Новости

Начато производство вакуумной системы для ЦКП «СКИФ»

Вакуумная система синхротрона СКИФ – одна из важнейших. Пучок электронов, который, двигаясь почти со скоростью света, испускает синхротронное излучение, может существовать только в вакууме. Поэтому важно, чтобы в каналах, в которых накапливаются, ускоряются и транспортируются электроны, был высокий вакуум. Вакуумная система синхротрона СКИФ будет включать в себя вакуумную часть для бустерного и накопительного кольца, каналы транспортировки, электронную пушку и линейный ускоритель. Вместе это – более 900 метров вакуумных камер. В настоящее время на экспериментальном производстве Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) уже изготовлены первые десятки метров для бустерного кольца.

Эффект, обнаруженный на коллайдере ИЯФ СО РАН, позволит уточнить теоретические расчеты в международном эксперименте по физике частиц

В Институте ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) на коллайдере ВЭПП-2000 в эксперименте по изучению адронов — частиц, участвующих в сильных взаимодействиях — выявлен необычный эффект при рождении пи-мезонов. Наблюдение мотивировало теоретиков института пересмотреть методику расчета вероятностей процессов рождения частиц и уточнить вклад дополнительных эффектов. Это может заметно повлиять на теоретический расчет аномального магнитного момента мюона в рамках масштабного эксперимента, проводящегося в Фермилаб (США).

Новая установка позволит реализовать перспективный способ создания плазмы с термоядерными параметрами

В Институте ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) создан прототип плазменной установки, внутри которой при температуре около ста миллионов градусов будут воспроизведены условия, близкие к тем, которые необходимы для протекания термоядерной реакции в промышленном реакторе. Простая и элегантная конструкция установки КОТ (Компактный осесимметричный тороид) и ожидающиеся низкие потери энергии и вещества позволят в перспективе создать на её основе компактный и экономически привлекательный источник энергии.

Ондулятор-гармошка откроет новые возможности ученым

В Институте ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) запущен первый в мире лазер на свободных электронах, использующий ондулятор с плавно изменяемемым периодом. Оригинальный ондулятор, напоминающий гармошку, предложен, сконструирован и изготовлен в ИЯФ СО РАН, и включает в себя сто магнитных полюсов. Разработка крайне важна для пользовательских установок — лазеров на свободных электронах и источников синхротронного излучения, поскольку позволяет существенно расширить диапазон генерируемого излучения и упростить работу пользователей — физиков, химиков, биологов и пр.

Подписан меморандум о партнерстве вокруг детектора Супер С-тау фабрики

Супер С-тау фабрика – это проект установки класса мегасайенс, электрон-позитронного коллайдера, который развивает Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН). Одна из его важнейших частей – универсальный детектор частиц – система, которая регистрирует и идентифицирует частицы, рожденные в столкновениях электронов с позитронами. 18 ноября 2021 года было запущено Партнерство вокруг эксперимента на Супер С-тау фабрике. Участники Партнерства будут координировать разработку проекта детектора и развитие физической программы эксперимента. 18 ноября в ИЯФ СО РАН состоялись первое заседание совета и выборы членов совета Партнерства.

В Новосибирском Академгородке Анатолию Серышеву представили перспективные направления развития СО РАН

11 ноября полномочный представитель Президента Российской Федерации в Сибирском федеральном округе Анатолий Серышев встретился с руководством Сибирского отделения Российской академии наук и ряда научных институтов.

Промышленный ускоритель ИЯФ СО РАН повышает конкурентоспособность отечественной продукции

Специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) разработали и успешно испытали новый промышленный ускоритель электронов с максимальной энергией 3 МэВ и мощностью выведенного пучка 100 кВт. Увеличение энергии ускоренных электронов позволит расширить область применения ускорителей — в частности, использовать для обработки силовых кабелей большого сечения, в том числе кабелей железнодорожного транспорта, а также повысить конкурентоспособность российской продукции на мировом рынке.

Канал транспортировки ионов между двумя синхротронами ускорительного комплекса NICA введён в действие

NICA – это ионный коллайдер, который сооружается в Объединенном институте ядерных исследований (ОИЯИ, Дубна). Основная цель экспериментов – изучение состояний вещества, в которых пребывала наша Вселенная в первые мгновения после Большого Взрыва. Важной системой ускорительного комплекса NICA является канал транспортировки ионов из Бустера в Нуклотрон. Специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) и ОИЯИ провели первый цикл пусконаладочных работ канала транспортировки, в ходе сеанса работы Бустера с пучками ионов 4Не1+ и 56Fe14+. Конфигурация транспортного канала напоминает штопор, а сложность состояла в том, чтобы провести пучок ионов из одной установки в другую по трехмерной траектории, не нарушив его параметры. Команда физиков провела не один, как ожидалось, а два пучка разных ионов – гелия и железа. Оба успешно прошли через канал и были зафиксированы датчиками в конце канала.

Терагерцовое излучение изменило деление клеток у бактерий

Ученые «Курчатовского геномного центра ИЦиГ СО РАН» Федерального исследовательского центра Института цитологии и генетики СО РАН (ФИЦ ИЦиГ СО РАН) установили, что в результате воздействия терагерцового излучения на бактерии E.coli происходит изменение активности целых систем генов, которые связаны с агрегацией клеток, клеточной подвижностью, подавляется деление клеток, по-другому ведут себя клеточные мембраны. Эксперименты проводились на Новосибирском лазере на свободных электронах (ЛСЭ) Сибирского центра синхротронного и терагецового излучения (СЦСТИ) Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН). Результаты опубликованы в высокорейтинговом журнале Scientific Reports.

Обнаружено необычное явление в рамках международного эксперимента по поиску темной материи

Ученые Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) и Новосибирского государственного университета (НГУ), участвующие в международной коллаборации по поиску темной материи DarkSide, обнаружили новое явление в физике регистрации ионизирующего излучения, при котором появляются необычные медленные компоненты в регистрируемом сигнале. Данные были получены на оборудовании, изготовленном в ИЯФ СО РАН специально для этого эксперимента.

Первая российская установка для бор-нейтронозахватной терапии рака будет поставлена в Москву

Специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) разработают, изготовят и поставят в 2023-2024 годах ускорительный источник нейтронов в ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» для проведения доклинических и клинических испытаний бор-нейтронозахватной терапии (БНЗТ). БНЗТ – это метод лечения онкологических заболеваний, способный существенно продлить жизнь людей, например, с таким агрессивным видом рака, как глиобластома головного мозга. Установка для Центра онкологи им. Н. Н. Блохина станет модернизированной версией установки для БНЗТ, поставленной ранее ИЯФ СО РАН в Китай.

Новый экзотический тетракварк скоро получит свой паспорт

Новость об открытии специалистами коллаборации LHCb ЦЕРН (CERN, Европейская организация по ядерным исследованиям) экзотического тетракварка Tcc+, которая впервые была объявлена на конференции Европейского физического общества в конце июля, активно обсуждается в профессиональном сообществе. Сегодня коллаборация LHCb, в которую входят Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН), Новосибирский государственный университет (НГУ), Институт теоретической и экспериментальной физики им. А. И. Алиханова НИЦ «Курчатовский институт» (ИТЭФ) и др., представила уточненные «паспортные данные» новой частицы, то есть ее основные параметры. Оказалось, новая частица живет беспрецедентно дольше своих собратьев — в 100-5000 раз. Кроме того, ученые выяснили, что Tcc+ — это большой по размерам объект, примерно равный ядру атома урана. Также ученым удалось установить некоторые квантовые числа новой частицы и проработать гипотезы о ее внутренней структуре. Однако, как они отмечают, эти данные требуют дополнительной проверки. Результаты исследования направлены в журналы Nature Physics и Nature Communications, и доступны на сервере препринтов arXiv. Участники коллаборации посвятили научную публикацию об открытии Tcc+ памяти выдающегося физика, Семена Эйдельмана, который проработал в ИЯФ СО РАН и НГУ много лет.