Новости

Обнаружен эффект, ограничивающий время жизни кильватерной волны в эксперименте AWAKE

Специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН), входящие в коллаборацию AWAKE (Advanced proton-driven plasma WaKefield Acceleration Experiment) Европейского центра ядерных исследований (ЦЕРН), обнаружили и исследовали эффект разрушения плазменной кильватерной волны при образовании электронного гало. Этот эффект ограничивает время жизни плазменной волны и влияет на выбор оптимальных условий для ускорения в ней частиц. Результаты опубликованы в журнале Plasma Physics and Controlled Fusion, а также были представлены на собрании коллаборации AWAKE и на конкурсе молодых ученых ИЯФ СО РАН. Исследованное явление важно как для объяснения результатов эксперимента, так и для численного моделирования будущих плазменных ускорителей.

Керамические кирпичи из карбида бора доказали свою эффективность в защите диагностического оборудования ИТЭР

 

Автор - Пэт Бранс (Pat Brans)

Источник: iter.org

Для защиты диагностического оборудования от нейтронного потока требуются очень эффективные материалы, но эти материалы могут быть использованы внутри вакуумной камеры токамака, только если они продемонстрируют выполнение ряда строгих требований.

25 порт-плагов, являющихся частью диагностической системы токамака ИТЭР, служат двум основным целям. Одна из них – защитить диагностическое оборудование от нейтронного потока – либо полностью заблокировав, либо уменьшив его на несколько порядков. Другая задача потр-плагов - обеспечить доступ диагностического оборудования к плазме, через отверстия и окна, которые необходимо выполнить в этой защите.

Экваториальный порт-плаг состоит из трех диагностических защитных модулей, которые устанавливаются внутрь корпуса порт-плага. Каждый модуль состоит из рамы из нержавеющей стали и диагностической первой стенки. За стальной рамой будет располагаться защитный материал, который будет станет последней линией обороны, уменьшающей или блокирующей поток нейтронов на датчики и вспомогательное оборудование.

Выбор материала с правильными свойствами

outgasing test 2

Фото - iter.org

Выбор подходящего материала для защиты – это сложный процесс, который потребовал ряда шагов и участия нескольких организаций. Материал должен обеспечивать нужную степень защиты, но при этом соответствовать ряду ограничений.

Одно из них ограничений заключается в том, что каждый полностью оснащенный порт-плаг может весить не более 48 тонн, что сокращает количество допустимых видов защиты. «Мы могли бы создать надежную защиту, чередуя слои нержавеющей стали и воды», - комментирует Максим Иванцивский, приглашенный партнер проекта из секции разработки диагностики (старший научный сотрудник ИЯФ СО РАН – прим. ИЯФ СО РАН). «Это отвечало бы нашим требованиям по уменьшению нейтронного потока, но, к сожалению, этот был бы далеко за пределами ограничения по весу. Вес порт-плага превышал бы 48 тон».

Чтобы найти вариант конструкции, которая обеспечивала достаточную защиту, все еще оставаясь в пределах по весу, центральный офис ИТЭР, Российское и Американское домашние агентства провели независимые исследования. Все три организации пришли к выводу, что карбид бора (B4C) подходит лучше других кандидатов.

B4C – очень прочный материал, его используют, например, в бронежилетах и в качестве брони для некоторых современных танков. В4С также очень хорошо блокирует нейтроны. После того как нержавеющая сталь и вода замедляют поток нейтронов, B4C поглощает его их, обеспечивая существенное улучшение защиты. Более того, карбид бора почти в четыре раза легче нержавеющей стали.

Выбор правильной формы материала

«Как только стало ясно, что B4C нам подходит, мы принялись определять оптимальную для нас форму этого материала», - говорит Максим Иванцивский. «B4C может быть сыпучим, и тогда им можно заполнить ту или иную емкость, или же, он может быть изготовлен в виде одного из типов керамики. Мы обсудили различные варианты с рабочей группой и решили, что лучшим решением будет использование карбида бора в виде керамических кирпичей, поскольку с ними намного проще работать».

Следующим шагом был выбор такой конструкции, которая позволила бы добиться баланса между эффективностью защиты и сохранением оптимального веса. Команда начала с разработки защитных кассет, которые представляют собой стальные пластины, подогнанные под форму диагностического оборудования. Кассеты изготавливаются из нержавеющей стали и содержат блоки B4C. «Мы выбрали модульную конструкцию, которая позволяет изменять размеры защитных элементов в соответствии с формой диагностического оборудования», - говорит Иванцивский.

Идея состоит в том, чтобы разместить оптические датчики и зеркала внутри диагностического защитного модуля, и окружить их защитными кассетами. Плюс этого подхода в том, что при повреждении оборудования он позволяет легко снять лишь небольшое количество защитных кассет, чтобы удалить неисправность.

Однако, если пространство полностью заполнено кирпичами, вес будет превышен. «Мы нашли довольно элегантное решение», - говорит Иванцивский. «Мы спроектировали большое отверстие в центре каждого кирпича, что позволяет, с одной стороны, скрепить между собой элементы конструкции, с другой – увеличивая или уменьшая это отверстие, мы можем управлять средней плотностью».

Другой проблемой, которую необходимо было преодолеть, была скорость газвыделения. «На ранних стадиях разработки проекта были рассчитаны показатели газовыделения, которые можно допустить в каждой части токамака, чтобы вакуумная система справлялась с его откачкой», - говорит Иванцивский. «В эти расчеты также входила дегазация портплагов. Но керамические кирпичи существенно увеличивают площадь поверхности, что не учитывалось при первоначальных расчетах. Порт-плаг может содержать до 40 000 кирпичей с общей площадью поверхности 407 м², это дополнительная поверхность, которая должна быть учтена при расчете газовыделения».

Для определения, удовлетворяет ли порт-плаг требованиям газовыделения, недостающим элементом расчета была скорость дегазации каждого кирпича из керамики B4C. Домашнее агентство Российской Федерации задалось целью выяснить, эту величину.

«Мы взяли 638 блоков и очистили их – сначала ультразвуком, затем водой, а после высушили при 120 градусах Цельсия», - говорит Иванцивский. «Затем они отжигались в течение 4 часов в печи при температуре 1000 градусов. Мы поместили эти кирпичи в вакуумную камеру и проверили их на соответствие требованиям ИТЭР. Всего через 5 часов испытаний мы продемонстрировали, что укладываемся в требования. Через 24 часа показатели стали еще лучше. Чтобы сделать еще один шаг вперед, мы производили откачку и измерения в течение одного года. В результате скорость выделения газа снизилась в 3,5 раза».

После нескольких месяцев исследований, компромиссов в дизайне и экспериментов было показано, что керамические блоки B4C защищают диагностическое оборудование, а также отвечают требованиям на работу с порт-плагами для диагностических устройств.

Немецкие физики работают над детектором для коллайдера Супер С-тау фабрика

Специалисты Гисенского университета имени Юстуса Либиха (Германия) участвуют в разработке одной из систем детектора для проекта электрон-позитронного коллайдера Супер С-тау фабрика Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН). Работа ведется в рамках программы CREMLINplus (Connecting Russian and European Measures for Large-scale Research Infrastructures), целью которой является развитие и укрепление научного сотрудничества России и Европейского союза в области исследовательской инфраструктуры. Специалисты из Германии занимаются разработкой одного из вариантов системы идентификации заряженных частиц, которая называется FDIRC (Focusing Detector of Internally Reflected Cherenkov light). Другой вариант системы идентификации, FARICH (Focusing Aerogel RICH), параллельно разрабатывается специалистами ИЯФ СО РАН.

Создан нейтронный источник для клинических испытаний бор-нейтронозахватной терапии

Специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) совместно с TAE Life Sciences (США) создали нейтронный источник для клинических испытаний бор-нейтронозахватной терапии онкологических заболеваний. Ожидается, что клинические испытания на этой установке начнутся в 2021 году в госпитале г. Сямынь (Китай). В настоящий момент осуществляется сборка оборудования в клинике.

Сечение рождения пары пионов измерено на коллайдере ВЭПП-2000

Специалисты Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) с точностью 0,8% измерили сечение процесса электрон-позитронной аннигиляции в два пи-мезона (пиона) в области энергий до 1 ГэВ на коллайдере ВЭПП-2000. Полученные данные внесут свой вклад в решение одной из фундаментальных задач современной физики – измерения и сравнения с теоретическими расчетами значения аномального магнитного момента мюона. Это сравнение позволит сделать вывод о существовании отклонения от Стандартной модели. Результаты приняты к публикации в Journal of High Energy Physics. Работа поддержана грантами РФФИ 14-02-00129-а и 16-32-00542-мол_а.

Госконтракт на изготовление оборудования для ЦКП «СКИФ»: текущие работы

В ноябре 2020 года Институт катализа им. Г. К. Борескова СО РАН и Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) заключили государственный контракт на изготовление оборудования для Центра коллективного пользования «Сибирский кольцевой источник фотонов» (ЦКП «СКИФ»). В настоящий момент на экспериментальном производстве (ЭП) ИЯФ СО РАН в работе находятся различные элементы инжекционного комплекса; в распоряжение экспериментального производства уже поступили чертежи основных систем бустера-синхротрона; закончена проверка и отладка критически важного для производства оборудования.

На стенде инжектора нейтралов высокой энергии впервые получен пучок отрицательных ионов с энергией более 240 кэВ

На стенде инжектора нейтралов высокой энергии Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) впервые получен пучок отрицательных ионов с энергией более 240 кэВ. В инжекторе пучок высокоэнергетичных атомов образуется за счет нейтрализации ускоренного пучка отрицательных ионов водорода. В институте построен и исследуется прототип инжектора, с помощью которого отрабатывается технологию получения пучка атомов высокой энергии для нагрева плазмы в установках УТС и подтвердить его высокую надежность и эффективность работы. Результаты проведенных работ по созданию и исследованию прототипа многократно докладывались на международных конференциях по источникам ионов и мощным пучкам и опубликованы в рецензируемых журналах AIP Conference Proceedings и Review of Scientific Instruments.

Испытан прототип сверхчувствительного детектора для научных, медицинских и промышленных применений

Специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН), Института химии твердого тела и механохимии СО РАН (ИХТТМ СО РАН) и Института катализа им. Г.К. Борескова СО РАН разработали и испытали прототип детектора на основе нанокомпозитного материала. Он создан по уникальной технологии, которая открывает новые возможности в детектировании рентгеновского излучения. По расчетам ученых, детектор, созданный с помощью новой технологии, будет иметь высокое пространственное разрешение (20 микрон или лучше) и высокую чувствительность. Первый прототип продемонстрировал способность детектировать рентгеновское излучение. На следующем этапе планируется разделить чувствительный объём детектора на пикселы, что позволит добиться высоких показателей в пространственном разрешении. Результаты работы представлены на конференции Synchrotron and Free electron laser Radiation: generation and application (SFR-2020).

Международные эксперты оценили проект ЦКП «СКИФ»

В Институте ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) прошло очередное заседание научно-координационного совета Центра коллективного пользования «Сибирский кольцевой источник фотонов» (НКС ЦКП «СКИФ»). По итогам мероприятия члены НКС рекомендовали создание научного (Scientific Advisory Committee, SAC) и ускорительного (Machine Advisory Committee, MAC) комитетов при ЦКП «СКИФ». В подобные комитеты входят признанные мировые эксперты, задача которых – консультировать руководителей проекта при научно-техническом проектировании и эксплуатации будущего исследовательского объекта.

Подписан госконтракт на производство оборудования для ЦКП «СКИФ»

Институт катализа им. Г. К. Борескова СО РАН (ИК СО РАН) и Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) подписали государственный контракт на изготовление технологически сложного оборудования для Центра коллективного пользования «Сибирский кольцевой источник фотонов» (ЦКП «СКИФ»). Продемонстрировать первый пучок заряженных частиц с проектными параметрами планируется в конце следующего года.

Работа студентки НГТУ НЭТИ поможет повысить эффективность линейных ускорителей электронов

Линейные СВЧ ускорители электронов используются в разных сферах деятельности: начиная от промышленности и медицины, заканчивая коллайдерами и источниками синхротронного излучения. Один из ключевых показателей эффективности любого линейного ускорителя – малые потери частиц в процессе ускорения. С целью увеличения данного показателя специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) разработали согласующую секцию для предварительного ускорения и группировки нерелятивистского пучка. Такие секции можно использовать с разными типами регулярных ускоряющих структур. По предварительным расчетам, использование этой секции позволит увеличить токопрохождение до значений не менее 85%, что является очень высоким. Полученные результаты были представлены на международном салоне инноваций и изобретений «Новое время», по итогам которого работа магистранта ФТФ НГТУ НЭТИ, старшего лаборанта ИЯФ СО РАН Кристины Гришиной удостоилась приза журналистских симпатий.