Beam 

As it was shown earlier, the components of the Lorentz force inside the uniformly 
charged beam are linear functions of the transverse coordinates (see Eq. (13)). Let’s 
consider a round beam. The equation of transverse motion of a particle inside such a 
beam has the form2: 
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If the initial particle velocities depend linearly on the initial coordinates 
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be conserved during the motion, because of the linearity of Eq. (29). This means that 
particle trajectories do not cross. Such a beam is frequently referred to as a laminar 
                                                 
2 Here and below we consider the paraxial approximation |dr1/dt| << v. 



beam. In the phase space (r, r′), all particles lie in the interval bounded by the points 
(0, 0) and (a, da/dt). Equation (29) is also valid for the boundary particles r1 = a. Then, 
changing the independent variable t = z/v, we obtain 
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where I0 = mc3/e ≈ 17 kA (for electrons) is the characteristic current. The first integral 
of Eq. (30) is 
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where a′ = da/dz, and a0 is the minimum beam radius (where a′ = 0). Using Eq. (31) 
we can get the expression for the angular divergence, 
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Non-relativistic beams are frequently characterized by the perveance P = IU–3/2 ∝ I/β3 
(eU is the particle kinetic energy), then the dimensionless constant in Eq. (30) can be 
expressed as ( )emP 2 . 

Linear external focusing can be easily taken into account by adding the corres-
ponding force to Eq. (29). Then Eq. (30) will be generalized as follows, 
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where K(z) is the focusing rigidity. For example, for a thin focusing lens installed at z 
= 0, K(z) = δ(z)/F, F is the focal length, and δ(z) is Dirac’s delta-function. 

To generalize further our consideration of transverse motion, taking account of the 
space-charge force, we will discuss a beam with finite emittances. 

Kapchinsky-Vladimirsky Equation 

1. A particle beam can be described in more detail by using the distribution function 
f(x, x′, y, y′) in the four-dimensional phase space of the transverse coordinates and 
angles. For a uniform elliptical beam (Eq. (10)) we can choose a distribution function 
of the form 
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where αx, βx, γx, αy, βy, γy are z-dependent Twiss parameters, and εx and εy are constants 
called emittances. Distribution in Eq. (34) is referred to as the Kapchinsky-
Vladimirsky (KV) distribution and corresponds to uniform particle distribution over 
the surface of a four-dimensional ellipsoid. Integration of the distribution function 



over the angles x′ and y′ leads to the charge density, Eq. (10), with a2 = εxβx and b2 = 
εyβy. We can write the particle trajectory equations using the Lorentz force, Eq. (13), 
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where Kx and Ky are the rigidities of the external focusing. Equation (35) is the set of 
two Hill’s equations with total rigidities  
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Then the envelope equations with these rigidities are 
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Equations (37) are referred to as the Kapchinsky-Vladimirsky equations. For the 
special distribution they reduced the problem of the evolution of the distribution 
function to the problem of the evolution of two transverse beam sizes a and b. It is 
worth noting that these are exact equations. 
 
2. Frequently people use the so-called root-mean-square emittance 
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To understand the origin of this combination we can write down the “symplectic 
distance” between two points (particles) on the phase plane 
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which is the area of the parallelogram constructed on vectors (x1 x′1) and (x2 x′2). As 
0

21
=S , we can calculate 
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For the Kapchinsky-Vladimirsky distribution 4x
rms
x εε = . 



Comparison of the two nonlinear terms in Eq. (37) for a round beam, a = b,  εx = εy 
= ε,  shows that the laminar beam approximation, Eq. (33), is valid when 
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The left side of Eq. (41) is the square of the local angular spread, and the right side is 
the dimensionless perveance, which is the square of the “characteristic angular 
divergence” (see Eq. (32)). In the opposite case, we can neglect the space-charge force 
term in Eq. (37) and return to the single-particle approximation. It is worth noting that 
the condition (41) depends on the beta-function. Therefore, it may be different in 
different places along the beamline. In particular, the places where the beta-function 
(and the beam size) are maximal, are the most sensitive to the influence of the space-
charge forces. 

Emittance Degradation 

For a coasting beam and Kapchinsky-Vladimirsky transverse distribution, the 
space-charge force is linear and does not change the emittances. But for a bunched 
beam the current I depends on time. Correspondingly, at different parts of the bunch 
the corrections to the focusing rigidities (see Eq. (36)) are different. Therefore the 
Twiss parameters of the beam also become different and, averaged over the whole 
bunch, the transverse emittance (the so-called projection emittance) increases. 

Consider a beam passing through free space of length L. According to Eq. (36), the 
horizontal optical strength is 
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where s is the coordinate along the bunch. The Twiss matrix transformation 
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and averaging over both the transverse distribution function and the bunch length 
gives the rms projection emittance, 
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and the emittance increase, 
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For a Gaussian bunch  ⎟⎟
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Assuming for simplicity a round beam a2 = b2 = 4εx0βx0 and a small initial 
emittance εx0 << εx, we can easily find from Eqs. (42) and (45): 
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The other reason for emittance degradation is the nonlinearity of the Lorentz force 

for real transverse distributions (which differ from the Kapchinsky-Vladimirsky distri-
bution). The contribution from nonlinearity increases the numerical coefficient in Eq. 
(46) from 0.14 to approximately 0.2. The emittance degradation described above is not 
a truly irreversible process, therefore it can be partly compensated by proper down-
stream optics. 

LONGITUDINAL MOTION 

Debunching of a Long Bunch 

The equation of longitudinal motion,  
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where s = z – v0t, v0 is the average velocity and ( ) 2122
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−= cvγ . For parabolic 
charge distribution, Eq. (22), the longitudinal field Ez depends on s linearly (see Eq. 
(23)), and we can repeat the study done above for the transverse motion of a laminar 
beam. Substituting Eq. (23) into Eq. (48) gives 
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where l = v0τ. An equation for the bunch length l = smax follows from Eq. (49): 
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The most significant difference between Eq. (50) and Eq. (30) is the inverse square 
dependence of the right side. The first integral of Eq. (50) is 
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where l0 is the minimum bunch length and (dl/dt)∞ is the maximum velocity deviation 

of the bunch end. The corresponding maximum energy deviation (
dt
dl
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Short-Wavelength Density Modulation 

Now we’ll consider the opposite limiting case of short-wavelength longitudinal 
density modulation. It is important for some electronic devices (klystrons, traveling-
wave tubes, free electron lasers, etc.). 

In the beam rest frame, space charge induces only an electric field. Therefore, the 
equations in hydrodynamic approximation have the form 
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Linearization 
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leads to 
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and hence to the equation for plasma oscillation, 
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where mep 04πρω =  is the rest-frame plasma frequency. The general solution of 
Eq. (56) is 
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Returning to the laboratory frame, we can find the space period of the plasma 
oscillations, 
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where j is the current density. For uniform charge distribution, Eq. (6), 
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An interesting application of the above theory is suppression of the shot noise in the 

current of an electron beam from a cathode. Electrons leave the cathode at uncor-
related moments of time with approximately zero velocity spread at the output of the 
electron gun. After they pass length Lp/4, the initial density fluctuations disappear, and 
by accelerating the beam at this point we can “freeze” the charge distribution (Lp 
increases significantly after acceleration). This is how a low-noise traveling-wave tube 
works. 

CURRENT LIMITATIONS 

Energy Spread and Maximum Current 

Frequently the source of an electron beam is a cathode at potential U. Then the 
electron total energy is eU and the kinetic energy T is (see Eq. (9)) 

 

 ( ) .1ln2
2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=−=

a
r

v
I

a
b

v
IUeUeT ϕ  (60) 

 
The kinetic energy spread (i. e., the energy difference for particles at r = 0 and r = a) is 
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Since the kinetic energy must be positive at any r, the current is limited: 
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To obtain higher currents, sheet beams are used. Then for a uniformly charged 

rectangular beam  |y| < a, |x| < w/2, w >> a, 
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where 2b is the vertical aperture of the conducting beam pipe (very wide in the x 
direction), and i = I/w is the linear current density. Then instead of Eq. (61) and Eq. 
(62) we get 
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Maximum Equilibrium Current Density 

The equilibrium solution of Eq. (33) for constant focusing, K = const, 
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leads to a current density 
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But there is no way to organize equal constant focusing in both transverse directions.3 
Therefore, a longitudinal magnetic field is used to keep the beam radius constant. As a 
uniform longitudinal magnetic field Bz = B does not provide true focusing, we need to 
derive the equilibrium condition from the beginning.  

At the beam rest frame the equilibrium condition is 
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(the cylindrical coordinates r, α, z are used, and  vα << c  is assumed). We will neglect 
the beam-induced contribution to the magnetic field Bz. According to Eq. (7) the radial 
electric field is linear in r. Therefore, choosing the velocities as vα = – ωr, we can 
satisfy the equilibrium equation Eq. (68) for all r 4: 
                                                 
3 We can use a bending magnet with field index n = 0.5, but then the equilibrium trajectory is curved. 
4 In this case the beam is rotated as a rigid body. 
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where 
mc
eB

c =ω  is the cyclotron frequency. The roots of Eq. (69) are 
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The maximum charge density takes place for the zero discriminant of Eq. (70), i. e. at 
ωc = ωp 2 , 
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and is referred to  as the Brillouin current density.  For example,  if  B0 = 10 kG  and 
βγ = 1, then  jmax ≈ 23 kA/cm2. 

ELECTRON GUNS 

The conditions of electron guns differ from those discussed above, because near the 
cathode particle velocities are low, and we can not use the paraxial approximation 
successfuly.  

For an infinite-plane cathode at x = 0, the set of equations for a beam propagating in 
the positive x direction, 
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with initial conditions  ϕ1(0) = 0  and  dϕ1/dx(0) = 0, has the solution 
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(the current density j is negative). If the voltage at the gap d is U = ϕ1(d), the well-
known Child’s law 
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and the planar diode perveance 
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where S is the cathode area, can be easily obtained. In the general case we can not 
apply Eq. (74) for the finite transverse beam size, but now we’ll find a special gun 
configuration, called Pierce’s gun, for which Eqs. (74) and (75) are valid. Consider the 
two-dimensional problem with a beam in quadrant  x > 0,  y < 0, propagating as before 
in the positive x direction (see Fig. 1). 
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FIGURE 1.  Geometry of the simplest Pierce’s gun. The beam (gray) occupies the lower quadrant. The 
focusing zero-potential electrode (zero equipotential) is shown in the upper quadrant. 

 

Let the potential in this quadrant be given by Eq. (73), so that the beam particles are 
moving as in the infinite diode case. The solution of the Laplace equation in the upper 
quadrant  x > 0,  y > 0, for the boundary conditions  ϕ(0,y) = 0,  ϕ(x,0) = ϕ1(x),  can be 
obtained by the analytic continuation  ϕ(x,y) = Reϕ1(x+iy). In particular, the zero 
equipotential equation  
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where  x + iy = reiα,  gives  α = 3π/8 = 67.5°.  The zero-potential  (connected  with the 
cathode at  x = y = 0) electrode installed at this position provides the necessary 
potential inside the beam. The same electrode can limit the beam from the bottom 
also, and thus create a sheet beam. To construct the gun, we solved the inverse 
problem, finding the proper boundary conditions from the given potential. Solving the 
same problem in cylindrical coordinates, we can construct a parallel cylindrical beam 
and find the corresponding shape of the focusing electrodes. Using the solution for the 
spherical diode, we can construct a converging (conical) round beam. 

For an arbitrary electrode configuration, the electron beam parameters can be 
calculated numerically. 

In conclusion let us write down the set of equations for a laminar electron beam: 
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Expressing all variables through the action S, we can obtain Spangenberg’s equation, 
 

 ( )[ ]{ } 02 =∇∆∇∇ SS . (78) 



PROBLEMS 

1. A hollow beam has inner radius a1 and outer radius a2. Find the space-charge-
induced kinetic energy “spread”  and the maximum beam current for gun voltage 
U.  Consider also the limiting cases a1 → 0 and a1 → a2. 

2. A cylindrical beam collimator has opening radius  b  and length L. For the KV 
distribution find the maximum emittance of a round uncharged beam that can pass 
through the collimator. 

3. Derive the equation  for the variation of the vertical size of a laminar sheet beam 
(i. e. an infinitely wide beam). Compare the solution with the round beam case. 

4. Find the maximum perveance of a round laminar beam for the collimator of 
Problem 2. 

5. A coasting beam passed through a straight drift section of length L. Estimate the 
emittance degradation due to the nonlinearity of the transverse space-charge field. 
Compare this with the similar result for a bunched beam with a linear transverse 
space-charge field. 

6. Consider the equilibrium condition and the maximum current density for a sheet 
(infinitely wide) beam in a longitudinal magnetic field. 

7. A Brillouin beam leaves the solenoid passing through its short end-field region. 
Show that the beam rotation will be stopped outside the solenoid, i. e. the particles’ 
angular momenta with respect to the beam axis will vanish. 

8. For a low current density, a beam has two equilibrium angular velocities in the 
longitudinal magnetic field. What is their meaning? 
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